Epileptic tolerance is associated with enduring neuroprotection and uncoupling of the relationship between CA3 damage, neuropeptide Y rearrangement and spontaneous seizures following intra-amygdala kainic acid-induced status epilepticus in mice

Abstract Brief, non-harmful seizures can activate endogenous protective programmes which render the brain resistant to damage caused by prolonged seizure episodes. Whether protection in epileptic tolerance is long-lasting or influences the subsequent development of epilepsy is uncertain. Presently,...

Full description

Saved in:
Bibliographic Details
Published in:Neuroscience Vol. 171; no. 2; pp. 556 - 565
Main Authors: Jimenez-Mateos, E.M, Mouri, G, Conroy, R.M, Henshall, D.C
Format: Journal Article
Language:English
Published: Amsterdam Elsevier Ltd 01-12-2010
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Brief, non-harmful seizures can activate endogenous protective programmes which render the brain resistant to damage caused by prolonged seizure episodes. Whether protection in epileptic tolerance is long-lasting or influences the subsequent development of epilepsy is uncertain. Presently, we investigated the relationship between hippocampal pathology, neuropeptide Y rearrangement and spontaneous seizures in sham- and seizure-preconditioned mice after status epilepticus induced by intra-amygdala kainate. Seizure-induced neuronal death at 24 h was significantly reduced in the ipsilateral hippocampal CA3 and hilus of tolerance mice compared to sham-preconditioned animals subject to status epilepticus. Damage to the CA3-hilus remained reduced in tolerance mice 21 days post-status. In sham-preconditioned mice subject to status epilepticus correlative statistics showed there was a strong inverse relationship between CA3, but not hilar, neuron counts and the number of spontaneous seizures. A strong positive association was also found between neuropeptide Y score and spontaneous seizure count in these mice. In contrast, there was no significant association between spontaneous seizure count and CA3 neuron loss or neuropeptide Y rearrangement in the tolerance mice. These data show that tolerance-conferred neuroprotection is long-lasting and that tolerance disrupts the normal association between CA3 damage, synaptic rearrangement and occurrence of spontaneous seizures in this model
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0306-4522
1873-7544
DOI:10.1016/j.neuroscience.2010.09.003