Survey of Galileo Plasma Observations in Jupiter's Plasma Sheet
The plasma science (PLS) Instrument on the Galileo spacecraft (orbiting Jupiter from December 1995 to September 2003) measured properties of the ions that were trapped in the magnetic field. The PLS data provide a survey of the plasma properties between approx. 5 and 30 Jupiter radii [R(sub J)] in t...
Saved in:
Published in: | Journal of geophysical research. Planets Vol. 121; no. 5; pp. 871 - 894 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Goddard Space Flight Center
American Geophysical Union
01-05-2016
Blackwell Publishing Ltd |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The plasma science (PLS) Instrument on the Galileo spacecraft (orbiting Jupiter from December 1995 to September 2003) measured properties of the ions that were trapped in the magnetic field. The PLS data provide a survey of the plasma properties between approx. 5 and 30 Jupiter radii [R(sub J)] in the equatorial region. We present plasma properties derived via two analysis methods: numerical moments and forward modeling. We find that the density decreases with radial distance by nearly 5 orders of magnitude from approx. 2 to 3000 cm(exp.-3) at 6R(sub j) to approx. 0.05cm(sub -3) at 30 R(sub j). The density profile did not show major changes from orbit to orbit, suggesting that the plasma production and transport remained constant within about a factor of 2. The radial profile of ion temperature increased with distance which implied that contrary to the concept of adiabatic cooling on expansion, the plasma heats up as it expands out from Io's orbit (where TI is approx.60-80 eV) at approx. 6R(sub j) to a few keV at 30R(sub j).There does not seem to be a long-term, systematic variation in ion temperature with either local time or longitude. This latter finding differs from earlier analysis of Galileo PLS data from a selection of orbits. Further examination of all data from all Galileo orbits suggests that System Ill variations are transitory on timescales of weeks, consistent with the modeling of Cassini Ultraviolet Imaging Spectrograph observations. The plasma flow is dominated by azimuthal flow that is between 80% and 100% of corotation out to 25 R(sub j). |
---|---|
AbstractList | The plasma science (PLS) instrument on the Galileo spacecraft (orbiting Jupiter from December 1995 to September 2003) measured properties of the ions that were trapped in the magnetic field. The PLS data provide a survey of the plasma properties between ~5 and 30Jupiter radii (R sub(J)) in the equatorial region. We present plasma properties derived via two analysis methods: numerical moments and forward modeling. We find that the density decreases with radial distance by nearly 5 orders of magnitude from ~2 to 3000cm super(-3) at 6R sub(J) to ~0.05cm super(-3) at 30R sub(J). The density profile did not show major changes from orbit to orbit, suggesting that the plasma production and transport remained constant within about a factor of 2. The radial profile of ion temperature increased with distance which implied that contrary to the concept of adiabatic cooling on expansion, the plasma heats up as it expands out from Io's orbit (where Ti~60-80eV) at ~6R sub(J) to a few keV at 30R sub(J). There does not seem to be a long-term, systematic variation in ion temperature with either local time or longitude. This latter finding differs from earlier analysis of Galileo PLS data from a selection of orbits. Further examination of all data from all Galileo orbits suggests that System III variations are transitory on timescales of weeks, consistent with the modeling of Cassini Ultraviolet Imaging Spectrograph observations. The plasma flow is dominated by azimuthal flow that is between 80% and 100% of corotation out to 25R sub(J). Key Points * Galileo plasma data show 5 orders of magnitude drop in density and factor 40 increase in ion temperature between 6 and 30R sub(J) * Plasma flow is generally azimuthal between 80 and 100% of corotation * The data do not show significant persistent variations with local time The plasma science (PLS) instrument on the Galileo spacecraft (orbiting Jupiter from December 1995 to September 2003) measured properties of the ions that were trapped in the magnetic field. The PLS data provide a survey of the plasma properties between ~5 and 30 Jupiter radii (RJ) in the equatorial region. We present plasma properties derived via two analysis methods: numerical moments and forward modeling. We find that the density decreases with radial distance by nearly 5 orders of magnitude from ~2 to 3000 cm−3 at 6 RJ to ~0.05 cm−3 at 30 RJ. The density profile did not show major changes from orbit to orbit, suggesting that the plasma production and transport remained constant within about a factor of 2. The radial profile of ion temperature increased with distance which implied that contrary to the concept of adiabatic cooling on expansion, the plasma heats up as it expands out from Io's orbit (where Ti ~ 60–80 eV) at ~6 RJ to a few keV at 30 RJ. There does not seem to be a long‐term, systematic variation in ion temperature with either local time or longitude. This latter finding differs from earlier analysis of Galileo PLS data from a selection of orbits. Further examination of all data from all Galileo orbits suggests that System III variations are transitory on timescales of weeks, consistent with the modeling of Cassini Ultraviolet Imaging Spectrograph observations. The plasma flow is dominated by azimuthal flow that is between 80% and 100% of corotation out to 25 RJ. Key Points Galileo plasma data show 5 orders of magnitude drop in density and factor 40 increase in ion temperature between 6 and 30 RJ Plasma flow is generally azimuthal between 80 and 100% of corotation The data do not show significant persistent variations with local time The plasma science (PLS) Instrument on the Galileo spacecraft (orbiting Jupiter from December 1995 to September 2003) measured properties of the ions that were trapped in the magnetic field. The PLS data provide a survey of the plasma properties between approx. 5 and 30 Jupiter radii [R(sub J)] in the equatorial region. We present plasma properties derived via two analysis methods: numerical moments and forward modeling. We find that the density decreases with radial distance by nearly 5 orders of magnitude from approx. 2 to 3000 cm(exp.-3) at 6R(sub j) to approx. 0.05cm(sub -3) at 30 R(sub j). The density profile did not show major changes from orbit to orbit, suggesting that the plasma production and transport remained constant within about a factor of 2. The radial profile of ion temperature increased with distance which implied that contrary to the concept of adiabatic cooling on expansion, the plasma heats up as it expands out from Io's orbit (where TI is approx.60-80 eV) at approx. 6R(sub j) to a few keV at 30R(sub j).There does not seem to be a long-term, systematic variation in ion temperature with either local time or longitude. This latter finding differs from earlier analysis of Galileo PLS data from a selection of orbits. Further examination of all data from all Galileo orbits suggests that System Ill variations are transitory on timescales of weeks, consistent with the modeling of Cassini Ultraviolet Imaging Spectrograph observations. The plasma flow is dominated by azimuthal flow that is between 80% and 100% of corotation out to 25 R(sub j). Abstract The plasma science (PLS) instrument on the Galileo spacecraft (orbiting Jupiter from December 1995 to September 2003) measured properties of the ions that were trapped in the magnetic field. The PLS data provide a survey of the plasma properties between ~5 and 30 Jupiter radii ( R J ) in the equatorial region. We present plasma properties derived via two analysis methods: numerical moments and forward modeling. We find that the density decreases with radial distance by nearly 5 orders of magnitude from ~2 to 3000 cm −3 at 6 R J to ~0.05 cm −3 at 30 R J . The density profile did not show major changes from orbit to orbit, suggesting that the plasma production and transport remained constant within about a factor of 2. The radial profile of ion temperature increased with distance which implied that contrary to the concept of adiabatic cooling on expansion, the plasma heats up as it expands out from Io's orbit (where Ti ~ 60–80 eV) at ~6 R J to a few keV at 30 R J . There does not seem to be a long‐term, systematic variation in ion temperature with either local time or longitude. This latter finding differs from earlier analysis of Galileo PLS data from a selection of orbits. Further examination of all data from all Galileo orbits suggests that System III variations are transitory on timescales of weeks, consistent with the modeling of Cassini Ultraviolet Imaging Spectrograph observations. The plasma flow is dominated by azimuthal flow that is between 80% and 100% of corotation out to 25 R J . Key Points Galileo plasma data show 5 orders of magnitude drop in density and factor 40 increase in ion temperature between 6 and 30 R J Plasma flow is generally azimuthal between 80 and 100% of corotation The data do not show significant persistent variations with local time The plasma science (PLS) instrument on the Galileo spacecraft (orbiting Jupiter from December 1995 to September 2003) measured properties of the ions that were trapped in the magnetic field. The PLS data provide a survey of the plasma properties between ~5 and 30Jupiter radii (RJ) in the equatorial region. We present plasma properties derived via two analysis methods: numerical moments and forward modeling. We find that the density decreases with radial distance by nearly 5 orders of magnitude from ~2 to 3000cm-3 at 6RJ to ~0.05cm-3 at 30RJ. The density profile did not show major changes from orbit to orbit, suggesting that the plasma production and transport remained constant within about a factor of 2. The radial profile of ion temperature increased with distance which implied that contrary to the concept of adiabatic cooling on expansion, the plasma heats up as it expands out from Io's orbit (where Ti~60-80eV) at ~6RJ to a few keV at 30RJ. There does not seem to be a long-term, systematic variation in ion temperature with either local time or longitude. This latter finding differs from earlier analysis of Galileo PLS data from a selection of orbits. Further examination of all data from all Galileo orbits suggests that System III variations are transitory on timescales of weeks, consistent with the modeling of Cassini Ultraviolet Imaging Spectrograph observations. The plasma flow is dominated by azimuthal flow that is between 80% and 100% of corotation out to 25RJ. Key Points Galileo plasma data show 5 orders of magnitude drop in density and factor 40 increase in ion temperature between 6 and 30RJ Plasma flow is generally azimuthal between 80 and 100% of corotation The data do not show significant persistent variations with local time |
Audience | PUBLIC |
Author | Bagenal, Fran Kurth, William S. Siler, Scott Paterson, William R. Wilson, Robert J. |
Author_xml | – sequence: 1 givenname: Fran surname: Bagenal fullname: Bagenal, Fran organization: Colorado Univ – sequence: 2 givenname: Robert J. surname: Wilson fullname: Wilson, Robert J. organization: Colorado Univ – sequence: 3 givenname: Scott surname: Siler fullname: Siler, Scott organization: Colorado Univ – sequence: 4 givenname: William R. surname: Paterson fullname: Paterson, William R. organization: NASA Goddard Space Flight Center – sequence: 5 givenname: William S. surname: Kurth fullname: Kurth, William S. organization: Iowa Univ |
BookMark | eNqN0c1LwzAUAPAgE5xzN48eCh704DRplq-TyJjTMZg4PYfXLsGOrplJO9l_b0YVxIOYQxJefu-RvByjTuUqg9ApwdcE4_QmxYRPxxgzjNUB6qaEq4GKJ53vPVbiCPVDWOE4ZAwR2kW3i8ZvzS5xNplAWZTGJU8lhDUk8ywYv4W6cFVIiiqZNpuiNv4ifIPFmzH1CTq0UAbT_1p76PV-_DJ6GMzmk8fR3WyQD5VUcebLTOVDScCyTEnCBIAVJmPMylQIYBYkocoyhSEbAl3apcgpmBgwPDe0hy7buhvv3hsTar0uQm7KEirjmqCJTNlQMk7Tf1AsueICy0jPf9GVa3wVH6KJUIwTQRmJ6qpVuXcheGP1xhdr8DtNsN73Xv_sfeS05R-xnbs_rZ5OnscpZuk-66zNqiCArmof9lLEr4pXIPQTZSmNCQ |
CitedBy_id | crossref_primary_10_1029_2019JA027485 crossref_primary_10_1002_2017JA024736 crossref_primary_10_3847_PSJ_accddd crossref_primary_10_1029_2022JA030915 crossref_primary_10_1029_2023JA031794 crossref_primary_10_1038_s41598_023_41500_y crossref_primary_10_3847_2041_8213_aaedab crossref_primary_10_1002_2016JA023306 crossref_primary_10_1007_s11214_023_01002_9 crossref_primary_10_1029_2021JA029195 crossref_primary_10_1029_2023JA032043 crossref_primary_10_1038_s41550_024_02206_x crossref_primary_10_1029_2023JA032122 crossref_primary_10_1029_2018JA025363 crossref_primary_10_1029_2022GL098111 crossref_primary_10_1029_2018JA025951 crossref_primary_10_1029_2018GL078891 crossref_primary_10_1029_2022JA031132 crossref_primary_10_1109_TPS_2019_2901681 crossref_primary_10_3847_1538_4357_aaed38 crossref_primary_10_1007_s11214_020_0642_6 crossref_primary_10_1029_2019JA027693 crossref_primary_10_1029_2023GL104374 crossref_primary_10_1029_2019JA027455 crossref_primary_10_1002_2016JA023039 crossref_primary_10_1002_2016JA023236 crossref_primary_10_1002_2016JA023797 crossref_primary_10_1029_2019JA027696 crossref_primary_10_1029_2020JA028347 crossref_primary_10_1029_2021GL096662 crossref_primary_10_1029_2023JA031763 crossref_primary_10_1002_2017JA023893 crossref_primary_10_1029_2018GL079118 crossref_primary_10_3847_1538_4357_aba94c crossref_primary_10_1002_2017JA024303 crossref_primary_10_1016_j_icarus_2024_116006 crossref_primary_10_1029_2018JA025296 crossref_primary_10_1029_2021EA002172 crossref_primary_10_1029_2023JA031363 crossref_primary_10_1029_2020JA028345 crossref_primary_10_1029_2021JA029446 crossref_primary_10_1007_s10686_021_09801_0 crossref_primary_10_1029_2019JA027727 crossref_primary_10_1029_2023JE008279 crossref_primary_10_1029_2020JA027968 crossref_primary_10_1109_TPS_2018_2831004 crossref_primary_10_1007_s11214_024_01072_3 crossref_primary_10_1029_2018JA025345 crossref_primary_10_1007_s11214_023_01003_8 crossref_primary_10_1029_2018JA026153 crossref_primary_10_1029_2020GL091579 crossref_primary_10_1029_2021JA029450 crossref_primary_10_1002_2017JA024117 crossref_primary_10_1029_2022JA030664 crossref_primary_10_1029_2018JA025216 crossref_primary_10_1029_2023JA032218 crossref_primary_10_1029_2019GL083899 crossref_primary_10_1029_2021JA029338 crossref_primary_10_1029_2022JA030581 crossref_primary_10_1007_s11214_020_00696_5 crossref_primary_10_1016_j_pss_2022_105609 crossref_primary_10_1002_2016JA023691 crossref_primary_10_1029_2020JA027957 crossref_primary_10_1029_2023GL106810 crossref_primary_10_1029_2023JA032113 crossref_primary_10_3847_1538_4357_ac9c54 crossref_primary_10_1002_2016JA022767 crossref_primary_10_1029_2018JA025312 crossref_primary_10_1029_2018JA026169 crossref_primary_10_1016_j_pss_2020_105004 crossref_primary_10_1029_2023GL105809 crossref_primary_10_1029_2023JE008178 crossref_primary_10_3847_2041_8213_abca3f crossref_primary_10_1029_2021JA029863 crossref_primary_10_1029_2023JA031931 crossref_primary_10_1002_2017JA024053 crossref_primary_10_1029_2023JA031734 crossref_primary_10_1029_2021JA029426 crossref_primary_10_1029_2021JA030136 |
Cites_doi | 10.1016/j.pss.2013.06.021 10.1029/JA086iA10p08319 10.1029/2002JA009795 10.1016/j.icarus.2015.07.036 10.1029/JA087iA12p10395 10.1029/93JA02908 10.1016/0032-0633(76)90152-5 10.1029/2002JA009240 10.1007/s11214-014-0036-8 10.1029/2001JA009150 10.1016/j.icarus.2004.04.016 10.1029/97GL01788 10.1029/JA081i025p04561 10.1029/JA086iA10p08447 10.1016/j.icarus.2010.05.019 10.1016/j.icarus.2015.02.018 10.1029/2005JA011251 10.1029/1999JA900052 10.1016/j.icarus.2007.09.019 10.1029/1999JA900402 10.1029/97GL00757 10.1029/1998JA900003 10.1007/BF00216849 10.1029/2009JA014069 10.1029/2000JA002509 10.1029/97GL01254 10.1007/978-3-540-48841-5_10 10.1007/BF00216848 10.1016/j.icarus.2011.11.005 10.1126/science.274.5286.391 10.1029/1999JA900191 10.1029/2010JA016294 10.1007/BF00216861 10.1029/97GL03706 10.1016/S0032-0633(01)00021-6 10.1016/S0032-0633(00)00156-2 10.1029/98JA00965 10.1016/j.icarus.2014.10.033 10.1029/2007JA012555 10.1002/2014EA000090 10.1029/1999JA000460 10.1007/BF00216858 10.1029/2011JA016918 10.1029/97GL02202 10.1029/2001GL014080 10.1029/1999JA000250 10.1029/95JA02212 10.1029/2001JA000077 10.1029/2012JE004076 10.1007/s11214-014-0077-z 10.1029/2000JA002503 10.1029/2000GL003751 10.1029/2000JA900138 10.1029/2003JA010354 10.1016/S0032-0633(00)00149-5 10.1016/j.icarus.2005.07.013 10.1126/science.274.5286.394 10.1029/98JA00964 10.1029/2002JA009706 10.1029/2000JA000159 |
ContentType | Journal Article |
Copyright | 2016. American Geophysical Union. All Rights Reserved. |
Copyright_xml | – notice: 2016. American Geophysical Union. All Rights Reserved. |
DBID | CYE CYI AAYXX CITATION 7TG 8FD H8D KL. L7M |
DOI | 10.1002/2016JE005009 |
DatabaseName | NASA Scientific and Technical Information NASA Technical Reports Server CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Meteorological & Geoastrophysical Abstracts - Academic Technology Research Database CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics |
EISSN | 2169-9100 |
EndPage | 894 |
ExternalDocumentID | 4084912111 10_1002_2016JE005009 JGRE20529 20170003511 |
Genre | article |
GrantInformation | NNX09AE03G |
GrantInformation_xml | – fundername: NASA's Jupiter Data Analysis Program funderid: NNX09AE03G |
GroupedDBID | 05W 0R~ 1OC 24P 33P 50Y 52M 702 8-1 A00 AAESR AAHHS AAMNL AANLZ AASGY AAXRX AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACGOD ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB AZFZN AZVAB BFHJK BMXJE BRXPI CYE CYI DPXWK DRFUL DRSTM EBS EJD G-S HGLYW HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- P-X P2W R.K RNS ROL SUPJJ WBKPD WIN WXSBR WYJ ~OA 31~ 3V. 88I 8FE 8FG 8FH ABUWG AFKRA ARAPS ASPBG AVWKF AZQEC BENPR BGLVJ BHPHI BKSAR BPHCQ CCPQU D1K DWQXO FEDTE GNUQQ GODZA HCIFZ HVGLF K6- LK5 M2P M7R P62 PCBAR PQQKQ PROAC RJQFR AAYXX CITATION 7TG 8FD H8D KL. L7M |
ID | FETCH-LOGICAL-c4989-c46db9c481af5b98157aaf7eb55f8277a5fa8139f590ab4a3dfd7c3aef59e6ce3 |
IEDL.DBID | 33P |
ISSN | 2169-9097 |
IngestDate | Sat Aug 17 02:04:05 EDT 2024 Fri Aug 16 10:56:13 EDT 2024 Tue Nov 19 05:37:39 EST 2024 Fri Aug 23 02:39:44 EDT 2024 Sat Aug 24 01:00:43 EDT 2024 Fri Nov 15 15:09:35 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4989-c46db9c481af5b98157aaf7eb55f8277a5fa8139f590ab4a3dfd7c3aef59e6ce3 |
Notes | GSFC Goddard Space Flight Center GSFC-E-DAA-TN41236 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://agupubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/2016JE005009 |
PQID | 1795617351 |
PQPubID | 54729 |
PageCount | 24 |
ParticipantIDs | proquest_miscellaneous_1825485632 proquest_miscellaneous_1808696708 proquest_journals_1795617351 crossref_primary_10_1002_2016JE005009 wiley_primary_10_1002_2016JE005009_JGRE20529 nasa_ntrs_20170003511 |
PublicationCentury | 2000 |
PublicationDate | May 2016 |
PublicationDateYYYYMMDD | 2016-05-01 |
PublicationDate_xml | – month: 05 year: 2016 text: May 2016 |
PublicationDecade | 2010 |
PublicationPlace | Goddard Space Flight Center |
PublicationPlace_xml | – name: Goddard Space Flight Center – name: Washington |
PublicationTitle | Journal of geophysical research. Planets |
PublicationYear | 2016 |
Publisher | American Geophysical Union Blackwell Publishing Ltd |
Publisher_xml | – name: American Geophysical Union – name: Blackwell Publishing Ltd |
References | 2011; 116 2015; 261 1976; 24 1999b; 104 1999a; 104 2001; 49 1996; 101 2001a; 106 2009; 114 1981; 86 2001; 106 1998b; 103 2002a; 107 2015; 253 2004; 172 2002; 107 2000b; 105 2008; 113 2012; 217 2008; 194 2015; 2 2000; 27 2010; 209 2005; 110 2015; 248 1997; 24 1976; 81 2013; 85 2009 2007 2001b; 49 2004 2002b; 107 2004; 109 1999; 104 1998; 25 2003; 108 2002; 29 2000a; 105 1982; 87 2001b; 106 1994; 99 1998; 103 2006; 180 1998a; 103 2014; 184 2014 1996; 274 2012; 117 1992; 60 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_14_1 e_1_2_9_16_1 e_1_2_9_37_1 Thomas N. (e_1_2_9_54_1) 2004 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 Khurana K. (e_1_2_9_39_1) 2004 Krupp N. (e_1_2_9_43_1) 2004 e_1_2_9_15_1 e_1_2_9_38_1 Bagenal F. (e_1_2_9_6_1) 2004 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – start-page: 593 year: 2004 end-page: 616 – volume: 108 issue: A7 year: 2003 article-title: Modeling variability of plasma conditions in the Io torus publication-title: J. Geophys. Res. – year: 2009 – start-page: 617 year: 2004 end-page: 638 – volume: 86 start-page: 8447 year: 1981 end-page: 8466 article-title: Direct plasma measurements in the Io torus and inner magnetosphere of Jupiter publication-title: J. Geophys. Res. – volume: 106 start-page: 26,017 year: 2001a end-page: 26,032 article-title: Global flows of energetic ions in Jupiter's equatorial plane: First‐order approximation publication-title: J. Geophys. Res. – volume: 99 start-page: 11,043 year: 1994 end-page: 11,062 article-title: Empirical model of the Io plasma torus: Voyager measurements publication-title: J. Geophys. Res. – volume: 103 start-page: 29,359 year: 1998 end-page: 29,370 article-title: Galileo Plasma Spectrometer Measurements of Composition and Temperature in the Io Plasma Torus publication-title: J. Geophys. Res. – volume: 113 year: 2008 article-title: New description of Io's cold plasma torus publication-title: J. Geophys. Res. – volume: 116 year: 2011 article-title: Longitudinal modulation of hot electrons in the Io plasma torus publication-title: J. Geophys. Res. – volume: 81 start-page: 4561 year: 1976 end-page: 4565 article-title: Heavy ions from the Galilean satellites and the centrifugal distortion of the Jovian magnetosphere publication-title: J. Geophys. Res. – volume: 117 year: 2012 article-title: Asymmetry of Io's outer atmosphere: Constraints from five Galileo flybys publication-title: J. Geophys. Res. – volume: 114 year: 2009 article-title: Electron densities in Jupiter's outer magnetosphere determined from Voyager 1 and 2 plasma wave spectra publication-title: J. Geophys. Res. – volume: 116 year: 2011 article-title: Flow of mass and energy in the magnetospheres of Jupiter and Saturn publication-title: J. Geophys. Res. – start-page: 231 year: 2007 end-page: 264 – volume: 105 start-page: 25,363 year: 2000b end-page: 25,378 article-title: Return to Io by the Galileo spacecraft: Plasma observations publication-title: J. Geophys. Res. – volume: 105 start-page: 16,017 year: 2000a end-page: 16,034 article-title: Observations of plasmas in the Io torus with the Galileo spacecraft publication-title: J. Geophys. Res. – volume: 87 start-page: 10,395 year: 1982 end-page: 10,400 article-title: The proton concentration in the vicinity of the Io plasma torus publication-title: J. Geophys. Res. – volume: 49 start-page: 1137 year: 2001 end-page: 1149 article-title: Low‐frequency limit of Jovian radio emissions and implications on source locations and Io plasma wake publication-title: Planet. Space Sci. – volume: 29 issue: 7 year: 2002 article-title: Particle bursts in the Jovian magnetosphere: Evidence for a near‐Jupiter neutral line publication-title: Geophys. Res. Lett. – volume: 217 start-page: 277 year: 2012 end-page: 296 article-title: Io's atmosphere: Constraints on sublimation support from density variations on seasonal timescales using NASA IRTF/TEXES observations from 2001 to 2010 publication-title: Icarus – volume: 103 start-page: 14,987 year: 1998a end-page: 14,994 article-title: Cold torus whistlers: An indirect probe of the inner Jovian plasmasphere publication-title: J. Geophys. Res. – volume: 104 start-page: 28,657 year: 1999b end-page: 28,669 article-title: Intense electron beams observed at Io with the Galileo spacecraft publication-title: J. Geophys. Res. – volume: 194 start-page: 153 year: 2008 end-page: 165 article-title: Cassini UVIS observations of the Io plasma torus. IV. Observations of temporal and azimuthal variability publication-title: Icarus – volume: 106 start-page: 26,209 year: 2001b end-page: 26,224 article-title: Passage through Io's ionospheric plasmas by the Galileo spacecraft publication-title: J. Geophys. Res. – volume: 24 start-page: 869 year: 1997 end-page: 872 article-title: Geometry of the plasma sheet in the midnight‐to‐dawn sector of the Jovian magnetosphere: Plasma observations with the Galileo spacecraft publication-title: Geophys. Res. Lett. – volume: 85 start-page: 250 year: 2013 end-page: 260 article-title: The Extreme Ultraviolet Spectroscope for Planetary Science, EXCEED publication-title: Planet. Space Sci. – volume: 107 issue: A1 year: 2002 article-title: Observations of thermal plasmas in Jupiter's magnetotail publication-title: J. Geophys. Res. – volume: 24 start-page: 1151 year: 1976 end-page: 1154 article-title: Interchange stability of a rapidly rotating magnetosphere publication-title: Planet. Space Sci. – volume: 25 start-page: 237 year: 1998 end-page: 240 article-title: Galileo plasma wave observations near Europa publication-title: Geophys. Res. Lett. – volume: 261 start-page: 1 year: 2015 end-page: 13 article-title: Plasma conditions at Europa's orbit publication-title: Icarus – volume: 172 start-page: 91 year: 2004 end-page: 103 article-title: Cassini UVIS observations of the Io plasma torus. II: Radial variations publication-title: Icarus – volume: 103 start-page: 14,979 year: 1998b end-page: 14,986 article-title: Constraints on Jovian plasma properties from a dispersion analysis of unducted whistlers in the warm Io torus publication-title: J. Geophys. Res. – volume: 60 start-page: 283 year: 1992 end-page: 307 article-title: The plasma instrumentation for the Galileo mission publication-title: Space Sci. Rev. – volume: 49 start-page: 283 year: 2001b end-page: 289 article-title: Local time asymmetry of energetic ion anisotropies in the Jovian magnetosphere publication-title: Planet. Space Sci. – volume: 248 start-page: 243 year: 2015 end-page: 253 article-title: Non‐detection of post‐eclipse changes in Io's Jupiter‐facing atmosphere: Evidence for volcanic support? publication-title: Icarus – volume: 209 start-page: 625 year: 2010 end-page: 630 article-title: Ground‐based observations of time variability in multiple active volcanoes on Io publication-title: Icarus – volume: 49 start-page: 345 year: 2001 end-page: 363 article-title: The plasma wave environment of Europa publication-title: Planet. Space Sci. – volume: 101 start-page: 2699 year: 1996 end-page: 2706 article-title: Anisotropy and proton density in the Io plasma torus publication-title: J. Geophys. Res. – volume: 104 start-page: 10,345 year: 1999a end-page: 10,354 article-title: Production of Hydrogen Ions at Io publication-title: J. Geophys. Res. – volume: 60 start-page: 3 year: 1992 end-page: 21 article-title: Galileo mission overview publication-title: Space Sci. Rev. – volume: 24 start-page: 2131 year: 1997 end-page: 2134 article-title: Galileo evidence for rapid interchange transport in the Io torus publication-title: Geophys. Res. Lett. – volume: 180 start-page: 124 year: 2006 end-page: 140 article-title: Cassini UVIS observations of the Io plasma torus. III. Modeling temporal and azimuthal variability publication-title: Icarus – volume: 107 issue: A8 year: 2002a article-title: Plasmas observed with the Galileo spacecraft during its flyby over Io's northern polar region publication-title: J. Geophys. Res. – volume: 109 year: 2004 article-title: Modeling temporal variability of plasma conditions in the Io torus during the Cassini era publication-title: J. Geophys. Res. – volume: 110 year: 2005 article-title: Radial variations in the Io plasma torus during the Cassini era publication-title: J. Geophys. Res. – start-page: 719 year: 2004 – year: 2014 article-title: Magnetospheric science objectives of the Juno mission publication-title: Space Sci. Rev. – volume: 184 start-page: 237 year: 2014 end-page: 258 article-title: Extreme ultraviolet radiation measurement for planetary atmospheres/magnetospheres from the Earth‐orbiting spacecraft (Extreme Ultraviolet Spectroscope for Exospheric Dynamics: EXCEED) publication-title: Space Sci. Rev. – volume: 104 start-page: 22,779 year: 1999 end-page: 22,791 article-title: Galileo plasma observations at Europa: Ion energy spectra and moments publication-title: J. Geophys. Res. – volume: 107 issue: A12 year: 2002b article-title: Galileo observations of electron beams and thermal ions in Jupiter's magnetosphere and their relationship to the auroras publication-title: J. Geophys. Res. – volume: 60 start-page: 23 year: 1992 end-page: 78 article-title: Galileo Trajectory Design publication-title: Space Sci. Rev. – volume: 109 year: 2004 article-title: Plasmas observed near local noon in Jupiter's magnetosphere with the Galileo spacecraft publication-title: J. Geophys. Res. – volume: 2 start-page: 201 year: 2015 end-page: 222 article-title: Error analysis for numerical estimates of space plasma parameters publication-title: Earth Space Sci. – volume: 24 start-page: 2119 year: 1997 end-page: 2122 article-title: Galileo measurements of plasma density in the Io torus publication-title: Geophys. Res. Lett. – volume: 106 start-page: 26,225 year: 2001 end-page: 26,232 article-title: Electron densities near Io from Galileo plasma wave observations publication-title: J. Geophys. Res. – start-page: 561 year: 2004 end-page: 592 – volume: 24 start-page: 2127 year: 1997 article-title: Intermittent short‐duration plasma‐field anomalies in the Io plasma torus: Evidence for interchange in the Io plasma torus? publication-title: Geophys. Res. Lett. – volume: 274 start-page: 391 year: 1996 end-page: 392 article-title: Galileo plasma wave observations in the Io plasma torus and near Io publication-title: Science – volume: 27 start-page: 1867 issue: 13 year: 2000 end-page: 1870 article-title: Plasma densities in the vicinity of Callisto from Galileo plasma wave observations publication-title: Geophys. Res. Lett. – volume: 253 start-page: 99 year: 2015 end-page: 114 article-title: Detection and characterization of Io's atmosphere from high‐resolution 4‐lm spectroscopy publication-title: Icarus – volume: 274 start-page: 394 year: 1996 end-page: 395 article-title: Plasma observations at Io with the Galileo Spacecraft publication-title: Science – volume: 60 start-page: 341 year: 1992 end-page: 355 article-title: The Galileo plasma wave investigation publication-title: Space Sci. Rev. – volume: 86 start-page: 8319 year: 1981 end-page: 8342 article-title: Positive ion observations in the middle magnetosphere of Jupiter publication-title: J. Geophys. Res. – volume: 106 start-page: 6131 year: 2001a end-page: 6149 article-title: Survey of thermal ions in the Io plasma torus with the Galileo spacecraft publication-title: J. Geophys. Res. – ident: e_1_2_9_65_1 doi: 10.1016/j.pss.2013.06.021 – ident: e_1_2_9_48_1 – ident: e_1_2_9_47_1 doi: 10.1029/JA086iA10p08319 – start-page: 561 volume-title: Jupiter: Planet, Satellites, Magnetosphere year: 2004 ident: e_1_2_9_54_1 contributor: fullname: Thomas N. – ident: e_1_2_9_25_1 doi: 10.1029/2002JA009795 – ident: e_1_2_9_8_1 doi: 10.1016/j.icarus.2015.07.036 – ident: e_1_2_9_56_1 doi: 10.1029/JA087iA12p10395 – ident: e_1_2_9_2_1 doi: 10.1029/93JA02908 – ident: e_1_2_9_36_1 doi: 10.1016/0032-0633(76)90152-5 – start-page: 593 volume-title: Jupiter: Planet, Satellites, Magnetosphere year: 2004 ident: e_1_2_9_39_1 contributor: fullname: Khurana K. – ident: e_1_2_9_23_1 doi: 10.1029/2002JA009240 – ident: e_1_2_9_7_1 doi: 10.1007/s11214-014-0036-8 – ident: e_1_2_9_24_1 doi: 10.1029/2001JA009150 – ident: e_1_2_9_51_1 doi: 10.1016/j.icarus.2004.04.016 – ident: e_1_2_9_55_1 doi: 10.1029/97GL01788 – ident: e_1_2_9_37_1 doi: 10.1029/JA081i025p04561 – ident: e_1_2_9_4_1 doi: 10.1029/JA086iA10p08447 – ident: e_1_2_9_50_1 doi: 10.1016/j.icarus.2010.05.019 – ident: e_1_2_9_46_1 doi: 10.1016/j.icarus.2015.02.018 – ident: e_1_2_9_15_1 doi: 10.1029/2005JA011251 – ident: e_1_2_9_17_1 doi: 10.1029/1999JA900052 – ident: e_1_2_9_53_1 doi: 10.1016/j.icarus.2007.09.019 – ident: e_1_2_9_18_1 doi: 10.1029/1999JA900402 – ident: e_1_2_9_59_1 doi: 10.1029/97GL00757 – ident: e_1_2_9_11_1 doi: 10.1029/1998JA900003 – ident: e_1_2_9_12_1 doi: 10.1007/BF00216849 – ident: e_1_2_9_9_1 doi: 10.1029/2009JA014069 – start-page: 719 volume-title: Jupiter: Planet, Satellites, Magnetosphere year: 2004 ident: e_1_2_9_6_1 contributor: fullname: Bagenal F. – ident: e_1_2_9_33_1 doi: 10.1029/2000JA002509 – ident: e_1_2_9_5_1 doi: 10.1029/97GL01254 – ident: e_1_2_9_45_1 doi: 10.1007/978-3-540-48841-5_10 – ident: e_1_2_9_38_1 doi: 10.1007/BF00216848 – ident: e_1_2_9_57_1 doi: 10.1016/j.icarus.2011.11.005 – ident: e_1_2_9_30_1 doi: 10.1126/science.274.5286.391 – ident: e_1_2_9_49_1 doi: 10.1029/1999JA900191 – ident: e_1_2_9_3_1 doi: 10.1029/2010JA016294 – ident: e_1_2_9_29_1 doi: 10.1007/BF00216861 – ident: e_1_2_9_31_1 doi: 10.1029/97GL03706 – ident: e_1_2_9_66_1 doi: 10.1016/S0032-0633(01)00021-6 – ident: e_1_2_9_44_1 doi: 10.1016/S0032-0633(00)00156-2 – ident: e_1_2_9_60_1 doi: 10.1029/98JA00965 – ident: e_1_2_9_58_1 doi: 10.1016/j.icarus.2014.10.033 – ident: e_1_2_9_34_1 doi: 10.1029/2007JA012555 – ident: e_1_2_9_62_1 doi: 10.1002/2014EA000090 – ident: e_1_2_9_20_1 doi: 10.1029/1999JA000460 – ident: e_1_2_9_26_1 doi: 10.1007/BF00216858 – ident: e_1_2_9_35_1 doi: 10.1029/2011JA016918 – ident: e_1_2_9_40_1 doi: 10.1029/97GL02202 – ident: e_1_2_9_63_1 doi: 10.1029/2001GL014080 – ident: e_1_2_9_19_1 doi: 10.1029/1999JA000250 – start-page: 617 volume-title: Jupiter: Planet, Satellites, Magnetosphere year: 2004 ident: e_1_2_9_43_1 contributor: fullname: Krupp N. – ident: e_1_2_9_10_1 doi: 10.1029/95JA02212 – ident: e_1_2_9_28_1 doi: 10.1029/2001JA000077 – ident: e_1_2_9_16_1 doi: 10.1029/2012JE004076 – ident: e_1_2_9_64_1 doi: 10.1007/s11214-014-0077-z – ident: e_1_2_9_22_1 doi: 10.1029/2000JA002503 – ident: e_1_2_9_32_1 doi: 10.1029/2000GL003751 – ident: e_1_2_9_41_1 doi: 10.1029/2000JA900138 – ident: e_1_2_9_14_1 doi: 10.1029/2003JA010354 – ident: e_1_2_9_42_1 doi: 10.1016/S0032-0633(00)00149-5 – ident: e_1_2_9_52_1 doi: 10.1016/j.icarus.2005.07.013 – ident: e_1_2_9_27_1 doi: 10.1126/science.274.5286.394 – ident: e_1_2_9_61_1 doi: 10.1029/98JA00964 – ident: e_1_2_9_13_1 doi: 10.1029/2002JA009706 – ident: e_1_2_9_21_1 doi: 10.1029/2000JA000159 |
SSID | ssj0000816913 |
Score | 2.3685145 |
Snippet | The plasma science (PLS) Instrument on the Galileo spacecraft (orbiting Jupiter from December 1995 to September 2003) measured properties of the ions that were... The plasma science (PLS) instrument on the Galileo spacecraft (orbiting Jupiter from December 1995 to September 2003) measured properties of the ions that were... Abstract The plasma science (PLS) instrument on the Galileo spacecraft (orbiting Jupiter from December 1995 to September 2003) measured properties of the ions... |
SourceID | proquest crossref wiley nasa |
SourceType | Aggregation Database Publisher |
StartPage | 871 |
SubjectTerms | Adiabatic flow Astrophysics Cassini mission Constants Corotation Density Galileo Galileo spacecraft Geophysics Ion temperature Jupiter Magnetic fields Mathematical models Moons Numerical Analysis Orbits Plasma Spacecraft |
Title | Survey of Galileo Plasma Observations in Jupiter's Plasma Sheet |
URI | https://ntrs.nasa.gov/citations/20170003511 https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2016JE005009 https://www.proquest.com/docview/1795617351 https://search.proquest.com/docview/1808696708 https://search.proquest.com/docview/1825485632 |
Volume | 121 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ra9wwDDZdn_qyrVtHs3XDhbV9WegltmPnpVC2a8s9lLGusLcgJzIbrMlxvgz67yc7udv1pTD6ZiLFGMuyPsuWxNhHQgi1IUOaarAqlU6QzgmEtDaooVAWZPR3XN3o6x_myzSkyTlbxcIM-SHWDregGXG_DgoO1p_-SxpKlquYTUP-khi_RweFGMEhvq5dLKGmRBkLJOfUSMtJqcen79TD6eb_D4zSdgseHgDOTdga7c7Fi6eO-CV7PiJOfj4skV22he0rtn_ugw-8u7vnxzy2BxeHf03wvV_8wXveOX5JIP03dnxOEPsOeGfXLlzPf7V81s9DAPOJXzH4n4jLPXZ7Mf3--SodyyyktQwPpmpZNLaspcnAKVuaTGkAp9Eq5UyuNSgHhoCiU-UErATRuEbXApA-YFGjeENT1rW4z7ispUZphWwKlK7MYNI0KiuoL505ITFhR6t5ruZDNo1qyJucV5uzk7C9IISqXS58IOjxxjNhByupVKOu-Yq2FAKBmugJO1yTSUvC1Qe02PXEY-joVhZ6Yh7jocOyUYXIE_YpyvHRMVazy2_TPFyUvv0_9ndsJxCGV5MHbHu56PE9e-ab_kNcv38BSuPq0g |
link.rule.ids | 315,782,786,1408,27935,27936,46066,46490 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHODCs6iBAkbicSHqJn6fUAXbLkupEBSJWzRJxgKJJqv1Bqn_nnGSXbaXSoibZY8sy-PxfP5szzD2ghBCZcmRpgZKlUovyOYEQlpZNKBVCbLnO2Zfzel3-34aw-S8Xf-FGeJDbAi3aBn9fh0NPBLSB3-jhpLr0vNpDGASP_DdkFq6mLtBiM8bkiVmlXB9iuScCqmbODM-fqcuDrY7uOSWdhoIcAlybgPX3vMc3fnvMd9lt0fQyQ-HVXKPXcPmPts7DJEGb88v-CvelweWIzwgBN8tf-MFbz0_Jpz-C1u-IJR9DrwtNyxu4D8bPu8W8Q_z67AWCD8QV7vs29H07N0sHTMtpJWMb6YqqevSVdJm4FXpbKYMgDdYKuVtbgwoD5awolduAqUEUfvaVAKQKlBXKB7SnLUN7jEuK2lQlkLWGqV3GUzqWmWa-jKZFxIT9nI90cViCKhRDKGT82J7dhK2G7VQNKtliA1mvPRM2P5aLcVobqGgXYVwoKH2hD3fNJOhxNsPaLDtSMbS6c1pM7FXydB52Sot8oS96RV55RiL-fGXaR7vSh_9m_gzdnN29umkOPlw-vExuxWFhkeU-2xntezwCbse6u5pv5j_AChM7vM |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEA_VQvGlH37gtrZNoeqLi7ebZJN9KUi9055FpCr4tszuTrBQd4_LbcH_vpPdvfN8EaRvIRmGkGQyv8xXGPtKCKEwpEhDDbkKpRUkcwIhLAxqSFQOsrV3nF7q8xtzPPRlcr7Nc2G6-hALg5uXjPa-9gI-Ke3hQ9FQ0lzJeOjrl_j8vZfSI3GfwiEuFjYW_6lE2v6QHFMjTAep7mPficXhMoNHWmm1AgePEOcybm0Vz-jN_075LXvdQ05-1J2Rd-wFVuts-8h5I3h9d8_3eNvubBxug_B7M_2L97y2_IRQ-h-s-YQw9h3wOl_YcB3_XfFxM_EZzPtuTuBuEWeb7Ho0vPp-Gvb_LISF9BFThUzKPC2kicCqPDWR0gBWY66UNbHWoCwYQopWpQPIJYjSlroQgNSBSYFii5asrnCbcVlIjTIXskxQ2jSCQVmqKCFeOrJCYsB25-ucTbpyGllXODnOllcnYJt-E7JqNnV-QPcuz4DtzHcl64XNZXSnEArUNB6wL4thEhPv-4AK64ZoDL3d0kQPzFM09Fo2KhFxwA7afXxyjtn45Ncw9p7S988j_8xeXRyPsp8_zs8-sDVP00VQ7rDV2bTBj2zFlc2n9ij_A1X87aI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Survey+of+Galileo+plasma+observations+in+Jupiter%27s+plasma+sheet&rft.jtitle=Journal+of+geophysical+research.+Planets&rft.au=Bagenal%2C+Fran&rft.au=Wilson%2C+Robert+J.&rft.au=Siler%2C+Scott&rft.au=Paterson%2C+William+R.&rft.date=2016-05-01&rft.issn=2169-9097&rft.eissn=2169-9100&rft.volume=121&rft.issue=5&rft.spage=871&rft.epage=894&rft_id=info:doi/10.1002%2F2016JE005009&rft.externalDBID=10.1002%252F2016JE005009&rft.externalDocID=JGRE20529 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-9097&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-9097&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-9097&client=summon |