Ethanol production process driving changes on industrial strains

ABSTRACT Ethanol production has key differences between the two largest producing countries of this biofuel, Brazil and the USA, such as feedstock source, sugar concentration and ethanol titers in industrial fermentation. Therefore, it is highly probable that these specificities have led to genome a...

Full description

Saved in:
Bibliographic Details
Published in:FEMS yeast research Vol. 21; no. 1; pp. 1 - 10
Main Authors: Nagamatsu, Sheila Tiemi, Coutouné, Natalia, José, Juliana, Fiamenghi, Mateus Bernabe, Pereira, Gonçalo Amarante Guimarães, Oliveira, Juliana Velasco de Castro, Carazzolle, Marcelo Falsarella
Format: Journal Article
Language:English
Published: England Oxford University Press 01-02-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract ABSTRACT Ethanol production has key differences between the two largest producing countries of this biofuel, Brazil and the USA, such as feedstock source, sugar concentration and ethanol titers in industrial fermentation. Therefore, it is highly probable that these specificities have led to genome adaptation of the Saccharomyces cerevisiae strains employed in each process to tolerate different environments. In order to identify particular adaptations, in this work, we have compared the genomes of industrial yeast strains widely used to produce ethanol from sugarcane, corn and sweet sorghum, and also two laboratory strains as reference. The genes were predicted and then 4524 single-copy orthologous were selected to build the phylogenetic tree. We found that the geographic location and industrial process were shown as the main evolutionary drivers: for sugarcane fermentation, positive selection was identified for metal homeostasis and stress response genes, whereas genes involved in membrane modeling have been connected with corn fermentation. In addition, the corn specialized strain Ethanol Red showed an increased number of copies of MAL31, a gene encoding a maltose transporter. In summary, our work can help to guide new strain chassis selection for engineering strategies, to produce more robust strains for biofuel production and other industrial applications. Understanding how the environment can drive changes in industrial yeasts is important for detecting genes that are under selection and may impact the adaptive process.
AbstractList Ethanol production has key differences between the two largest producing countries of this bibful, Brazil and the USA, such as feedstock source, sugar concentration and ethanol titers in industrial fermentation. Therefore, it is highly probable that these specificities have led to genome adaptation of the Saccharomyces cerevisiae strains employed in each process to tolerate different environments. In order to identify particular adaptations, in this work, we have compared the genomes of industrial yeast strains widely used to produce ethanol from sugarcane, corn and sweet sorghum, and also two laboratory strains as reference. The genes were predicted and then 4524 single-copy orthologous were selected to build the phylogenetic tree. We found that the geographic location and industrial process were shown as the main evolutionary drivers: for sugarcane fermentation, positive selection was identified for metal homeostasis and stress response genes, whereas genes involved in membrane modeling have been connected with corn fermentation. In addition, the corn specialized strain Ethanol Red showed an increased number of copies of MAL31, a gene encoding a maltose transporter. In summary, our work can help to guide new strain chassis selection for engineering strategies, to produce more robust strains for biofuel production and other industrial applications.
ABSTRACT Ethanol production has key differences between the two largest producing countries of this biofuel, Brazil and the USA, such as feedstock source, sugar concentration and ethanol titers in industrial fermentation. Therefore, it is highly probable that these specificities have led to genome adaptation of the Saccharomyces cerevisiae strains employed in each process to tolerate different environments. In order to identify particular adaptations, in this work, we have compared the genomes of industrial yeast strains widely used to produce ethanol from sugarcane, corn and sweet sorghum, and also two laboratory strains as reference. The genes were predicted and then 4524 single-copy orthologous were selected to build the phylogenetic tree. We found that the geographic location and industrial process were shown as the main evolutionary drivers: for sugarcane fermentation, positive selection was identified for metal homeostasis and stress response genes, whereas genes involved in membrane modeling have been connected with corn fermentation. In addition, the corn specialized strain Ethanol Red showed an increased number of copies of MAL31, a gene encoding a maltose transporter. In summary, our work can help to guide new strain chassis selection for engineering strategies, to produce more robust strains for biofuel production and other industrial applications. Understanding how the environment can drive changes in industrial yeasts is important for detecting genes that are under selection and may impact the adaptive process.
Ethanol production has key differences between the two largest producing countries of this biofuel, Brazil and the USA, such as feedstock source, sugar concentration and ethanol titers in industrial fermentation. Therefore, it is highly probable that these specificities have led to genome adaptation of the Saccharomyces cerevisiae strains employed in each process to tolerate different environments. In order to identify particular adaptations, in this work, we have compared the genomes of industrial yeast strains widely used to produce ethanol from sugarcane, corn and sweet sorghum, and also two laboratory strains as reference. The genes were predicted and then 4524 single-copy orthologous were selected to build the phylogenetic tree. We found that the geographic location and industrial process were shown as the main evolutionary drivers: for sugarcane fermentation, positive selection was identified for metal homeostasis and stress response genes, whereas genes involved in membrane modeling have been connected with corn fermentation. In addition, the corn specialized strain Ethanol Red showed an increased number of copies of MAL31, a gene encoding a maltose transporter. In summary, our work can help to guide new strain chassis selection for engineering strategies, to produce more robust strains for biofuel production and other industrial applications.
Ethanol production has key differences between the two largest producing countries of this bibful, Brazil and the USA, such as feedstock source, sugar concentration and ethanol titers in industrial fermentation. Therefore, it is highly probable that these specificities have led to genome adaptation of the Saccharomyces cerevisiae strains employed in each process to tolerate different environments. In order to identify particular adaptations, in this work, we have compared the genomes of industrial yeast strains widely used to produce ethanol from sugarcane, corn and sweet sorghum, and also two laboratory strains as reference. The genes were predicted and then 4524 single-copy orthologous were selected to build the phylogenetic tree. We found that the geographic location and industrial process were shown as the main evolutionary drivers: for sugarcane fermentation, positive selection was identified for metal homeostasis and stress response genes, whereas genes involved in membrane modeling have been connected with corn fermentation. In addition, the corn specialized strain Ethanol Red showed an increased number of copies of MAL31, a gene encoding a maltose transporter. In summary, our work can help to guide new strain chassis selection for engineering strategies, to produce more robust strains for biofuel production and other industrial applications. Keywords: industrial strain; first-generation ethanol production; sugarcane; corn; comparative genomics; Saccharomyces cerevisiae
Audience Academic
Author Nagamatsu, Sheila Tiemi
Oliveira, Juliana Velasco de Castro
Pereira, Gonçalo Amarante Guimarães
José, Juliana
Fiamenghi, Mateus Bernabe
Coutouné, Natalia
Carazzolle, Marcelo Falsarella
Author_xml – sequence: 1
  givenname: Sheila Tiemi
  orcidid: 0000-0002-4986-5094
  surname: Nagamatsu
  fullname: Nagamatsu, Sheila Tiemi
– sequence: 2
  givenname: Natalia
  surname: Coutouné
  fullname: Coutouné, Natalia
– sequence: 3
  givenname: Juliana
  orcidid: 0000-0002-8259-6519
  surname: José
  fullname: José, Juliana
– sequence: 4
  givenname: Mateus Bernabe
  surname: Fiamenghi
  fullname: Fiamenghi, Mateus Bernabe
– sequence: 5
  givenname: Gonçalo Amarante Guimarães
  orcidid: 0000-0003-4140-3482
  surname: Pereira
  fullname: Pereira, Gonçalo Amarante Guimarães
  email: goncalo@unicamp.br
– sequence: 6
  givenname: Juliana Velasco de Castro
  surname: Oliveira
  fullname: Oliveira, Juliana Velasco de Castro
– sequence: 7
  givenname: Marcelo Falsarella
  surname: Carazzolle
  fullname: Carazzolle, Marcelo Falsarella
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33417685$$D View this record in MEDLINE/PubMed
BookMark eNqFkctLAzEQxoNUrK-rR1nwoofaZJPd7N4sxUehIPg4hzSZrZHdpCa7Yv97U6yPiiA5zJD85puZfHuoZ50FhI4IPie4pMMKmrD0w8pJiTnZQrsky_mA0Jz1fuR9tBfCM8aEY1zsoD6ljPC8yHbRxWX7JK2rk4V3ulOtcXaVKggh0d68GjtPVCTmEJL4ZKzuQuuNrJMYpLHhAG1Xsg5wuI776PHq8mF8M5jeXk_Go-lAsbJoByxVWIGsiE41k4zxnEuSYg0zrFJSAiEVKzNd5jRVSuUzRjKFC8Y1SFxkWtJ9dPqhG6d76SC0ojFBQV1LC64LIo2SWU4pySN68gt9dp23cbpIFZyxIu7_Tc1lDcLYysWF1EpUjDiOX5fRdKV1_gcVj4bGqOhFZeL9RsHZRkFkWnhr57ILQUzu7_4UV96F4KESC28a6ZeCYLGyV3zYK9b2xoLj9WbdrAH9hX_6-d3ddYv_xN4BD1awLw
CitedBy_id crossref_primary_10_3389_fmicb_2021_644089
crossref_primary_10_3389_fmicb_2021_768562
crossref_primary_10_1016_j_ijbiomac_2023_123800
crossref_primary_10_3390_fermentation8100470
crossref_primary_10_1016_j_biortech_2024_130594
crossref_primary_10_1016_j_jbiotec_2022_10_005
crossref_primary_10_1042_EBC20200160
crossref_primary_10_1186_s40643_022_00580_w
crossref_primary_10_2139_ssrn_4181174
Cites_doi 10.1093/nar/gkl200
10.3390/foods7040052
10.1016/j.mimet.2020.106029
10.1091/mbc.10.3.609
10.1093/nar/gkg034
10.1186/s12864-015-1737-4
10.1074/jbc.272.20.12889
10.3390/jof4010001
10.1016/j.proche.2015.12.106
10.1146/annurev-biochem-062917-012749
10.1038/s41598-017-01141-4
10.1016/j.cell.2016.08.020
10.1038/ng.3847
10.1007/s00438-012-0695-7
10.1016/j.biortech.2016.12.016
10.1101/gr.130310.111
10.1128/genomeA.00111-17
10.1105/tpc.108.064907
10.1139/bcb-2018-0189
10.1091/mbc.e09-11-0944
10.1046/j.1365-2958.2000.01886.x
10.1093/molbev/msm088
10.1186/s13068-019-1541-5
10.1186/s13068-016-0648-1
10.1111/j.1567-1364.2008.00428.x
10.1021/acschembio.8b00767
10.1038/npjamd.2016.28
10.1371/journal.pgen.1003721
10.1016/j.jbiosc.2017.07.013
10.1371/journal.pone.0111585
10.1371/journal.pone.0085519
10.1093/molbev/msy159
10.1186/s13068-017-0899-5
10.1016/j.gene.2018.05.081
10.1039/C7MT00116A
10.1007/BF00351736
10.1016/j.apenergy.2009.03.015
10.1128/MRA.00071-19
10.1093/bioinformatics/bty930
10.1089/ars.2017.7121
10.1016/j.bbrc.2009.03.151
10.1093/molbev/msu300
10.1186/s12934-015-0196-6
10.1007/s00253-012-4631-x
10.1016/S1097-2765(00)80064-7
10.1073/pnas.1722517115
10.1083/jcb.153.5.1061
10.1002/jib.3
10.1016/j.jbiosc.2017.03.009
10.3389/fmicb.2016.00503
10.1093/braincomms/fcz019
10.1080/01480545.2017.1320404
10.1186/s13059-015-0721-2
10.1016/j.bbamcr.2016.10.016
10.1101/gr.091777.109
10.1038/s41586-018-0030-5
10.1007/s12010-014-1252-0
10.1016/j.bjm.2016.10.003
10.1074/jbc.M010065200
10.1186/1475-2859-11-36
10.1006/jmbi.2000.4042
10.1038/sj.embor.7400172
10.1093/bioinformatics/btv351
10.1016/j.bbamem.2009.03.004
10.1016/j.ymben.2018.02.010
10.1080/19390211.2016.1269145
10.1016/j.chemphyslip.2013.12.013
10.1007/s12010-016-2258-6
10.1038/s41467-018-05106-7
ContentType Journal Article
Copyright The Author(s) 2021. Published by Oxford University Press on behalf of FEMS. 2021
The Author(s) 2021. Published by Oxford University Press on behalf of FEMS.
COPYRIGHT 2021 Oxford University Press
Copyright_xml – notice: The Author(s) 2021. Published by Oxford University Press on behalf of FEMS. 2021
– notice: The Author(s) 2021. Published by Oxford University Press on behalf of FEMS.
– notice: COPYRIGHT 2021 Oxford University Press
DBID NPM
AAYXX
CITATION
ISR
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1093/femsyr/foaa071
DatabaseName PubMed
CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
ProQuest Central Student
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


CrossRef
PubMed
ProQuest Central Student

DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1567-1364
ExternalDocumentID A701565326
10_1093_femsyr_foaa071
33417685
10.1093/femsyr/foaa071
Genre Journal Article
GeographicLocations Brazil
GeographicLocations_xml – name: Brazil
GroupedDBID ---
--K
.3N
.GA
.Y3
05W
0R~
10A
1B1
1OC
1TH
1~5
29H
31~
36B
3V.
4.4
48X
4G.
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
53G
5GY
5HH
5LA
5VS
66C
7-5
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
8FE
8FH
8FI
8FJ
8UM
930
A03
A8Z
AAEDT
AAHBH
AAHHS
AAIMJ
AAJQQ
AALRI
AAMDB
AAMVS
AAOGV
AAONW
AAPQZ
AAPXW
AAQFI
AAQXK
AARHZ
AASNB
AAUQX
AAVAP
AAXUO
ABCQN
ABEML
ABEUO
ABIXL
ABJNI
ABPTD
ABQLI
ABUWG
ABXVV
ACCFJ
ACGFO
ACGFS
ACIUM
ACPRK
ACSCC
ACUFI
ACXQS
ADBBV
ADEZT
ADGZP
ADHKW
ADHZD
ADMUD
ADQBN
ADRIX
ADRTK
ADVEK
ADYVW
ADZOD
AEEZP
AEGPL
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AEQDE
AETBJ
AEWNT
AFBPY
AFFZL
AFGWE
AFIYH
AFKRA
AFOFC
AFXEN
AFZJQ
AGINJ
AGSYK
AIWBW
AJAOE
AJBDE
AJEEA
AKWXX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQC
APIBT
APWMN
ARIXL
AVWKF
AXUDD
AYOIW
AZBYB
BAFTC
BAYMD
BBNVY
BCRHZ
BENPR
BEYMZ
BHONS
BHPHI
BPHCQ
BQDIO
BSWAC
BVXVI
BY8
CAG
CCPQU
CDBKE
COF
CS3
D-E
D-F
DAKXR
DCZOG
DILTD
DR2
DU5
EBS
EJD
EMB
EMOBN
ESTFP
F00
F01
F04
F5P
FDB
FEDTE
FGOYB
FHSFR
FLUFQ
FOEOM
FYUFA
G-S
G.N
GAUVT
GJXCC
GODZA
H13
HAR
HCIFZ
HF~
HMCUK
HOLLA
HVGLF
HZI
HZ~
IAO
IHE
IHR
ISR
ITC
IX1
J21
K48
KBUDW
KOP
KSI
KSN
LC2
LC3
LH4
LK8
LP6
LP7
LW6
M1P
M41
M7P
MK4
N04
N05
N9A
NLBLG
NOMLY
O9-
OAWHX
ODMLO
OIG
OJQWA
OK1
P2P
P2X
P4D
PAFKI
PEELM
PQQKQ
PROAC
PSQYO
Q.N
Q11
Q5Y
QB0
R.K
R2-
RIG
ROL
ROX
RPM
RPZ
RUSNO
RX1
RXO
SEW
SSZ
SUPJJ
SV3
TLC
TOX
UB1
UHS
UKHRP
V8K
W8V
W99
WQJ
WRC
WYUIH
XG1
Y6R
YAYTL
YKOAZ
YXANX
~IA
~KM
~WT
NPM
AAYXX
ABEJV
CITATION
OVD
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c498t-42c0ceaf1d2d4a44767a120deb0c219e11f495d9632ccc6b415c0847dea085da3
ISSN 1567-1364
1567-1356
IngestDate Fri Oct 25 08:33:40 EDT 2024
Tue Nov 19 04:55:20 EST 2024
Tue Nov 19 21:03:46 EST 2024
Tue Nov 12 22:14:47 EST 2024
Thu Aug 01 19:19:02 EDT 2024
Thu Nov 21 22:03:29 EST 2024
Wed Oct 16 00:44:37 EDT 2024
Wed Aug 28 03:17:39 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords first-generation ethanol production
industrial strain
corn
comparative genomics
sugarcane
Saccharomyces cerevisiae
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
The Author(s) 2021. Published by Oxford University Press on behalf of FEMS.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c498t-42c0ceaf1d2d4a44767a120deb0c219e11f495d9632ccc6b415c0847dea085da3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8259-6519
0000-0002-4986-5094
0000-0003-4140-3482
OpenAccessLink https://academic.oup.com/femsyr/article-pdf/21/1/foaa071/35905147/foaa071.pdf
PMID 33417685
PQID 2487448334
PQPubID 2044077
PageCount 10
ParticipantIDs proquest_miscellaneous_2476563316
proquest_journals_2487448334
gale_infotracmisc_A701565326
gale_infotracacademiconefile_A701565326
gale_incontextgauss_ISR_A701565326
crossref_primary_10_1093_femsyr_foaa071
pubmed_primary_33417685
oup_primary_10_1093_femsyr_foaa071
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Hoboken
PublicationTitle FEMS yeast research
PublicationTitleAlternate FEMS Yeast Res
PublicationYear 2021
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Henry (2021011622543548200_bib34) 2014; 180
Wallace-Salinas (2021011622543548200_bib74) 2015; 16
Emms (2021011622543548200_bib26) 2015; 16
Orikasa (2021011622543548200_bib60) 2018; 7
Basso (2021011622543548200_bib9) 2008; 8
Lopes (2021011622543548200_bib46) 2016; 47
Gomez (2021011622543548200_bib30) 2014; 9
Sousa (2021011622543548200_bib72) 2015; 175
Puig (2021011622543548200_bib64) 2017; 9
Zhang (2021011622543548200_bib80) 2018; 13
Ishmayana (2021011622543548200_bib35) 2015; 17
Nishikawa (2021011622543548200_bib56) 1997; 272
Berner (2021011622543548200_bib10) 2018; 87
Junior (2021011622543548200_bib39) 2012; 118
Sanz (2021011622543548200_bib68) 2018; 4
Brizzio (2021011622543548200_bib12) 1999; 10
de Oliveira Lino (2021011622543548200_bib22) 2018; 11
Simao (2021011622543548200_bib70) 2015; 31
Babazadeh (2021011622543548200_bib7) 2017; 7
Nguyen (2021011622543548200_bib54) 2015; 32
Walsh (2021011622543548200_bib75) 2004; 5
Schmidt (2021011622543548200_bib69) 2009; 383
Yang (2021011622543548200_bib76) 2007; 24
Chen (2021011622543548200_bib20) 2017; 2017
Argueso (2021011622543548200_bib4) 2009; 19
Jain (2021011622543548200_bib37) 2017; 14
Nijkamp (2021011622543548200_bib55) 2012; 11
Adams (2021011622543548200_bib1) 1992; 22
Page (2021011622543548200_bib61) 2009; 21
Calabrese (2021011622543548200_bib15) 2017; 27
Coutoune (2021011622543548200_bib18) 2017; 5
Zhang (2021011622543548200_bib79) 2019; 35
Lopes (2021011622543548200_bib45) 2015
Magalhães (2021011622543548200_bib47) 2017; 181
Costa (2021011622543548200_doi2_855_070521) 2017; 227
Natkańska (2021011622543548200_bib53) 2017; 1864
Mukherjee (2021011622543548200_bib50) 2017; 10
Broad Institute (2021011622543548200_bib63) 12 2020
Auesukaree (2021011622543548200_bib5) 2017; 124
Balat (2021011622543548200_bib8) 2009; 86
Gallone (2021011622543548200_bib28) 2016; 166
Kumar (2021011622543548200_bib43) 2018; 669
Singer (2021011622543548200_bib71) 1998; 1
Berterame (2021011622543548200_bib11) 2018; 46
Oestreicher (2021011622543548200_bib59) 2019; 97
Carvalho-Netto (2021011622543548200_bib16) 2015; 14
Stanke (2021011622543548200_bib73) 2006; 34
Peter (2021011622543548200_bib62) 2018; 556
Renewable Fuels Association (2021011622543548200_bib3) 2019
Wicking (2021011622543548200_bib36) 2015
Romano (2021011622543548200_bib66) 2013; 9
Cohen (2021011622543548200_bib17) 2013; 8
Nagamatsu (2021011622543548200_bib52) 2019; 8
Al-Attrache (2021011622543548200_bib2) 2018; 17
Buck (2021011622543548200_bib13) 2010; 21
Heins-Marroquin (2021011622543548200_bib33) 2019; 1
Hatanaka (2021011622543548200_bib32) 2018; 125
Yun (2021011622543548200_bib78) 2001; 276
Notredame (2021011622543548200_bib58) 2000; 302
Ranwez (2021011622543548200_bib65) 2018; 35
Goud (2021011622543548200_bib31) 2015; 3
Duan (2021011622543548200_bib24) 2018; 9
Legras (2021011622543548200_bib44) 2016; 7
Kniess (2021011622543548200_bib41) 2016; 2
Cripwell (2021011622543548200_bib19) 2019; 12
Froschauer (2021011622543548200_bib27) 2009; 1788
Yue (2021011622543548200_bib77) 2017; 49
Malia (2021011622543548200_bib48) 2018; 115
Murray (2021011622543548200_bib51) 2000; 36
Santos (2021011622543548200_bib67) 2016; 12
Mering (2021011622543548200_bib49) 2003; 31
Babrzadeh (2021011622543548200_bib6) 2012; 287
Della-Bianca (2021011622543548200_bib23) 2013; 97
Grechko (2021011622543548200_bib29) 2020; 176
Dunn (2021011622543548200_bib25) 2012; 22
Kumar (2021011622543548200_bib42) 2016; 9
Nishikawa (2021011622543548200_doi1_415_075621) 2001; 153
References_xml – volume: 34
  start-page: W435
  year: 2006
  ident: 2021011622543548200_bib73
  article-title: AUGUSTUS: ab initio prediction of alternative transcripts
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkl200
  contributor:
    fullname: Stanke
– year: 2015
  ident: 2021011622543548200_bib45
  publication-title: Tailored Yeasts Strains for Ethanol Production: Process-Driven Selection
  contributor:
    fullname: Lopes
– volume: 7
  start-page: 52
  year: 2018
  ident: 2021011622543548200_bib60
  article-title: A 2-Deoxyglucose-resistant mutant of Saccharomyces cerevisiae shows enhanced maltose fermentative ability by the activation of MAL genes
  publication-title: Foods
  doi: 10.3390/foods7040052
  contributor:
    fullname: Orikasa
– volume: 3
  start-page: e00813
  year: 2015
  ident: 2021011622543548200_bib31
  article-title: Draft genome sequence of Saccharomyces cerevisiae strain NCIM3186 used in the production of bioethanol from sweet sorghum
  publication-title: Genome Announc
  contributor:
    fullname: Goud
– volume: 176
  start-page: 106029
  year: 2020
  ident: 2021011622543548200_bib29
  article-title: Identification new potential multidrug resistance proteins of Saccharomyces cerevisiae
  publication-title: J Microbiol Methods
  doi: 10.1016/j.mimet.2020.106029
  contributor:
    fullname: Grechko
– volume: 10
  start-page: 609
  year: 1999
  ident: 2021011622543548200_bib12
  article-title: Genetic interactions between KAR7/SEC71, KAR8/JEM1, KAR5, and KAR2 during nuclear fusion in Saccharomyces cerevisiae
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.10.3.609
  contributor:
    fullname: Brizzio
– volume: 31
  start-page: 258
  year: 2003
  ident: 2021011622543548200_bib49
  article-title: STRING: a database of predicted functional associations between proteins
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkg034
  contributor:
    fullname: Mering
– volume: 16
  start-page: 514
  year: 2015
  ident: 2021011622543548200_bib74
  article-title: Cell periphery-related proteins as major genomic targets behind the adaptive evolution of an industrialSaccharomycescerevisiae strain to combined heat and hydrolysate stress
  publication-title: BMC Genomics
  doi: 10.1186/s12864-015-1737-4
  contributor:
    fullname: Wallace-Salinas
– volume: 272
  start-page: 5
  year: 1997
  ident: 2021011622543548200_bib56
  article-title: The yeast JEM1p Is a DnaJ-like protein of the endoplasmic reticulum membrane required for nuclear fusion
  publication-title: J Biol Chem
  doi: 10.1074/jbc.272.20.12889
  contributor:
    fullname: Nishikawa
– volume: 4
  start-page: 1
  year: 2018
  ident: 2021011622543548200_bib68
  article-title: The CWI pathway: regulation of the transcriptional adaptive response to cell wall stress in yeast
  publication-title: J Fungi
  doi: 10.3390/jof4010001
  contributor:
    fullname: Sanz
– volume: 17
  start-page: 162
  year: 2015
  ident: 2021011622543548200_bib35
  article-title: Preliminary evidence of inositol supplementation effect on cell growth, viability and plasma membrane fluidity of the yeast Saccharomyces cerevisiae
  publication-title: Procedia Chemistry
  doi: 10.1016/j.proche.2015.12.106
  contributor:
    fullname: Ishmayana
– volume-title: United States Patent
  year: 2015
  ident: 2021011622543548200_bib36
  article-title: Nutritional Supplement Containing Iron
  contributor:
    fullname: Wicking
– volume: 87
  start-page: 751
  year: 2018
  ident: 2021011622543548200_bib10
  article-title: Protein quality control of the endoplasmic reticulum and ubiquitin–proteasome-triggered degradation of aberrant proteins: yeast pioneers the path
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev-biochem-062917-012749
  contributor:
    fullname: Berner
– volume: 7
  start-page: 1
  year: 2017
  ident: 2021011622543548200_bib7
  article-title: The yeast osmostress response is carbon source dependent
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-01141-4
  contributor:
    fullname: Babazadeh
– volume: 166
  start-page: 1397
  year: 2016
  ident: 2021011622543548200_bib28
  article-title: Domestication and divergence of Saccharomyces cerevisiae beer yeasts
  publication-title: Cell
  doi: 10.1016/j.cell.2016.08.020
  contributor:
    fullname: Gallone
– volume: 49
  start-page: 913
  year: 2017
  ident: 2021011622543548200_bib77
  article-title: Contrasting evolutionary genome dynamics between domesticated and wild yeasts
  publication-title: Nat Genet
  doi: 10.1038/ng.3847
  contributor:
    fullname: Yue
– volume: 287
  start-page: 485
  year: 2012
  ident: 2021011622543548200_bib6
  article-title: Whole-genome sequencing of the efficient industrial fuel-ethanol fermentative Saccharomyces cerevisiae strain CAT-1
  publication-title: Mol Genet Genomics
  doi: 10.1007/s00438-012-0695-7
  contributor:
    fullname: Babrzadeh
– volume: 227
  start-page: 24
  year: 2017
  ident: 2021011622543548200_doi2_855_070521
  article-title: Integrated approach for selecting efficient Saccharomyces cerevisiae for industrial lignocellulosic fermentations: importance of yeast chassis linked to process conditions
  publication-title: Bioresource technology
  doi: 10.1016/j.biortech.2016.12.016
  contributor:
    fullname: Costa
– volume: 22
  start-page: 908
  year: 2012
  ident: 2021011622543548200_bib25
  article-title: Analysis of the Saccharomyces cerevisiae pan-genome reveals a pool of copy number variants distributed in diverse yeast strains from differing industrial environments
  publication-title: Genome Res
  doi: 10.1101/gr.130310.111
  contributor:
    fullname: Dunn
– volume: 5
  start-page: e00111
  year: 2017
  ident: 2021011622543548200_bib18
  article-title: Draft genome sequence of Saccharomyces cerevisiae Barra Grande (BG-1), a Brazilian industrial bioethanol-producing strain
  publication-title: Genome Announc
  doi: 10.1128/genomeA.00111-17
  contributor:
    fullname: Coutoune
– volume: 21
  start-page: 928
  year: 2009
  ident: 2021011622543548200_bib61
  article-title: Two chlamydomonas CTR copper transporters with a novel cys-met motif are localized to the plasma membrane and function in copper assimilation
  publication-title: Plant Cell
  doi: 10.1105/tpc.108.064907
  contributor:
    fullname: Page
– volume: 97
  start-page: 270
  year: 2019
  ident: 2021011622543548200_bib59
  article-title: Glutathione: subcellular distribution and membrane transport (1)
  publication-title: Biochem Cell Biol
  doi: 10.1139/bcb-2018-0189
  contributor:
    fullname: Oestreicher
– volume: 21
  start-page: 1047
  year: 2010
  ident: 2021011622543548200_bib13
  article-title: The endoplasmic reticulum-associated degradation of the epithelial sodium channel requires a unique complement of molecular chaperones
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.e09-11-0944
  contributor:
    fullname: Buck
– volume: 36
  start-page: 651
  year: 2000
  ident: 2021011622543548200_bib51
  article-title: Expression of yeast INM1 encoding inositol monophosphatase is regulated by inositol, carbon source and growth stage and is decreased by lithium and valproate
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.2000.01886.x
  contributor:
    fullname: Murray
– volume: 24
  start-page: 1586
  year: 2007
  ident: 2021011622543548200_bib76
  article-title: PAML 4: phylogenetic analysis by maximum likelihood
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msm088
  contributor:
    fullname: Yang
– volume: 12
  start-page: 201
  year: 2019
  ident: 2021011622543548200_bib19
  article-title: Construction of industrial Saccharomyces cerevisiae strains for the efficient consolidated bioprocessing of raw starch
  publication-title: Biotechnol Biofuels
  doi: 10.1186/s13068-019-1541-5
  contributor:
    fullname: Cripwell
– volume: 9
  start-page: 228
  year: 2016
  ident: 2021011622543548200_bib42
  article-title: Dry-grind processing using amylase corn and superior yeast to reduce the exogenous enzyme requirements in bioethanol production
  publication-title: Biotechnol Biofuels
  doi: 10.1186/s13068-016-0648-1
  contributor:
    fullname: Kumar
– volume: 8
  start-page: 1155
  year: 2008
  ident: 2021011622543548200_bib9
  article-title: Yeast selection for fuel ethanol production in Brazil
  publication-title: FEMS Yeast Res
  doi: 10.1111/j.1567-1364.2008.00428.x
  contributor:
    fullname: Basso
– volume: 13
  start-page: 3059
  year: 2018
  ident: 2021011622543548200_bib80
  article-title: Selective usage of isozymes for stress response
  publication-title: ACS Chem Biol
  doi: 10.1021/acschembio.8b00767
  contributor:
    fullname: Zhang
– volume: 2
  start-page: 16028
  year: 2016
  ident: 2021011622543548200_bib41
  article-title: The oxidation state of the cytoplasmic glutathione redox system does not correlate with replicative lifespan in yeast
  publication-title: NPJ Aging Mech Dis
  doi: 10.1038/npjamd.2016.28
  contributor:
    fullname: Kniess
– volume: 9
  start-page: e1003721
  year: 2013
  ident: 2021011622543548200_bib66
  article-title: Environmental stresses disrupt telomere length homeostasis
  publication-title: PLos Genet
  doi: 10.1371/journal.pgen.1003721
  contributor:
    fullname: Romano
– volume: 125
  start-page: 52
  year: 2018
  ident: 2021011622543548200_bib32
  article-title: Inhibition ofSaccharomycescerevisiae growth by simultaneous uptake of glucose and maltose
  publication-title: J Biosci Bioeng
  doi: 10.1016/j.jbiosc.2017.07.013
  contributor:
    fullname: Hatanaka
– volume: 9
  start-page: e111585
  year: 2014
  ident: 2021011622543548200_bib30
  article-title: Malfunctioning of the iron-sulfur cluster assembly machinery inSaccharomycescerevisiae produces oxidative stress via an iron-dependent mechanism, causing dysfunction in respiratory complexes
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0111585
  contributor:
    fullname: Gomez
– volume: 8
  start-page: e85519
  year: 2013
  ident: 2021011622543548200_bib17
  article-title: The yeast p5 type ATPase, spf1, regulates manganese transport into the endoplasmic reticulum
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0085519
  contributor:
    fullname: Cohen
– volume: 35
  start-page: 2582
  year: 2018
  ident: 2021011622543548200_bib65
  article-title: MACSE v2: toolkit for the alignment of coding sequences accounting for frameshifts and stop codons
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msy159
  contributor:
    fullname: Ranwez
– volume: 10
  start-page: 216
  year: 2017
  ident: 2021011622543548200_bib50
  article-title: Phenotypic landscape of non-conventional yeast species for different stress tolerance traits desirable in bioethanol fermentation
  publication-title: Biotechnol Biofuels
  doi: 10.1186/s13068-017-0899-5
  contributor:
    fullname: Mukherjee
– volume: 669
  start-page: 12
  year: 2018
  ident: 2021011622543548200_bib43
  article-title: Novel insights into TOR signalling in Saccharomyces cerevisiae through Torin2
  publication-title: Gene
  doi: 10.1016/j.gene.2018.05.081
  contributor:
    fullname: Kumar
– volume: 9
  start-page: 1483
  year: 2017
  ident: 2021011622543548200_bib64
  article-title: The elemental role of iron in DNA synthesis and repair
  publication-title: Metallomics
  doi: 10.1039/C7MT00116A
  contributor:
    fullname: Puig
– volume: 22
  start-page: 13
  year: 1992
  ident: 2021011622543548200_bib1
  article-title: Adaptation and major chromosomal changes in populations of Saccharomyces cerevisiae
  publication-title: Curr Genet
  doi: 10.1007/BF00351736
  contributor:
    fullname: Adams
– volume: 86
  start-page: 2273
  year: 2009
  ident: 2021011622543548200_bib8
  article-title: Recent trends in global production and utilization of bio-ethanol fuel
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2009.03.015
  contributor:
    fullname: Balat
– volume: 8
  start-page: e00071
  year: 2019
  ident: 2021011622543548200_bib52
  article-title: Genome assembly of a highly aldehyde-resistantSaccharomycescerevisiae SA1-derived industrial strain
  publication-title: Microbiol Resour Announc
  doi: 10.1128/MRA.00071-19
  contributor:
    fullname: Nagamatsu
– volume: 35
  start-page: 2306
  year: 2019
  ident: 2021011622543548200_bib79
  article-title: BGSA: a bit-parallel global sequence alignment toolkit for multi-core and many-core architectures
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty930
  contributor:
    fullname: Zhang
– volume: 27
  start-page: 1162
  year: 2017
  ident: 2021011622543548200_bib15
  article-title: Mitochondrial glutathione: regulation and functions
  publication-title: Antioxid Redox Signal
  doi: 10.1089/ars.2017.7121
  contributor:
    fullname: Calabrese
– volume: 383
  start-page: 198
  year: 2009
  ident: 2021011622543548200_bib69
  article-title: Cd2+, Mn2+, Ni2+ and Se2+ toxicity to Saccharomyces cerevisiae lacking YPK9p the orthologue of human ATP13A2
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2009.03.151
  contributor:
    fullname: Schmidt
– volume: 32
  start-page: 268
  year: 2015
  ident: 2021011622543548200_bib54
  article-title: IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msu300
  contributor:
    fullname: Nguyen
– volume: 2017
  start-page: 8
  year: 2017
  ident: 2021011622543548200_bib20
  article-title: MET18 deficiency increases the sensitivity of yeast to oxidative stress and shortens replicative lifespan by inhibiting catalase activity
  publication-title: Biomed Res Int
  contributor:
    fullname: Chen
– volume: 14
  start-page: 13
  year: 2015
  ident: 2021011622543548200_bib16
  article-title: Saccharomyces cerevisiae transcriptional reprograming due to bacterial contamination during industrial scale bioethanol production
  publication-title: Microb Cell Fact
  doi: 10.1186/s12934-015-0196-6
  contributor:
    fullname: Carvalho-Netto
– volume: 12
  start-page: 18
  year: 2016
  ident: 2021011622543548200_bib67
  article-title: Second-generation ethanol: the need is becoming a reality
  publication-title: Ind Biotechnol
  contributor:
    fullname: Santos
– volume: 97
  start-page: 979
  year: 2013
  ident: 2021011622543548200_bib23
  article-title: What do we know about the yeast strains from the Brazilian fuel ethanol industry?
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-012-4631-x
  contributor:
    fullname: Della-Bianca
– volume: 1
  start-page: 639
  year: 1998
  ident: 2021011622543548200_bib71
  article-title: Multiple effects of trehalose on protein folding in vitro and in vivo
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(00)80064-7
  contributor:
    fullname: Singer
– volume: 115
  start-page: 4684
  year: 2018
  ident: 2021011622543548200_bib48
  article-title: Control of vacuole membrane homeostasis by a resident PI-3,5-kinase inhibitor
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1722517115
  contributor:
    fullname: Malia
– volume-title: Picard
  year: 12 2020
  ident: 2021011622543548200_bib63
  contributor:
    fullname: Broad Institute
– volume: 153
  start-page: 1061
  year: 2001
  ident: 2021011622543548200_doi1_415_075621
  article-title: Molecular Chaperones in the Yeast Endoplasmic Reticulum Maintain the Solubility of Proteins for Retrotranslocation and Degradation
  publication-title: J Cell Biol
  doi: 10.1083/jcb.153.5.1061
  contributor:
    fullname: Nishikawa
– volume: 118
  start-page: 82
  year: 2012
  ident: 2021011622543548200_bib39
  article-title: Evaluation of Brazilian ethanol production yeasts for maltose fermentation in media containing structurally complex nitrogen sources
  publication-title: J Inst Brew
  doi: 10.1002/jib.3
  contributor:
    fullname: Junior
– volume: 124
  start-page: 133
  year: 2017
  ident: 2021011622543548200_bib5
  article-title: Molecular mechanisms of the yeast adaptive response and tolerance to stresses encountered during ethanol fermentation
  publication-title: J Biosci Bioeng
  doi: 10.1016/j.jbiosc.2017.03.009
  contributor:
    fullname: Auesukaree
– volume: 7
  start-page: 503
  year: 2016
  ident: 2021011622543548200_bib44
  article-title: Flor yeast: new perspectives beyond wine aging
  publication-title: Frontiers Microbiol
  doi: 10.3389/fmicb.2016.00503
  contributor:
    fullname: Legras
– volume: 1
  start-page: fcz019
  year: 2019
  ident: 2021011622543548200_bib33
  article-title: Phenotypic assays in yeast and zebrafish reveal drugs that rescue ATP13A2 deficiency
  publication-title: Brain Commun
  doi: 10.1093/braincomms/fcz019
  contributor:
    fullname: Heins-Marroquin
– volume: 17
  start-page: 89
  year: 2018
  ident: 2021011622543548200_bib2
  article-title: N-acetylcysteine potentiates diclofenac toxicity in Saccharomyces cerevisiae: stronger potentiation in ABC transporter mutant strains
  publication-title: Drug Chem Toxicol
  doi: 10.1080/01480545.2017.1320404
  contributor:
    fullname: Al-Attrache
– volume: 16
  start-page: 157
  year: 2015
  ident: 2021011622543548200_bib26
  article-title: OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy
  publication-title: Genome Biol
  doi: 10.1186/s13059-015-0721-2
  contributor:
    fullname: Emms
– volume: 1864
  start-page: 39
  year: 2017
  ident: 2021011622543548200_bib53
  article-title: The budding yeast orthologue of Parkinson's disease-associated DJ-1 is amulti-stress response protein protecting cells against toxicglycolytic products
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbamcr.2016.10.016
  contributor:
    fullname: Natkańska
– volume: 19
  start-page: 2258
  year: 2009
  ident: 2021011622543548200_bib4
  article-title: Genome structure of a Saccharomyces cerevisiae strain widely sed in bioethanol production
  publication-title: Genome Res
  doi: 10.1101/gr.091777.109
  contributor:
    fullname: Argueso
– volume: 556
  start-page: 339
  year: 2018
  ident: 2021011622543548200_bib62
  article-title: Genome evolution across 1,011 Saccharomyces cerevisiae isolates
  publication-title: Nature
  doi: 10.1038/s41586-018-0030-5
  contributor:
    fullname: Peter
– volume: 175
  start-page: 65
  year: 2015
  ident: 2021011622543548200_bib72
  article-title: ABCC subfamily vacuolar transporters are involved in Pb (lead) detoxification inSaccharomycescerevisiae
  publication-title: Appl Biochem Biotechnol
  doi: 10.1007/s12010-014-1252-0
  contributor:
    fullname: Sousa
– volume: 47
  start-page: 64
  year: 2016
  ident: 2021011622543548200_bib46
  article-title: Ethanol production in Brazil: a bridge between science and industry
  publication-title: Braz J Microbiol
  doi: 10.1016/j.bjm.2016.10.003
  contributor:
    fullname: Lopes
– volume: 276
  start-page: 10218
  year: 2001
  ident: 2021011622543548200_bib78
  article-title: The role of the FRE family of plasma membrane reductases in the uptake of siderophore-iron in Saccharomyces cerevisiae
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M010065200
  contributor:
    fullname: Yun
– volume: 11
  start-page: 36
  year: 2012
  ident: 2021011622543548200_bib55
  article-title: De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology
  publication-title: Microb Cell Fact
  doi: 10.1186/1475-2859-11-36
  contributor:
    fullname: Nijkamp
– volume: 302
  start-page: 205
  year: 2000
  ident: 2021011622543548200_bib58
  article-title: T-coffee: a novel method for fast and accurate multiple sequence alignment
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.2000.4042
  contributor:
    fullname: Notredame
– volume: 5
  start-page: 567
  year: 2004
  ident: 2021011622543548200_bib75
  article-title: The J-protein family: modulating protein assembly, disassembly and translocation
  publication-title: EMBO Rep
  doi: 10.1038/sj.embor.7400172
  contributor:
    fullname: Walsh
– volume: 31
  start-page: 3210
  year: 2015
  ident: 2021011622543548200_bib70
  article-title: BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv351
  contributor:
    fullname: Simao
– volume-title: Annual World Fuel Ethanol Production
  year: 2019
  ident: 2021011622543548200_bib3
  contributor:
    fullname: Renewable Fuels Association
– volume: 1788
  start-page: 1044
  year: 2009
  ident: 2021011622543548200_bib27
  article-title: The yeast mitochondrial carrier proteins Mrs3p/Mrs4p mediate iron transport across the inner mitochondrial membrane
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbamem.2009.03.004
  contributor:
    fullname: Froschauer
– volume: 46
  start-page: 8
  year: 2018
  ident: 2021011622543548200_bib11
  article-title: Copper homeostasis as a target to improve Saccharomyces cerevisiae tolerance to oxidative stress
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2018.02.010
  contributor:
    fullname: Berterame
– volume: 14
  start-page: 589
  year: 2017
  ident: 2021011622543548200_bib37
  article-title: Sugarcane molasses - a potential dietary supplement in the management of iron deficiency anemia
  publication-title: J Diet Suppl
  doi: 10.1080/19390211.2016.1269145
  contributor:
    fullname: Jain
– volume: 11
  start-page: 1
  year: 2018
  ident: 2021011622543548200_bib22
  article-title: A synthetic medium to simulate sugarcane molasses
  publication-title: Biotechnol Biofuels
  contributor:
    fullname: de Oliveira Lino
– volume: 180
  start-page: 23
  year: 2014
  ident: 2021011622543548200_bib34
  article-title: The response to inositol: regulation of glycerolipid metabolism and stress response signaling in yeast
  publication-title: Chem Phys Lipids
  doi: 10.1016/j.chemphyslip.2013.12.013
  contributor:
    fullname: Henry
– volume: 181
  start-page: 11
  year: 2017
  ident: 2021011622543548200_bib47
  article-title: Trehalose-6-phosphate as a potential lead candidate for the development of Tps1 inhibitors: insights from the trehalose biosynthesis pathway in diverse yeast species
  publication-title: Appl Biochem Biotechnol
  doi: 10.1007/s12010-016-2258-6
  contributor:
    fullname: Magalhães
– volume: 9
  start-page: 2690
  year: 2018
  ident: 2021011622543548200_bib24
  article-title: The origin and adaptive evolution of domesticated populations of yeast from Far East Asia
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-05106-7
  contributor:
    fullname: Duan
SSID ssj0017008
Score 2.3756943
Snippet ABSTRACT Ethanol production has key differences between the two largest producing countries of this biofuel, Brazil and the USA, such as feedstock source,...
Ethanol production has key differences between the two largest producing countries of this biofuel, Brazil and the USA, such as feedstock source, sugar...
Ethanol production has key differences between the two largest producing countries of this bibful, Brazil and the USA, such as feedstock source, sugar...
SourceID proquest
gale
crossref
pubmed
oup
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Acetaldehyde
Adaptation
Alcohol
Alcohol, Denatured
Biodiesel fuels
Biofuels
Ethanol
Fermentation
Genetic aspects
Genomes
Genomics
Homeostasis
Industrial applications
Industrial strains
Maltose
Phylogeny
Positive selection
Production data
Production processes
Sugarcane
Title Ethanol production process driving changes on industrial strains
URI https://www.ncbi.nlm.nih.gov/pubmed/33417685
https://www.proquest.com/docview/2487448334
https://search.proquest.com/docview/2476563316
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELa2RUhcEOW5sFShQuIQRU1iJ05ulDarggQHWiRukWM7baRuUtWbw0r8eMaxk2woiHLgEq3iR7ye8Xhm7PkGobcFKTlL4sALY4E9wqjvsVgST5ZS0pTyuOD6RPf0jH75npxkJJvNfvRW__Duv1Ia3gGtdeTsP1B76BRewG-gOTyB6vC8E90z7QtvrvTFK2GQYd1rEwzgipuqcx-YYN_unKAaM3eoLluE2tZWlxmY-Rud3ce1oECj85hdMFB2Vdu5Ty9ldcWA7nJVDYcaTbsGSWIO4o0c12CLwy7wqVFjmY7SZvVQtqzYStYm37D7GbThVrkftOOykNteijDoLzb3Nu3vox_NJmQlL0jsABtI8140m-DpbRa8JfENGlYpV2qj8VbKhjHfJHX5BUf7z5V30L0QxBTufT32DIqCejTAfOJD0-rQtpmoMXYzn0RI3jJUOoXl_BF6aC0N58iwyB6ayfoxum9yj26eoPeWUZyRURzLKI5lFMcyigNFI6M4llGeom_L7Pz41LPpNDxO0mTtkZD7XLIyEKEgjBAaUxaEvpCFz2HfkkFQgrUsQCKHnMMiBdWO-6C8CMlALxcMP0O7dVPLF8gRhLCIy7RIU0I4KLGRLCLMRZkIRou0mKN3_ezk1wY1JTe3HXBu5jG38zhHB3rycg1FUuu7ThesVSr_ePY1P6I6zD8C-wK6s5XKBv4iZzZ0BAaj0csmNReTmiAr-aT4AGj01yEtehLmdmGrPCQ6T0SCMZmjN0Ox7l5fUqxl0-o6FKwjjAP4znND-uFT0DAAyz56eZcRvEIPxjW0QLvrm1a-RjtKtPsdi_4ER9G26w
link.rule.ids 315,782,786,27933,27934
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ethanol+production+process+driving+changes+on+industrial+strains&rft.jtitle=FEMS+yeast+research&rft.au=Nagamatsu%2C+Sheila+Tiemi&rft.au=Coutoun%C3%A9%2C+Natalia&rft.au=Jos%C3%A9%2C+Juliana&rft.au=Fiamenghi%2C+Mateus+Bernabe&rft.date=2021-02-01&rft.pub=Oxford+University+Press&rft.eissn=1567-1364&rft.volume=21&rft.issue=1&rft_id=info:doi/10.1093%2Ffemsyr%2Ffoaa071&rft.externalDocID=10.1093%2Ffemsyr%2Ffoaa071
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1567-1364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1567-1364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1567-1364&client=summon