Isolation and characterization of three bacteriophages infecting Erwinia amylovora and their potential as biological control agent
Background Fire Blight, incited by Erwinia amylovora , is one of the most damaging pear and apple diseases in the world. Fire blight was introduced to Egypt in the 1960 and threatens the Egypt’s costs for pear industry. Currently, Phage therapy is considered to be secured biological method for contr...
Saved in:
Published in: | Egyptian journal of biological pest control Vol. 33; no. 1; pp. 60 - 15 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01-12-2023
Springer Nature B.V SpringerOpen |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background
Fire Blight, incited by
Erwinia amylovora
, is one of the most damaging pear and apple diseases in the world. Fire blight was introduced to Egypt in the 1960 and threatens the Egypt’s costs for pear industry. Currently, Phage therapy is considered to be secured biological method for controlling plant bacterial diseases. This investigation aimed to isolate and identify molecularly for bacteria causing fire bright disease. As well as isolation and identification bacteriophages via spot and plaque assay techniques from pear fire blight lesions and soil. On the other hand, bacteriophages were identified based on plaque morphology, virion morphology, physical characters, profile of DNA restriction and protein.
Results
Pathogenicity test revealed that healthy seedlings and pear fruits were responsive to fire blight
E. amylovora
. Considering the relatively wide host range and greatest protein and genetic variability, using restriction enzyme pattern, the three diversity phage isolates named, EAP1, EAP2 and EAP3 showed a lack of diversity out of five were fatherly characterized. The phages confirmed the close relation of EAP1, EAP2 to Siphoviridae (hexagonal head and long flexible non-contractile tail) and EAP3 to Myoviridae (icosahedral head and contractile tail). The phages retained higher lytic competence of 90.4; 92.68 and 95.25% for EAP1, EAP2 and EAP3, respectively. The phages were stable at strong alkaline (pH 10) 2% salt solution conditions and UV spectra. While EAP3 phage revealed the hexagonal head and very short tail that belongs to Myoviridae family. Bacteriophages were characterized by digestion of the phage DNA with three restriction endonucleases and were placed into three groups based on the patterns. Bacteriophages were 9 used for reducing bacterial infection populations and severity on pear. In a bioassay, the biocontrol of
E. amylovora
was evaluated using disks of immature pear fruit. On the pear disk surface, bacterial exudate was considerably suppressed by all phage isolates. According to measurements of the bacterial population still present on the disk surface, phage therapy could reduce it by up to 97%. Bacteriophages reduced pear fire blight disease severity on pear fruit trails.
Conclusion
The results indicated that bacteriophage isolates may demonstrate variable reactivity against
E. amylovora
. Bacteriophages reduced pear fire blight disease severity on pear fruit trials. The results indicated that bacteriophage isolates may demonstrate variable reactivity against
E
.
amylovora
. |
---|---|
ISSN: | 2536-9342 1110-1768 2536-9342 |
DOI: | 10.1186/s41938-023-00689-w |