Survey of Galileo Plasma Observations in Jupiter's Plasma Sheet

The plasma science (PLS) Instrument on the Galileo spacecraft (orbiting Jupiter from December 1995 to September 2003) measured properties of the ions that were trapped in the magnetic field. The PLS data provide a survey of the plasma properties between approx. 5 and 30 Jupiter radii [R(sub J)] in t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of geophysical research. Planets Vol. 121; no. 5; pp. 871 - 894
Main Authors: Bagenal, Fran, Wilson, Robert J., Siler, Scott, Paterson, William R., Kurth, William S.
Format: Journal Article
Language:English
Published: Goddard Space Flight Center American Geophysical Union 01-05-2016
Blackwell Publishing Ltd
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The plasma science (PLS) Instrument on the Galileo spacecraft (orbiting Jupiter from December 1995 to September 2003) measured properties of the ions that were trapped in the magnetic field. The PLS data provide a survey of the plasma properties between approx. 5 and 30 Jupiter radii [R(sub J)] in the equatorial region. We present plasma properties derived via two analysis methods: numerical moments and forward modeling. We find that the density decreases with radial distance by nearly 5 orders of magnitude from approx. 2 to 3000 cm(exp.-3) at 6R(sub j) to approx. 0.05cm(sub -3) at 30 R(sub j). The density profile did not show major changes from orbit to orbit, suggesting that the plasma production and transport remained constant within about a factor of 2. The radial profile of ion temperature increased with distance which implied that contrary to the concept of adiabatic cooling on expansion, the plasma heats up as it expands out from Io's orbit (where TI is approx.60-80 eV) at approx. 6R(sub j) to a few keV at 30R(sub j).There does not seem to be a long-term, systematic variation in ion temperature with either local time or longitude. This latter finding differs from earlier analysis of Galileo PLS data from a selection of orbits. Further examination of all data from all Galileo orbits suggests that System Ill variations are transitory on timescales of weeks, consistent with the modeling of Cassini Ultraviolet Imaging Spectrograph observations. The plasma flow is dominated by azimuthal flow that is between 80% and 100% of corotation out to 25 R(sub j).
AbstractList The plasma science (PLS) instrument on the Galileo spacecraft (orbiting Jupiter from December 1995 to September 2003) measured properties of the ions that were trapped in the magnetic field. The PLS data provide a survey of the plasma properties between ~5 and 30Jupiter radii (R sub(J)) in the equatorial region. We present plasma properties derived via two analysis methods: numerical moments and forward modeling. We find that the density decreases with radial distance by nearly 5 orders of magnitude from ~2 to 3000cm super(-3) at 6R sub(J) to ~0.05cm super(-3) at 30R sub(J). The density profile did not show major changes from orbit to orbit, suggesting that the plasma production and transport remained constant within about a factor of 2. The radial profile of ion temperature increased with distance which implied that contrary to the concept of adiabatic cooling on expansion, the plasma heats up as it expands out from Io's orbit (where Ti~60-80eV) at ~6R sub(J) to a few keV at 30R sub(J). There does not seem to be a long-term, systematic variation in ion temperature with either local time or longitude. This latter finding differs from earlier analysis of Galileo PLS data from a selection of orbits. Further examination of all data from all Galileo orbits suggests that System III variations are transitory on timescales of weeks, consistent with the modeling of Cassini Ultraviolet Imaging Spectrograph observations. The plasma flow is dominated by azimuthal flow that is between 80% and 100% of corotation out to 25R sub(J). Key Points * Galileo plasma data show 5 orders of magnitude drop in density and factor 40 increase in ion temperature between 6 and 30R sub(J) * Plasma flow is generally azimuthal between 80 and 100% of corotation * The data do not show significant persistent variations with local time
The plasma science (PLS) instrument on the Galileo spacecraft (orbiting Jupiter from December 1995 to September 2003) measured properties of the ions that were trapped in the magnetic field. The PLS data provide a survey of the plasma properties between ~5 and 30 Jupiter radii (RJ) in the equatorial region. We present plasma properties derived via two analysis methods: numerical moments and forward modeling. We find that the density decreases with radial distance by nearly 5 orders of magnitude from ~2 to 3000 cm−3 at 6 RJ to ~0.05 cm−3 at 30 RJ. The density profile did not show major changes from orbit to orbit, suggesting that the plasma production and transport remained constant within about a factor of 2. The radial profile of ion temperature increased with distance which implied that contrary to the concept of adiabatic cooling on expansion, the plasma heats up as it expands out from Io's orbit (where Ti ~ 60–80 eV) at ~6 RJ to a few keV at 30 RJ. There does not seem to be a long‐term, systematic variation in ion temperature with either local time or longitude. This latter finding differs from earlier analysis of Galileo PLS data from a selection of orbits. Further examination of all data from all Galileo orbits suggests that System III variations are transitory on timescales of weeks, consistent with the modeling of Cassini Ultraviolet Imaging Spectrograph observations. The plasma flow is dominated by azimuthal flow that is between 80% and 100% of corotation out to 25 RJ. Key Points Galileo plasma data show 5 orders of magnitude drop in density and factor 40 increase in ion temperature between 6 and 30 RJ Plasma flow is generally azimuthal between 80 and 100% of corotation The data do not show significant persistent variations with local time
The plasma science (PLS) Instrument on the Galileo spacecraft (orbiting Jupiter from December 1995 to September 2003) measured properties of the ions that were trapped in the magnetic field. The PLS data provide a survey of the plasma properties between approx. 5 and 30 Jupiter radii [R(sub J)] in the equatorial region. We present plasma properties derived via two analysis methods: numerical moments and forward modeling. We find that the density decreases with radial distance by nearly 5 orders of magnitude from approx. 2 to 3000 cm(exp.-3) at 6R(sub j) to approx. 0.05cm(sub -3) at 30 R(sub j). The density profile did not show major changes from orbit to orbit, suggesting that the plasma production and transport remained constant within about a factor of 2. The radial profile of ion temperature increased with distance which implied that contrary to the concept of adiabatic cooling on expansion, the plasma heats up as it expands out from Io's orbit (where TI is approx.60-80 eV) at approx. 6R(sub j) to a few keV at 30R(sub j).There does not seem to be a long-term, systematic variation in ion temperature with either local time or longitude. This latter finding differs from earlier analysis of Galileo PLS data from a selection of orbits. Further examination of all data from all Galileo orbits suggests that System Ill variations are transitory on timescales of weeks, consistent with the modeling of Cassini Ultraviolet Imaging Spectrograph observations. The plasma flow is dominated by azimuthal flow that is between 80% and 100% of corotation out to 25 R(sub j).
Abstract The plasma science (PLS) instrument on the Galileo spacecraft (orbiting Jupiter from December 1995 to September 2003) measured properties of the ions that were trapped in the magnetic field. The PLS data provide a survey of the plasma properties between ~5 and 30 Jupiter radii ( R J ) in the equatorial region. We present plasma properties derived via two analysis methods: numerical moments and forward modeling. We find that the density decreases with radial distance by nearly 5 orders of magnitude from ~2 to 3000 cm −3 at 6  R J to ~0.05 cm −3 at 30  R J . The density profile did not show major changes from orbit to orbit, suggesting that the plasma production and transport remained constant within about a factor of 2. The radial profile of ion temperature increased with distance which implied that contrary to the concept of adiabatic cooling on expansion, the plasma heats up as it expands out from Io's orbit (where Ti ~ 60–80 eV) at ~6  R J to a few keV at 30  R J . There does not seem to be a long‐term, systematic variation in ion temperature with either local time or longitude. This latter finding differs from earlier analysis of Galileo PLS data from a selection of orbits. Further examination of all data from all Galileo orbits suggests that System III variations are transitory on timescales of weeks, consistent with the modeling of Cassini Ultraviolet Imaging Spectrograph observations. The plasma flow is dominated by azimuthal flow that is between 80% and 100% of corotation out to 25  R J . Key Points Galileo plasma data show 5 orders of magnitude drop in density and factor 40 increase in ion temperature between 6 and 30  R J Plasma flow is generally azimuthal between 80 and 100% of corotation The data do not show significant persistent variations with local time
The plasma science (PLS) instrument on the Galileo spacecraft (orbiting Jupiter from December 1995 to September 2003) measured properties of the ions that were trapped in the magnetic field. The PLS data provide a survey of the plasma properties between ~5 and 30Jupiter radii (RJ) in the equatorial region. We present plasma properties derived via two analysis methods: numerical moments and forward modeling. We find that the density decreases with radial distance by nearly 5 orders of magnitude from ~2 to 3000cm-3 at 6RJ to ~0.05cm-3 at 30RJ. The density profile did not show major changes from orbit to orbit, suggesting that the plasma production and transport remained constant within about a factor of 2. The radial profile of ion temperature increased with distance which implied that contrary to the concept of adiabatic cooling on expansion, the plasma heats up as it expands out from Io's orbit (where Ti~60-80eV) at ~6RJ to a few keV at 30RJ. There does not seem to be a long-term, systematic variation in ion temperature with either local time or longitude. This latter finding differs from earlier analysis of Galileo PLS data from a selection of orbits. Further examination of all data from all Galileo orbits suggests that System III variations are transitory on timescales of weeks, consistent with the modeling of Cassini Ultraviolet Imaging Spectrograph observations. The plasma flow is dominated by azimuthal flow that is between 80% and 100% of corotation out to 25RJ. Key Points Galileo plasma data show 5 orders of magnitude drop in density and factor 40 increase in ion temperature between 6 and 30RJ Plasma flow is generally azimuthal between 80 and 100% of corotation The data do not show significant persistent variations with local time
Audience PUBLIC
Author Bagenal, Fran
Kurth, William S.
Siler, Scott
Paterson, William R.
Wilson, Robert J.
Author_xml – sequence: 1
  givenname: Fran
  surname: Bagenal
  fullname: Bagenal, Fran
  organization: Colorado Univ
– sequence: 2
  givenname: Robert J.
  surname: Wilson
  fullname: Wilson, Robert J.
  organization: Colorado Univ
– sequence: 3
  givenname: Scott
  surname: Siler
  fullname: Siler, Scott
  organization: Colorado Univ
– sequence: 4
  givenname: William R.
  surname: Paterson
  fullname: Paterson, William R.
  organization: NASA Goddard Space Flight Center
– sequence: 5
  givenname: William S.
  surname: Kurth
  fullname: Kurth, William S.
  organization: Iowa Univ
BookMark eNqN0c1LwzAUAPAgE5xzN48eCh704DRplq-TyJjTMZg4PYfXLsGOrplJO9l_b0YVxIOYQxJefu-RvByjTuUqg9ApwdcE4_QmxYRPxxgzjNUB6qaEq4GKJ53vPVbiCPVDWOE4ZAwR2kW3i8ZvzS5xNplAWZTGJU8lhDUk8ywYv4W6cFVIiiqZNpuiNv4ifIPFmzH1CTq0UAbT_1p76PV-_DJ6GMzmk8fR3WyQD5VUcebLTOVDScCyTEnCBIAVJmPMylQIYBYkocoyhSEbAl3apcgpmBgwPDe0hy7buhvv3hsTar0uQm7KEirjmqCJTNlQMk7Tf1AsueICy0jPf9GVa3wVH6KJUIwTQRmJ6qpVuXcheGP1xhdr8DtNsN73Xv_sfeS05R-xnbs_rZ5OnscpZuk-66zNqiCArmof9lLEr4pXIPQTZSmNCQ
CitedBy_id crossref_primary_10_1029_2019JA027485
crossref_primary_10_1002_2017JA024736
crossref_primary_10_3847_PSJ_accddd
crossref_primary_10_1029_2022JA030915
crossref_primary_10_1029_2023JA031794
crossref_primary_10_1038_s41598_023_41500_y
crossref_primary_10_3847_2041_8213_aaedab
crossref_primary_10_1002_2016JA023306
crossref_primary_10_1007_s11214_023_01002_9
crossref_primary_10_1029_2021JA029195
crossref_primary_10_1029_2023JA032043
crossref_primary_10_1038_s41550_024_02206_x
crossref_primary_10_1029_2023JA032122
crossref_primary_10_1029_2018JA025363
crossref_primary_10_1029_2022GL098111
crossref_primary_10_1029_2018JA025951
crossref_primary_10_1029_2018GL078891
crossref_primary_10_1029_2022JA031132
crossref_primary_10_1109_TPS_2019_2901681
crossref_primary_10_3847_1538_4357_aaed38
crossref_primary_10_1007_s11214_020_0642_6
crossref_primary_10_1029_2019JA027693
crossref_primary_10_1029_2023GL104374
crossref_primary_10_1029_2019JA027455
crossref_primary_10_1002_2016JA023039
crossref_primary_10_1002_2016JA023236
crossref_primary_10_1002_2016JA023797
crossref_primary_10_1029_2019JA027696
crossref_primary_10_1029_2020JA028347
crossref_primary_10_1029_2021GL096662
crossref_primary_10_1029_2023JA031763
crossref_primary_10_1002_2017JA023893
crossref_primary_10_1029_2018GL079118
crossref_primary_10_3847_1538_4357_aba94c
crossref_primary_10_1002_2017JA024303
crossref_primary_10_1016_j_icarus_2024_116006
crossref_primary_10_1029_2018JA025296
crossref_primary_10_1029_2021EA002172
crossref_primary_10_1029_2023JA031363
crossref_primary_10_1029_2020JA028345
crossref_primary_10_1029_2021JA029446
crossref_primary_10_1007_s10686_021_09801_0
crossref_primary_10_1029_2019JA027727
crossref_primary_10_1029_2023JE008279
crossref_primary_10_1029_2020JA027968
crossref_primary_10_1109_TPS_2018_2831004
crossref_primary_10_1007_s11214_024_01072_3
crossref_primary_10_1029_2018JA025345
crossref_primary_10_1007_s11214_023_01003_8
crossref_primary_10_1029_2018JA026153
crossref_primary_10_1029_2020GL091579
crossref_primary_10_1029_2021JA029450
crossref_primary_10_1002_2017JA024117
crossref_primary_10_1029_2022JA030664
crossref_primary_10_1029_2018JA025216
crossref_primary_10_1029_2023JA032218
crossref_primary_10_1029_2019GL083899
crossref_primary_10_1029_2021JA029338
crossref_primary_10_1029_2022JA030581
crossref_primary_10_1007_s11214_020_00696_5
crossref_primary_10_1016_j_pss_2022_105609
crossref_primary_10_1002_2016JA023691
crossref_primary_10_1029_2020JA027957
crossref_primary_10_1029_2023GL106810
crossref_primary_10_1029_2023JA032113
crossref_primary_10_3847_1538_4357_ac9c54
crossref_primary_10_1002_2016JA022767
crossref_primary_10_1029_2018JA025312
crossref_primary_10_1029_2018JA026169
crossref_primary_10_1016_j_pss_2020_105004
crossref_primary_10_1029_2023GL105809
crossref_primary_10_1029_2023JE008178
crossref_primary_10_3847_2041_8213_abca3f
crossref_primary_10_1029_2021JA029863
crossref_primary_10_1029_2023JA031931
crossref_primary_10_1002_2017JA024053
crossref_primary_10_1029_2023JA031734
crossref_primary_10_1029_2021JA029426
crossref_primary_10_1029_2021JA030136
Cites_doi 10.1016/j.pss.2013.06.021
10.1029/JA086iA10p08319
10.1029/2002JA009795
10.1016/j.icarus.2015.07.036
10.1029/JA087iA12p10395
10.1029/93JA02908
10.1016/0032-0633(76)90152-5
10.1029/2002JA009240
10.1007/s11214-014-0036-8
10.1029/2001JA009150
10.1016/j.icarus.2004.04.016
10.1029/97GL01788
10.1029/JA081i025p04561
10.1029/JA086iA10p08447
10.1016/j.icarus.2010.05.019
10.1016/j.icarus.2015.02.018
10.1029/2005JA011251
10.1029/1999JA900052
10.1016/j.icarus.2007.09.019
10.1029/1999JA900402
10.1029/97GL00757
10.1029/1998JA900003
10.1007/BF00216849
10.1029/2009JA014069
10.1029/2000JA002509
10.1029/97GL01254
10.1007/978-3-540-48841-5_10
10.1007/BF00216848
10.1016/j.icarus.2011.11.005
10.1126/science.274.5286.391
10.1029/1999JA900191
10.1029/2010JA016294
10.1007/BF00216861
10.1029/97GL03706
10.1016/S0032-0633(01)00021-6
10.1016/S0032-0633(00)00156-2
10.1029/98JA00965
10.1016/j.icarus.2014.10.033
10.1029/2007JA012555
10.1002/2014EA000090
10.1029/1999JA000460
10.1007/BF00216858
10.1029/2011JA016918
10.1029/97GL02202
10.1029/2001GL014080
10.1029/1999JA000250
10.1029/95JA02212
10.1029/2001JA000077
10.1029/2012JE004076
10.1007/s11214-014-0077-z
10.1029/2000JA002503
10.1029/2000GL003751
10.1029/2000JA900138
10.1029/2003JA010354
10.1016/S0032-0633(00)00149-5
10.1016/j.icarus.2005.07.013
10.1126/science.274.5286.394
10.1029/98JA00964
10.1029/2002JA009706
10.1029/2000JA000159
ContentType Journal Article
Copyright 2016. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2016. American Geophysical Union. All Rights Reserved.
DBID CYE
CYI
AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
DOI 10.1002/2016JE005009
DatabaseName NASA Scientific and Technical Information
NASA Technical Reports Server
CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Meteorological & Geoastrophysical Abstracts - Academic
Technology Research Database


CrossRef
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
EISSN 2169-9100
EndPage 894
ExternalDocumentID 4084912111
10_1002_2016JE005009
JGRE20529
20170003511
Genre article
GrantInformation NNX09AE03G
GrantInformation_xml – fundername: NASA's Jupiter Data Analysis Program
  funderid: NNX09AE03G
GroupedDBID 05W
0R~
1OC
24P
33P
50Y
52M
702
8-1
A00
AAESR
AAHHS
AAMNL
AANLZ
AASGY
AAXRX
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACGOD
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
AZFZN
AZVAB
BFHJK
BMXJE
BRXPI
CYE
CYI
DPXWK
DRFUL
DRSTM
EBS
EJD
G-S
HGLYW
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
P-X
P2W
R.K
RNS
ROL
SUPJJ
WBKPD
WIN
WXSBR
WYJ
~OA
31~
3V.
88I
8FE
8FG
8FH
ABUWG
AFKRA
ARAPS
ASPBG
AVWKF
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
D1K
DWQXO
FEDTE
GNUQQ
GODZA
HCIFZ
HVGLF
K6-
LK5
M2P
M7R
P62
PCBAR
PQQKQ
PROAC
RJQFR
AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
ID FETCH-LOGICAL-c4989-c46db9c481af5b98157aaf7eb55f8277a5fa8139f590ab4a3dfd7c3aef59e6ce3
IEDL.DBID 33P
ISSN 2169-9097
IngestDate Sat Aug 17 02:04:05 EDT 2024
Fri Aug 16 10:56:13 EDT 2024
Tue Nov 19 05:37:39 EST 2024
Fri Aug 23 02:39:44 EDT 2024
Sat Aug 24 01:00:43 EDT 2024
Fri Nov 15 15:09:35 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4989-c46db9c481af5b98157aaf7eb55f8277a5fa8139f590ab4a3dfd7c3aef59e6ce3
Notes GSFC
Goddard Space Flight Center
GSFC-E-DAA-TN41236
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://agupubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/2016JE005009
PQID 1795617351
PQPubID 54729
PageCount 24
ParticipantIDs proquest_miscellaneous_1825485632
proquest_miscellaneous_1808696708
proquest_journals_1795617351
crossref_primary_10_1002_2016JE005009
wiley_primary_10_1002_2016JE005009_JGRE20529
nasa_ntrs_20170003511
PublicationCentury 2000
PublicationDate May 2016
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: May 2016
PublicationDecade 2010
PublicationPlace Goddard Space Flight Center
PublicationPlace_xml – name: Goddard Space Flight Center
– name: Washington
PublicationTitle Journal of geophysical research. Planets
PublicationYear 2016
Publisher American Geophysical Union
Blackwell Publishing Ltd
Publisher_xml – name: American Geophysical Union
– name: Blackwell Publishing Ltd
References 2011; 116
2015; 261
1976; 24
1999b; 104
1999a; 104
2001; 49
1996; 101
2001a; 106
2009; 114
1981; 86
2001; 106
1998b; 103
2002a; 107
2015; 253
2004; 172
2002; 107
2000b; 105
2008; 113
2012; 217
2008; 194
2015; 2
2000; 27
2010; 209
2005; 110
2015; 248
1997; 24
1976; 81
2013; 85
2009
2007
2001b; 49
2004
2002b; 107
2004; 109
1999; 104
1998; 25
2003; 108
2002; 29
2000a; 105
1982; 87
2001b; 106
1994; 99
1998; 103
2006; 180
1998a; 103
2014; 184
2014
1996; 274
2012; 117
1992; 60
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_14_1
e_1_2_9_16_1
e_1_2_9_37_1
Thomas N. (e_1_2_9_54_1) 2004
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
Khurana K. (e_1_2_9_39_1) 2004
Krupp N. (e_1_2_9_43_1) 2004
e_1_2_9_15_1
e_1_2_9_38_1
Bagenal F. (e_1_2_9_6_1) 2004
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – start-page: 593
  year: 2004
  end-page: 616
– volume: 108
  issue: A7
  year: 2003
  article-title: Modeling variability of plasma conditions in the Io torus
  publication-title: J. Geophys. Res.
– year: 2009
– start-page: 617
  year: 2004
  end-page: 638
– volume: 86
  start-page: 8447
  year: 1981
  end-page: 8466
  article-title: Direct plasma measurements in the Io torus and inner magnetosphere of Jupiter
  publication-title: J. Geophys. Res.
– volume: 106
  start-page: 26,017
  year: 2001a
  end-page: 26,032
  article-title: Global flows of energetic ions in Jupiter's equatorial plane: First‐order approximation
  publication-title: J. Geophys. Res.
– volume: 99
  start-page: 11,043
  year: 1994
  end-page: 11,062
  article-title: Empirical model of the Io plasma torus: Voyager measurements
  publication-title: J. Geophys. Res.
– volume: 103
  start-page: 29,359
  year: 1998
  end-page: 29,370
  article-title: Galileo Plasma Spectrometer Measurements of Composition and Temperature in the Io Plasma Torus
  publication-title: J. Geophys. Res.
– volume: 113
  year: 2008
  article-title: New description of Io's cold plasma torus
  publication-title: J. Geophys. Res.
– volume: 116
  year: 2011
  article-title: Longitudinal modulation of hot electrons in the Io plasma torus
  publication-title: J. Geophys. Res.
– volume: 81
  start-page: 4561
  year: 1976
  end-page: 4565
  article-title: Heavy ions from the Galilean satellites and the centrifugal distortion of the Jovian magnetosphere
  publication-title: J. Geophys. Res.
– volume: 117
  year: 2012
  article-title: Asymmetry of Io's outer atmosphere: Constraints from five Galileo flybys
  publication-title: J. Geophys. Res.
– volume: 114
  year: 2009
  article-title: Electron densities in Jupiter's outer magnetosphere determined from Voyager 1 and 2 plasma wave spectra
  publication-title: J. Geophys. Res.
– volume: 116
  year: 2011
  article-title: Flow of mass and energy in the magnetospheres of Jupiter and Saturn
  publication-title: J. Geophys. Res.
– start-page: 231
  year: 2007
  end-page: 264
– volume: 105
  start-page: 25,363
  year: 2000b
  end-page: 25,378
  article-title: Return to Io by the Galileo spacecraft: Plasma observations
  publication-title: J. Geophys. Res.
– volume: 105
  start-page: 16,017
  year: 2000a
  end-page: 16,034
  article-title: Observations of plasmas in the Io torus with the Galileo spacecraft
  publication-title: J. Geophys. Res.
– volume: 87
  start-page: 10,395
  year: 1982
  end-page: 10,400
  article-title: The proton concentration in the vicinity of the Io plasma torus
  publication-title: J. Geophys. Res.
– volume: 49
  start-page: 1137
  year: 2001
  end-page: 1149
  article-title: Low‐frequency limit of Jovian radio emissions and implications on source locations and Io plasma wake
  publication-title: Planet. Space Sci.
– volume: 29
  issue: 7
  year: 2002
  article-title: Particle bursts in the Jovian magnetosphere: Evidence for a near‐Jupiter neutral line
  publication-title: Geophys. Res. Lett.
– volume: 217
  start-page: 277
  year: 2012
  end-page: 296
  article-title: Io's atmosphere: Constraints on sublimation support from density variations on seasonal timescales using NASA IRTF/TEXES observations from 2001 to 2010
  publication-title: Icarus
– volume: 103
  start-page: 14,987
  year: 1998a
  end-page: 14,994
  article-title: Cold torus whistlers: An indirect probe of the inner Jovian plasmasphere
  publication-title: J. Geophys. Res.
– volume: 104
  start-page: 28,657
  year: 1999b
  end-page: 28,669
  article-title: Intense electron beams observed at Io with the Galileo spacecraft
  publication-title: J. Geophys. Res.
– volume: 194
  start-page: 153
  year: 2008
  end-page: 165
  article-title: Cassini UVIS observations of the Io plasma torus. IV. Observations of temporal and azimuthal variability
  publication-title: Icarus
– volume: 106
  start-page: 26,209
  year: 2001b
  end-page: 26,224
  article-title: Passage through Io's ionospheric plasmas by the Galileo spacecraft
  publication-title: J. Geophys. Res.
– volume: 24
  start-page: 869
  year: 1997
  end-page: 872
  article-title: Geometry of the plasma sheet in the midnight‐to‐dawn sector of the Jovian magnetosphere: Plasma observations with the Galileo spacecraft
  publication-title: Geophys. Res. Lett.
– volume: 85
  start-page: 250
  year: 2013
  end-page: 260
  article-title: The Extreme Ultraviolet Spectroscope for Planetary Science, EXCEED
  publication-title: Planet. Space Sci.
– volume: 107
  issue: A1
  year: 2002
  article-title: Observations of thermal plasmas in Jupiter's magnetotail
  publication-title: J. Geophys. Res.
– volume: 24
  start-page: 1151
  year: 1976
  end-page: 1154
  article-title: Interchange stability of a rapidly rotating magnetosphere
  publication-title: Planet. Space Sci.
– volume: 25
  start-page: 237
  year: 1998
  end-page: 240
  article-title: Galileo plasma wave observations near Europa
  publication-title: Geophys. Res. Lett.
– volume: 261
  start-page: 1
  year: 2015
  end-page: 13
  article-title: Plasma conditions at Europa's orbit
  publication-title: Icarus
– volume: 172
  start-page: 91
  year: 2004
  end-page: 103
  article-title: Cassini UVIS observations of the Io plasma torus. II: Radial variations
  publication-title: Icarus
– volume: 103
  start-page: 14,979
  year: 1998b
  end-page: 14,986
  article-title: Constraints on Jovian plasma properties from a dispersion analysis of unducted whistlers in the warm Io torus
  publication-title: J. Geophys. Res.
– volume: 60
  start-page: 283
  year: 1992
  end-page: 307
  article-title: The plasma instrumentation for the Galileo mission
  publication-title: Space Sci. Rev.
– volume: 49
  start-page: 283
  year: 2001b
  end-page: 289
  article-title: Local time asymmetry of energetic ion anisotropies in the Jovian magnetosphere
  publication-title: Planet. Space Sci.
– volume: 248
  start-page: 243
  year: 2015
  end-page: 253
  article-title: Non‐detection of post‐eclipse changes in Io's Jupiter‐facing atmosphere: Evidence for volcanic support?
  publication-title: Icarus
– volume: 209
  start-page: 625
  year: 2010
  end-page: 630
  article-title: Ground‐based observations of time variability in multiple active volcanoes on Io
  publication-title: Icarus
– volume: 49
  start-page: 345
  year: 2001
  end-page: 363
  article-title: The plasma wave environment of Europa
  publication-title: Planet. Space Sci.
– volume: 101
  start-page: 2699
  year: 1996
  end-page: 2706
  article-title: Anisotropy and proton density in the Io plasma torus
  publication-title: J. Geophys. Res.
– volume: 104
  start-page: 10,345
  year: 1999a
  end-page: 10,354
  article-title: Production of Hydrogen Ions at Io
  publication-title: J. Geophys. Res.
– volume: 60
  start-page: 3
  year: 1992
  end-page: 21
  article-title: Galileo mission overview
  publication-title: Space Sci. Rev.
– volume: 24
  start-page: 2131
  year: 1997
  end-page: 2134
  article-title: Galileo evidence for rapid interchange transport in the Io torus
  publication-title: Geophys. Res. Lett.
– volume: 180
  start-page: 124
  year: 2006
  end-page: 140
  article-title: Cassini UVIS observations of the Io plasma torus. III. Modeling temporal and azimuthal variability
  publication-title: Icarus
– volume: 107
  issue: A8
  year: 2002a
  article-title: Plasmas observed with the Galileo spacecraft during its flyby over Io's northern polar region
  publication-title: J. Geophys. Res.
– volume: 109
  year: 2004
  article-title: Modeling temporal variability of plasma conditions in the Io torus during the Cassini era
  publication-title: J. Geophys. Res.
– volume: 110
  year: 2005
  article-title: Radial variations in the Io plasma torus during the Cassini era
  publication-title: J. Geophys. Res.
– start-page: 719
  year: 2004
– year: 2014
  article-title: Magnetospheric science objectives of the Juno mission
  publication-title: Space Sci. Rev.
– volume: 184
  start-page: 237
  year: 2014
  end-page: 258
  article-title: Extreme ultraviolet radiation measurement for planetary atmospheres/magnetospheres from the Earth‐orbiting spacecraft (Extreme Ultraviolet Spectroscope for Exospheric Dynamics: EXCEED)
  publication-title: Space Sci. Rev.
– volume: 104
  start-page: 22,779
  year: 1999
  end-page: 22,791
  article-title: Galileo plasma observations at Europa: Ion energy spectra and moments
  publication-title: J. Geophys. Res.
– volume: 107
  issue: A12
  year: 2002b
  article-title: Galileo observations of electron beams and thermal ions in Jupiter's magnetosphere and their relationship to the auroras
  publication-title: J. Geophys. Res.
– volume: 60
  start-page: 23
  year: 1992
  end-page: 78
  article-title: Galileo Trajectory Design
  publication-title: Space Sci. Rev.
– volume: 109
  year: 2004
  article-title: Plasmas observed near local noon in Jupiter's magnetosphere with the Galileo spacecraft
  publication-title: J. Geophys. Res.
– volume: 2
  start-page: 201
  year: 2015
  end-page: 222
  article-title: Error analysis for numerical estimates of space plasma parameters
  publication-title: Earth Space Sci.
– volume: 24
  start-page: 2119
  year: 1997
  end-page: 2122
  article-title: Galileo measurements of plasma density in the Io torus
  publication-title: Geophys. Res. Lett.
– volume: 106
  start-page: 26,225
  year: 2001
  end-page: 26,232
  article-title: Electron densities near Io from Galileo plasma wave observations
  publication-title: J. Geophys. Res.
– start-page: 561
  year: 2004
  end-page: 592
– volume: 24
  start-page: 2127
  year: 1997
  article-title: Intermittent short‐duration plasma‐field anomalies in the Io plasma torus: Evidence for interchange in the Io plasma torus?
  publication-title: Geophys. Res. Lett.
– volume: 274
  start-page: 391
  year: 1996
  end-page: 392
  article-title: Galileo plasma wave observations in the Io plasma torus and near Io
  publication-title: Science
– volume: 27
  start-page: 1867
  issue: 13
  year: 2000
  end-page: 1870
  article-title: Plasma densities in the vicinity of Callisto from Galileo plasma wave observations
  publication-title: Geophys. Res. Lett.
– volume: 253
  start-page: 99
  year: 2015
  end-page: 114
  article-title: Detection and characterization of Io's atmosphere from high‐resolution 4‐lm spectroscopy
  publication-title: Icarus
– volume: 274
  start-page: 394
  year: 1996
  end-page: 395
  article-title: Plasma observations at Io with the Galileo Spacecraft
  publication-title: Science
– volume: 60
  start-page: 341
  year: 1992
  end-page: 355
  article-title: The Galileo plasma wave investigation
  publication-title: Space Sci. Rev.
– volume: 86
  start-page: 8319
  year: 1981
  end-page: 8342
  article-title: Positive ion observations in the middle magnetosphere of Jupiter
  publication-title: J. Geophys. Res.
– volume: 106
  start-page: 6131
  year: 2001a
  end-page: 6149
  article-title: Survey of thermal ions in the Io plasma torus with the Galileo spacecraft
  publication-title: J. Geophys. Res.
– ident: e_1_2_9_65_1
  doi: 10.1016/j.pss.2013.06.021
– ident: e_1_2_9_48_1
– ident: e_1_2_9_47_1
  doi: 10.1029/JA086iA10p08319
– start-page: 561
  volume-title: Jupiter: Planet, Satellites, Magnetosphere
  year: 2004
  ident: e_1_2_9_54_1
  contributor:
    fullname: Thomas N.
– ident: e_1_2_9_25_1
  doi: 10.1029/2002JA009795
– ident: e_1_2_9_8_1
  doi: 10.1016/j.icarus.2015.07.036
– ident: e_1_2_9_56_1
  doi: 10.1029/JA087iA12p10395
– ident: e_1_2_9_2_1
  doi: 10.1029/93JA02908
– ident: e_1_2_9_36_1
  doi: 10.1016/0032-0633(76)90152-5
– start-page: 593
  volume-title: Jupiter: Planet, Satellites, Magnetosphere
  year: 2004
  ident: e_1_2_9_39_1
  contributor:
    fullname: Khurana K.
– ident: e_1_2_9_23_1
  doi: 10.1029/2002JA009240
– ident: e_1_2_9_7_1
  doi: 10.1007/s11214-014-0036-8
– ident: e_1_2_9_24_1
  doi: 10.1029/2001JA009150
– ident: e_1_2_9_51_1
  doi: 10.1016/j.icarus.2004.04.016
– ident: e_1_2_9_55_1
  doi: 10.1029/97GL01788
– ident: e_1_2_9_37_1
  doi: 10.1029/JA081i025p04561
– ident: e_1_2_9_4_1
  doi: 10.1029/JA086iA10p08447
– ident: e_1_2_9_50_1
  doi: 10.1016/j.icarus.2010.05.019
– ident: e_1_2_9_46_1
  doi: 10.1016/j.icarus.2015.02.018
– ident: e_1_2_9_15_1
  doi: 10.1029/2005JA011251
– ident: e_1_2_9_17_1
  doi: 10.1029/1999JA900052
– ident: e_1_2_9_53_1
  doi: 10.1016/j.icarus.2007.09.019
– ident: e_1_2_9_18_1
  doi: 10.1029/1999JA900402
– ident: e_1_2_9_59_1
  doi: 10.1029/97GL00757
– ident: e_1_2_9_11_1
  doi: 10.1029/1998JA900003
– ident: e_1_2_9_12_1
  doi: 10.1007/BF00216849
– ident: e_1_2_9_9_1
  doi: 10.1029/2009JA014069
– start-page: 719
  volume-title: Jupiter: Planet, Satellites, Magnetosphere
  year: 2004
  ident: e_1_2_9_6_1
  contributor:
    fullname: Bagenal F.
– ident: e_1_2_9_33_1
  doi: 10.1029/2000JA002509
– ident: e_1_2_9_5_1
  doi: 10.1029/97GL01254
– ident: e_1_2_9_45_1
  doi: 10.1007/978-3-540-48841-5_10
– ident: e_1_2_9_38_1
  doi: 10.1007/BF00216848
– ident: e_1_2_9_57_1
  doi: 10.1016/j.icarus.2011.11.005
– ident: e_1_2_9_30_1
  doi: 10.1126/science.274.5286.391
– ident: e_1_2_9_49_1
  doi: 10.1029/1999JA900191
– ident: e_1_2_9_3_1
  doi: 10.1029/2010JA016294
– ident: e_1_2_9_29_1
  doi: 10.1007/BF00216861
– ident: e_1_2_9_31_1
  doi: 10.1029/97GL03706
– ident: e_1_2_9_66_1
  doi: 10.1016/S0032-0633(01)00021-6
– ident: e_1_2_9_44_1
  doi: 10.1016/S0032-0633(00)00156-2
– ident: e_1_2_9_60_1
  doi: 10.1029/98JA00965
– ident: e_1_2_9_58_1
  doi: 10.1016/j.icarus.2014.10.033
– ident: e_1_2_9_34_1
  doi: 10.1029/2007JA012555
– ident: e_1_2_9_62_1
  doi: 10.1002/2014EA000090
– ident: e_1_2_9_20_1
  doi: 10.1029/1999JA000460
– ident: e_1_2_9_26_1
  doi: 10.1007/BF00216858
– ident: e_1_2_9_35_1
  doi: 10.1029/2011JA016918
– ident: e_1_2_9_40_1
  doi: 10.1029/97GL02202
– ident: e_1_2_9_63_1
  doi: 10.1029/2001GL014080
– ident: e_1_2_9_19_1
  doi: 10.1029/1999JA000250
– start-page: 617
  volume-title: Jupiter: Planet, Satellites, Magnetosphere
  year: 2004
  ident: e_1_2_9_43_1
  contributor:
    fullname: Krupp N.
– ident: e_1_2_9_10_1
  doi: 10.1029/95JA02212
– ident: e_1_2_9_28_1
  doi: 10.1029/2001JA000077
– ident: e_1_2_9_16_1
  doi: 10.1029/2012JE004076
– ident: e_1_2_9_64_1
  doi: 10.1007/s11214-014-0077-z
– ident: e_1_2_9_22_1
  doi: 10.1029/2000JA002503
– ident: e_1_2_9_32_1
  doi: 10.1029/2000GL003751
– ident: e_1_2_9_41_1
  doi: 10.1029/2000JA900138
– ident: e_1_2_9_14_1
  doi: 10.1029/2003JA010354
– ident: e_1_2_9_42_1
  doi: 10.1016/S0032-0633(00)00149-5
– ident: e_1_2_9_52_1
  doi: 10.1016/j.icarus.2005.07.013
– ident: e_1_2_9_27_1
  doi: 10.1126/science.274.5286.394
– ident: e_1_2_9_61_1
  doi: 10.1029/98JA00964
– ident: e_1_2_9_13_1
  doi: 10.1029/2002JA009706
– ident: e_1_2_9_21_1
  doi: 10.1029/2000JA000159
SSID ssj0000816913
Score 2.3685145
Snippet The plasma science (PLS) Instrument on the Galileo spacecraft (orbiting Jupiter from December 1995 to September 2003) measured properties of the ions that were...
The plasma science (PLS) instrument on the Galileo spacecraft (orbiting Jupiter from December 1995 to September 2003) measured properties of the ions that were...
Abstract The plasma science (PLS) instrument on the Galileo spacecraft (orbiting Jupiter from December 1995 to September 2003) measured properties of the ions...
SourceID proquest
crossref
wiley
nasa
SourceType Aggregation Database
Publisher
StartPage 871
SubjectTerms Adiabatic flow
Astrophysics
Cassini mission
Constants
Corotation
Density
Galileo
Galileo spacecraft
Geophysics
Ion temperature
Jupiter
Magnetic fields
Mathematical models
Moons
Numerical Analysis
Orbits
Plasma
Spacecraft
Title Survey of Galileo Plasma Observations in Jupiter's Plasma Sheet
URI https://ntrs.nasa.gov/citations/20170003511
https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2016JE005009
https://www.proquest.com/docview/1795617351
https://search.proquest.com/docview/1808696708
https://search.proquest.com/docview/1825485632
Volume 121
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ra9wwDDZdn_qyrVtHs3XDhbV9WegltmPnpVC2a8s9lLGusLcgJzIbrMlxvgz67yc7udv1pTD6ZiLFGMuyPsuWxNhHQgi1IUOaarAqlU6QzgmEtDaooVAWZPR3XN3o6x_myzSkyTlbxcIM-SHWDregGXG_DgoO1p_-SxpKlquYTUP-khi_RweFGMEhvq5dLKGmRBkLJOfUSMtJqcen79TD6eb_D4zSdgseHgDOTdga7c7Fi6eO-CV7PiJOfj4skV22he0rtn_ugw-8u7vnxzy2BxeHf03wvV_8wXveOX5JIP03dnxOEPsOeGfXLlzPf7V81s9DAPOJXzH4n4jLPXZ7Mf3--SodyyyktQwPpmpZNLaspcnAKVuaTGkAp9Eq5UyuNSgHhoCiU-UErATRuEbXApA-YFGjeENT1rW4z7ispUZphWwKlK7MYNI0KiuoL505ITFhR6t5ruZDNo1qyJucV5uzk7C9IISqXS58IOjxxjNhByupVKOu-Yq2FAKBmugJO1yTSUvC1Qe02PXEY-joVhZ6Yh7jocOyUYXIE_YpyvHRMVazy2_TPFyUvv0_9ndsJxCGV5MHbHu56PE9e-ab_kNcv38BSuPq0g
link.rule.ids 315,782,786,1408,27935,27936,46066,46490
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHODCs6iBAkbicSHqJn6fUAXbLkupEBSJWzRJxgKJJqv1Bqn_nnGSXbaXSoibZY8sy-PxfP5szzD2ghBCZcmRpgZKlUovyOYEQlpZNKBVCbLnO2Zfzel3-34aw-S8Xf-FGeJDbAi3aBn9fh0NPBLSB3-jhpLr0vNpDGASP_DdkFq6mLtBiM8bkiVmlXB9iuScCqmbODM-fqcuDrY7uOSWdhoIcAlybgPX3vMc3fnvMd9lt0fQyQ-HVXKPXcPmPts7DJEGb88v-CvelweWIzwgBN8tf-MFbz0_Jpz-C1u-IJR9DrwtNyxu4D8bPu8W8Q_z67AWCD8QV7vs29H07N0sHTMtpJWMb6YqqevSVdJm4FXpbKYMgDdYKuVtbgwoD5awolduAqUEUfvaVAKQKlBXKB7SnLUN7jEuK2lQlkLWGqV3GUzqWmWa-jKZFxIT9nI90cViCKhRDKGT82J7dhK2G7VQNKtliA1mvPRM2P5aLcVobqGgXYVwoKH2hD3fNJOhxNsPaLDtSMbS6c1pM7FXydB52Sot8oS96RV55RiL-fGXaR7vSh_9m_gzdnN29umkOPlw-vExuxWFhkeU-2xntezwCbse6u5pv5j_AChM7vM
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEA_VQvGlH37gtrZNoeqLi7ebZJN9KUi9055FpCr4tszuTrBQd4_LbcH_vpPdvfN8EaRvIRmGkGQyv8xXGPtKCKEwpEhDDbkKpRUkcwIhLAxqSFQOsrV3nF7q8xtzPPRlcr7Nc2G6-hALg5uXjPa-9gI-Ke3hQ9FQ0lzJeOjrl_j8vZfSI3GfwiEuFjYW_6lE2v6QHFMjTAep7mPficXhMoNHWmm1AgePEOcybm0Vz-jN_075LXvdQ05-1J2Rd-wFVuts-8h5I3h9d8_3eNvubBxug_B7M_2L97y2_IRQ-h-s-YQw9h3wOl_YcB3_XfFxM_EZzPtuTuBuEWeb7Ho0vPp-Gvb_LISF9BFThUzKPC2kicCqPDWR0gBWY66UNbHWoCwYQopWpQPIJYjSlroQgNSBSYFii5asrnCbcVlIjTIXskxQ2jSCQVmqKCFeOrJCYsB25-ucTbpyGllXODnOllcnYJt-E7JqNnV-QPcuz4DtzHcl64XNZXSnEArUNB6wL4thEhPv-4AK64ZoDL3d0kQPzFM09Fo2KhFxwA7afXxyjtn45Ncw9p7S988j_8xeXRyPsp8_zs8-sDVP00VQ7rDV2bTBj2zFlc2n9ij_A1X87aI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Survey+of+Galileo+plasma+observations+in+Jupiter%27s+plasma+sheet&rft.jtitle=Journal+of+geophysical+research.+Planets&rft.au=Bagenal%2C+Fran&rft.au=Wilson%2C+Robert+J.&rft.au=Siler%2C+Scott&rft.au=Paterson%2C+William+R.&rft.date=2016-05-01&rft.issn=2169-9097&rft.eissn=2169-9100&rft.volume=121&rft.issue=5&rft.spage=871&rft.epage=894&rft_id=info:doi/10.1002%2F2016JE005009&rft.externalDBID=10.1002%252F2016JE005009&rft.externalDocID=JGRE20529
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-9097&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-9097&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-9097&client=summon