Combined zero-valent iron and fenton processes for the treatment of Brazilian TNT industry wastewater

The environmental impact caused by the production of explosives made from nitroaromatic compounds such as 2,4,6-trinitrotoluene (TNT) is currently a major concern, mainly due to their toxic nature, a fact that makes these compounds highly harmful. This work evaluated a continual system treatment rea...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hazardous materials Vol. 165; no. 1; pp. 1224 - 1228
Main Authors: Barreto-Rodrigues, Marcio, Silva, Flávio T., Paiva, Teresa C.B.
Format: Journal Article
Language:English
Published: Kidlington Elsevier B.V 15-06-2009
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The environmental impact caused by the production of explosives made from nitroaromatic compounds such as 2,4,6-trinitrotoluene (TNT) is currently a major concern, mainly due to their toxic nature, a fact that makes these compounds highly harmful. This work evaluated a continual system treatment reactor (CSTR) consisting of column zero-valent iron and a system to promote a fenton reaction in order to create possible definitive routines for treating effluents originating from the TNT production process. The spectrophotometric results demonstrated that this combination of processes was highly efficient in promoting the removal of all the absorbed species at 290 nm and the visible region of the specter. The results also revealed that the combination of treatments was significantly efficient in terms of correcting the effluent's main parameters of relevance, mainly COD (95.5% reduction) and TNT concentration, whose total was converted into nitrous and phenolic compounds and, additionally, the acute toxicity was also significantly reduced (95%). These results indicate that the strategy can serve as an efficient option for effluent treatment, for release into the receiving body, or eventually for use as industrial reuse water.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0304-3894
1873-3336
DOI:10.1016/j.jhazmat.2008.09.120