The Arg451Cys-Neuroligin-3 Mutation Associated with Autism Reveals a Defect in Protein Processing
The neuroligins are a family of postsynaptic transmembrane proteins that associate with presynaptic partners, the beta-neurexins. Neurexins and neuroligins play a critical role in initiating formation and differentiation of synaptic junctions. A recent study reported that a mutation of neuroligin-3...
Saved in:
Published in: | The Journal of neuroscience Vol. 24; no. 20; pp. 4889 - 4893 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Soc Neuroscience
19-05-2004
Society for Neuroscience |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The neuroligins are a family of postsynaptic transmembrane proteins that associate with presynaptic partners, the beta-neurexins. Neurexins and neuroligins play a critical role in initiating formation and differentiation of synaptic junctions. A recent study reported that a mutation of neuroligin-3 (NL3), an X-linked gene, was found in siblings with autistic spectrum disorder in which two affected brothers had a point mutation that substituted a Cys for Arg451. To characterize the mutation at the biochemical level, we analyzed expression and activity of the mutated protein. Mass spectrometry comparison of the disulfide bonding pattern between the native and the mutated proteins indicates the absence of aberrant disulfide bonding, suggesting that the secondary structure of the mutated protein is conserved. However, the mutation separately affects protein expression and activity. The Cys mutation causes defective neuroligin trafficking, leading to retention of the protein in the endoplasmic reticulum. This, in turn, decreases the delivery of NL3 to the cell surface. Also, the small fraction of protein that reaches the cell membrane lacks or has markedly diminished beta-neurexin-1 (NX1beta) binding activity. Other substitutions for Arg451 allow for normal cellular expression but diminished affinity for NX1beta. Our findings reveal a cellular phenotype and loss of function for a congenital mutation associated with autistic spectrum disorders. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0270-6474 1529-2401 |
DOI: | 10.1523/JNEUROSCI.0468-04.2004 |