Stochastic surprisal: An inferential measurement of free energy in neural networks

This paper conjectures and validates a framework that allows for action during inference in supervised neural networks. Supervised neural networks are constructed with the objective to maximize their performance metric in any given task. This is done by reducing free energy and its associated surpri...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in neuroscience Vol. 17; p. 926418
Main Authors: Prabhushankar, Mohit, AlRegib, Ghassan
Format: Journal Article
Language:English
Published: Switzerland Frontiers Research Foundation 14-03-2023
Frontiers Media S.A
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper conjectures and validates a framework that allows for action during inference in supervised neural networks. Supervised neural networks are constructed with the objective to maximize their performance metric in any given task. This is done by reducing free energy and its associated surprisal during training. However, the bottom-up inference nature of supervised networks is a passive process that renders them fallible to noise. In this paper, we provide a thorough background of supervised neural networks, both generative and discriminative, and discuss their functionality from the perspective of free energy principle. We then provide a framework for introducing action during inference. We introduce a new measurement called stochastic surprisal that is a function of the network, the input, and any possible action. This action can be any one of the outputs that the neural network has learnt, thereby lending to the measurement. Stochastic surprisal is validated on two applications: Image Quality Assessment and Recognition under noisy conditions. We show that, while noise characteristics are ignored to make robust recognition, they are analyzed to estimate image quality scores. We apply stochastic surprisal on two applications, three datasets, and as a plug-in on 12 networks. In all, it provides a statistically significant increase among all measures. We conclude by discussing the implications of the proposed stochastic surprisal in other areas of cognitive psychology including expectancy-mismatch and abductive reasoning.
AbstractList This paper conjectures and validates a framework that allows for action during inference in supervised neural networks. Supervised neural networks are constructed with the objective to maximize their performance metric in any given task. This is done by reducing free-energy and its associated surprisal during training. However, the bottom-up inference nature of supervised networks is a passive process that renders them fallible to noise. In this paper, we provide a thorough background of supervised neural networks, both generative and discriminative, and discuss their functionality from the perspective of free-energy principle. We then provide a framework for introducing action during inference. We introduce a new measurement called stochastic surprisal that is a function of the network, the input, and any possible action. This action can be any one of the outputs that the neural network has learnt, thereby lending stochasticity to the measurement. Stochastic surprisal is validated on two applications: Image Quality Assessment and Recognition under noisy conditions. We show that, while noise characteristics are ignored to make robust recognition, they are analyzed to estimate image quality scores. We apply stochastic surprisal on two applications, three datasets, and as a plug-in on twelve networks. In all, it provides a statistically significant increase among all measures. We conclude by discussing the implications of the proposed stochastic surprisal in other areas of cognitive psychology including expectancy-mismatch and abductive reasoning.
This paper conjectures and validates a framework that allows for action during inference in supervised neural networks. Supervised neural networks are constructed with the objective to maximize their performance metric in any given task. This is done by reducing free energy and its associated surprisal during training. However, the bottom-up inference nature of supervised networks is a passive process that renders them fallible to noise. In this paper, we provide a thorough background of supervised neural networks, both generative and discriminative, and discuss their functionality from the perspective of free energy principle. We then provide a framework for introducing action during inference. We introduce a new measurement called stochastic surprisal that is a function of the network, the input, and any possible action. This action can be any one of the outputs that the neural network has learnt, thereby lending stochasticity to the measurement. Stochastic surprisal is validated on two applications: Image Quality Assessment and Recognition under noisy conditions. We show that, while noise characteristics are ignored to make robust recognition, they are analyzed to estimate image quality scores. We apply stochastic surprisal on two applications, three datasets, and as a plug-in on 12 networks. In all, it provides a statistically significant increase among all measures. We conclude by discussing the implications of the proposed stochastic surprisal in other areas of cognitive psychology including expectancy-mismatch and abductive reasoning.
This paper conjectures and validates a framework that allows for action during inference in supervised neural networks. Supervised neural networks are constructed with the objective to maximize their performance metric in any given task. This is done by reducing free energy and its associated surprisal during training. However, the bottom-up inference nature of supervised networks is a passive process that renders them fallible to noise. In this paper, we provide a thorough background of supervised neural networks, both generative and discriminative, and discuss their functionality from the perspective of free energy principle. We then provide a framework for introducing action during inference. We introduce a new measurement called stochastic surprisal that is a function of the network, the input, and any possible action. This action can be any one of the outputs that the neural network has learnt, thereby lending to the measurement. Stochastic surprisal is validated on two applications: Image Quality Assessment and Recognition under noisy conditions. We show that, while noise characteristics are ignored to make robust recognition, they are analyzed to estimate image quality scores. We apply stochastic surprisal on two applications, three datasets, and as a plug-in on 12 networks. In all, it provides a statistically significant increase among all measures. We conclude by discussing the implications of the proposed stochastic surprisal in other areas of cognitive psychology including expectancy-mismatch and abductive reasoning.
This paper conjectures and validates a framework that allows for action during inference in supervised neural networks. Supervised neural networks are constructed with the objective to maximize their performance metric in any given task. This is done by reducing free energy and its associated surprisal during training. However, the bottom-up inference nature of supervised networks is a passive process that renders them fallible to noise. In this paper, we provide a thorough background of supervised neural networks, both generative and discriminative, and discuss their functionality from the perspective of free energy principle. We then provide a framework for introducing action during inference. We introduce a new measurement called stochastic surprisal that is a function of the network, the input, and any possible action. This action can be any one of the outputs that the neural network has learnt, thereby lending stochasticity to the measurement. Stochastic surprisal is validated on two applications: Image Quality Assessment and Recognition under noisy conditions. We show that, while noise characteristics are ignored to make robust recognition, they are analyzed to estimate image quality scores. We apply stochastic surprisal on two applications, three datasets, and as a plug-in on 12 networks. In all, it provides a statistically significant increase among all measures. We conclude by discussing the implications of the proposed stochastic surprisal in other areas of cognitive psychology including expectancy-mismatch and abductive reasoning.
Author Prabhushankar, Mohit
AlRegib, Ghassan
AuthorAffiliation Omni Lab for Intelligent Visual Engineering and Science (OLIVES), Georgia Institute of Technology, Electrical and Computer Engineering , Atlanta, GA , United States
AuthorAffiliation_xml – name: Omni Lab for Intelligent Visual Engineering and Science (OLIVES), Georgia Institute of Technology, Electrical and Computer Engineering , Atlanta, GA , United States
Author_xml – sequence: 1
  givenname: Mohit
  surname: Prabhushankar
  fullname: Prabhushankar, Mohit
  organization: Omni Lab for Intelligent Visual Engineering and Science (OLIVES), Georgia Institute of Technology, Electrical and Computer Engineering, Atlanta, GA, United States
– sequence: 2
  givenname: Ghassan
  surname: AlRegib
  fullname: AlRegib, Ghassan
  organization: Omni Lab for Intelligent Visual Engineering and Science (OLIVES), Georgia Institute of Technology, Electrical and Computer Engineering, Atlanta, GA, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36998731$$D View this record in MEDLINE/PubMed
BookMark eNpdkUlvFDEQhS0URBb4AVxQS1y4zGC73F64oChiiRQJCXLgZrnd5UkP3Xawu0H593gyYUSQD17qq6d6fqfkKKaIhLxkdA2gzdsQh1jWnHJYGy4F00_ICZOSr0QL348OZ6GPyWkpW0ol14I_I8cgjdEK2An5-m1O_saVefBNWfJtHoob3zXnsRliwIxxHtzYTOhqEad6bVJoQkZsMGLe3FWsibjkCkWcf6f8ozwnT4MbC7542M_I9ccP1xefV1dfPl1enF-tvDBiXnWs0yjRBwXcMwi0hQBaeaQ9Z0oF2rWITocWEJRgHTWtNqbnSiGtHXBGLveyfXJbWwefXL6zyQ32_iHljXW52hrRSnDeC6ir6wXzvFMBO9NJ5oTsHO-r1vu91u3STdj76rM6eiT6uBKHG7tJvyyjVABvVVV486CQ088Fy2ynoXgcRxcxLcVyZcBoaNUOff0fuk1LjvWrKqUlMKqFrhTbUz6nUjKGwzSM2l369j59u0vf7tOvPa_-tXHo-Bs3_AG7w69Q
CitedBy_id crossref_primary_10_1190_geo2022_0594_1
Cites_doi 10.1109/TIP.2009.2025923
10.1073/pnas.1619487114
10.1016/j.image.2016.08.008
10.1109/ICIP40778.2020.9191186
10.1109/ICIP.2012.6467149
10.1109/TIP.2011.2109730
10.1155/2013/905685
10.5201/ipol.2011.bcm_nlm
10.1146/annurev.psych.58.110405.085632
10.3997/2214-4609.201800737
10.1109/CVPR.2009.5206848
10.1109/MSP.2022.3163871
10.1109/CVPR.2016.90
10.3389/conf.fnhum
10.1007/BF00849080
10.1109/TCSVT.2019.2900472
10.1016/j.tics.2009.06.003
10.1109/ICMLA.2018.00028
10.1109/IJCNN.1992.227311
10.1016/j.image.2014.10.009
10.1109/ICCV.2017.74
10.3389/fncom.2020.00030
10.1109/LSP.2010.2043888
10.1109/TMM.2017.2729020
10.1109/TIP.2011.2161092
10.1109/TIP.2012.2191563
10.1109/TIP.2023.3234498
10.1016/j.tics.2009.04.005
10.1109/ICIP.2015.7351087
10.1109/TIP.2012.2214050
10.1016/j.neunet.2019.01.012
10.1109/TIP.2017.2760518
10.1111/1467-9280.00488
10.1109/ICIP42928.2021.9506393
10.1109/ICME.2016.7552874
10.1109/TIP.2010.2092435
10.1109/ACSSC.2003.1292216
10.1109/ACSSC.2012.6489321
10.1016/j.neubiorev.2021.02.003
10.1109/TIP.2003.819861
10.1007/978-3-030-58589-1_13
10.1016/j.image.2018.09.005
10.1109/ICIP40778.2020.9190927
10.1109/TIP.2021.3064195
10.2352/ISSN.2470-1173.2017.12.IQSP-223
10.1109/TMM.2014.2373812
10.1561/9781680836233
10.1109/ICIP.2017.8296841
10.1016/j.jmp.2017.09.004
10.1109/ICIP.2019.8803228
10.1109/ICIP46576.2022.9897514
10.1109/LSP.2016.2601119
10.3758/s13414-016-1102-y
10.1109/ICIP.2018.8451220
10.1109/CVPR.2007.383267
10.1016/j.actpsy.2010.12.002
10.1109/TPAMI.2013.108
10.1016/j.neucom.2021.04.112
10.1190/segam2018-2996501.1
10.1371/journal.pcbi.1008420
ContentType Journal Article
Copyright Copyright © 2023 Prabhushankar and AlRegib.
2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2023 Prabhushankar and AlRegib. 2023 Prabhushankar and AlRegib
Copyright_xml – notice: Copyright © 2023 Prabhushankar and AlRegib.
– notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2023 Prabhushankar and AlRegib. 2023 Prabhushankar and AlRegib
DBID NPM
AAYXX
CITATION
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fnins.2023.926418
DatabaseName PubMed
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Biological Sciences
ProQuest Science Journals
Biological Science Database
Publicly Available Content Database (Proquest) (PQ_SDU_P3)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

PubMed

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-453X
EndPage 926418
ExternalDocumentID oai_doaj_org_article_63acc43434bd41c2b7feb9b61a46ba2d
10_3389_fnins_2023_926418
36998731
Genre Journal Article
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
ABUWG
ACGFO
ACGFS
ACXDI
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
C1A
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EBS
EJD
EMOBN
F5P
FRP
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
IAO
IEA
IHR
ISR
KQ8
LK8
M2P
M48
M7P
M~E
NPM
O5R
O5S
OK1
P2P
PGMZT
PIMPY
PQQKQ
PROAC
RNS
RPM
W2D
AAYXX
CITATION
3V.
7XB
8FK
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c494t-b1b8e6ecf732c13f053f387ce0d2177f0b5eea8f53e3741b095899d277e032c3
IEDL.DBID RPM
ISSN 1662-4548
1662-453X
IngestDate Tue Oct 22 15:11:54 EDT 2024
Tue Sep 17 21:35:42 EDT 2024
Sat Oct 05 04:28:38 EDT 2024
Thu Oct 10 20:32:44 EDT 2024
Fri Nov 22 06:05:50 EST 2024
Sat Sep 28 08:19:01 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords human visual saliency
free-energy principle
neural networks
robust recognition
image quality assessment
abductive reasoning
active inference
stochastic surprisal
Language English
License Copyright © 2023 Prabhushankar and AlRegib.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-b1b8e6ecf732c13f053f387ce0d2177f0b5eea8f53e3741b095899d277e032c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reviewed by: Alexandra Psarrou, University of Westminster, United Kingdom; Yutao Liu, Tsinghua University, China
Edited by: John Jarvis, University of Westminster, United Kingdom
This article was submitted to Perception Science, a section of the journal Frontiers in Neuroscience
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10043257/
PMID 36998731
PQID 2786310848
PQPubID 4424402
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_63acc43434bd41c2b7feb9b61a46ba2d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10043257
proquest_miscellaneous_2793983577
proquest_journals_2786310848
crossref_primary_10_3389_fnins_2023_926418
pubmed_primary_36998731
PublicationCentury 2000
PublicationDate 2023-03-14
PublicationDateYYYYMMDD 2023-03-14
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-14
  day: 14
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neuroscience
PublicationTitleAlternate Front Neurosci
PublicationYear 2023
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Summerfield (B67) 2009; 13
Hipólito (B25) 2021; 125
Hinton (B24) 1993
Horstmann (B28) 2016; 78
Demekas (B10) 2020
Becker (B3) 2011; 136
Hou (B29) 2007
Mao (B42) 2016
Gu (B20) 2014; 17
Zhang (B81) 2012
Ma (B41) 2021; 30
Geirhos (B16)
Peirce (B49) 1931
Hendrycks (B22) 2019
Bosse (B5) 2017; 27
Ng (B46) 2011; 72
Prabhushankar (B53)
Jayaraman (B31) 2012
Hoi (B26) 2021; 459
Shafiq (B66) 2018
Prabhushankar (B55) 2022
Chen (B9) 2020
Prabhushankar (B56) 2018
Geirhos (B15)
(B72) 2019; 48
Friston (B12) 2009; 13
Prabhushankar (B58)
Friston (B13) 2019
Chandler (B8) 2013
Kwon (B37) 2020
Parisi (B47) 2019; 113
Temel (B71); 48
Geisler (B17) 2008; 59
Vasiljevic (B76) 2016
Hendrycks (B23) 2019
Settles (B64) 2007
Gottwald (B19) 2020
Moorthy (B44) 2010; 17
Buades (B6) 2011; 1
Temel (B73) 2017
Wang (B77) 2004; 13
Sampat (B61) 2009; 18
AlRegib (B1) 2022
Logan (B40) 2022
Krizhevsky (B35) 2012
Selvaraju (B63) 2017
Temel (B75) 2016; 23
Benkert (B4) 2022
Temel (B70)
Kingma (B33) 2019
Prabhushankar (B59); 2017
(B30) 2012
Wang (B78) 2011; 20
Paul (B48) 1993; 7
Buckley (B7) 2017; 81
Shafiq (B65) 2018
Deng (B11) 2009
Sun (B68) 2020
Zhai (B80) 2011; 21
Goodfellow (B18) 2014
Sebastian (B62) 2017; 114
Mittal (B43) 2012; 21
Kingma (B32) 2013
Ponomarenko (B51) 2015; 30
Horstmann (B27) 2002; 13
Liu (B39) 2017; 20
Krebs (B34) 2012
Gedeon (B14) 1992
Ponomarenko (B50) 2011
Prabhushankar (B57) 2020
He (B21) 2016
Zhang (B82) 2011; 20
Athar (B2) 2023
Kwon (B36) 2019
Liu (B38) 2019; 30
Prabhushankar (B54) 2022
Temel (B74) 2018
Prabhushankar (B52)
Temel (B69) 2015
Wang (B79) 2003
Murray (B45) 2013; 35
Saad (B60) 2012; 21
References_xml – volume: 18
  start-page: 2385
  year: 2009
  ident: B61
  article-title: Complex wavelet structural similarity: a new image similarity index
  publication-title: IEEE Trans. Image Proc
  doi: 10.1109/TIP.2009.2025923
  contributor:
    fullname: Sampat
– ident: B15
  article-title: ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness,
  publication-title: International Conference on Learning Representations
  contributor:
    fullname: Geirhos
– volume: 114
  start-page: E5731
  year: 2017
  ident: B62
  article-title: Constrained sampling experiments reveal principles of detection in natural scenes
  publication-title: Proc. Natl. Acad. Sci. U.S.A
  doi: 10.1073/pnas.1619487114
  contributor:
    fullname: Sebastian
– volume: 48
  start-page: 92
  ident: B71
  article-title: CSV: image quality assessment based on color, structure, and visual system
  publication-title: Signal Process
  doi: 10.1016/j.image.2016.08.008
  contributor:
    fullname: Temel
– year: 2020
  ident: B68
  article-title: Implicit saliency in deep neural networks,
  publication-title: 2020 IEEE International Conference on Image Processing (ICIP)
  doi: 10.1109/ICIP40778.2020.9191186
  contributor:
    fullname: Sun
– year: 2012
  ident: B81
  article-title: SR-SIM: a fast and high performance IQA index based on spectral residual,
  publication-title: 2012 19th IEEE International Conference on Image Processing
  doi: 10.1109/ICIP.2012.6467149
  contributor:
    fullname: Zhang
– volume: 20
  start-page: 2378
  year: 2011
  ident: B82
  article-title: FSIM: a feature similarity index for image quality assessment
  publication-title: IEEE Trans. Image Process
  doi: 10.1109/TIP.2011.2109730
  contributor:
    fullname: Zhang
– year: 2013
  ident: B8
  article-title: Seven challenges in image quality assessment: past, present, and future research
  publication-title: ISRN Signal Process
  doi: 10.1155/2013/905685
  contributor:
    fullname: Chandler
– volume: 1
  start-page: 208
  year: 2011
  ident: B6
  article-title: Non-local means denoising
  publication-title: Image Process. On Line
  doi: 10.5201/ipol.2011.bcm_nlm
  contributor:
    fullname: Buades
– year: 2022
  ident: B55
  article-title: OLIVES dataset: Ophthalmic labels for investigating visual eye semantics,
  publication-title: Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track
  contributor:
    fullname: Prabhushankar
– volume: 59
  start-page: 167
  year: 2008
  ident: B17
  article-title: Visual perception and the statistical properties of natural scenes
  publication-title: Annu. Rev. Psychol
  doi: 10.1146/annurev.psych.58.110405.085632
  contributor:
    fullname: Geisler
– start-page: 1
  year: 2018
  ident: B65
  article-title: Leveraging sparse features learned from natural images for seismic understanding,
  publication-title: 80th EAGE Conference and Exhibition 2018
  doi: 10.3997/2214-4609.201800737
  contributor:
    fullname: Shafiq
– year: 2009
  ident: B11
  article-title: Imagenet: a large-scale hierarchical image database,
  publication-title: 2009 IEEE Conference on Computer Vision and Pattern Recognition
  doi: 10.1109/CVPR.2009.5206848
  contributor:
    fullname: Deng
– start-page: 59
  year: 2022
  ident: B1
  article-title: Explanatory paradigms in neural networks: Towards relevant and contextual explanations,
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/MSP.2022.3163871
  contributor:
    fullname: AlRegib
– year: 2019
  ident: B22
  article-title: Benchmarking neural network robustness to common corruptions and perturbations,
  publication-title: International Conference on Learning Representations
  contributor:
    fullname: Hendrycks
– year: 2016
  ident: B21
  article-title: Deep residual learning for image recognition,
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  doi: 10.1109/CVPR.2016.90
  contributor:
    fullname: He
– year: 2012
  ident: B34
  article-title: Stimulus conflict and stimulus novelty trigger saliency signals in locus coeruleus and anterior cingulate cortex,
  publication-title: Frontiers in Human Neuroscience Conference Abstract: Belgian Brain Council
  doi: 10.3389/conf.fnhum
  contributor:
    fullname: Krebs
– volume: 72
  start-page: 1
  year: 2011
  ident: B46
  article-title: Sparse autoencoder
  publication-title: CS294A Lect. Notes
  contributor:
    fullname: Ng
– volume: 7
  start-page: 109
  year: 1993
  ident: B48
  article-title: Approaches to abductive reasoning: an overview
  publication-title: Artif. Intell. Rev
  doi: 10.1007/BF00849080
  contributor:
    fullname: Paul
– volume: 30
  start-page: 929
  year: 2019
  ident: B38
  article-title: Unsupervised blind image quality evaluation via statistical measurements of structure, naturalness, and perception
  publication-title: IEEE Trans. Circuits Syst. Video Technol
  doi: 10.1109/TCSVT.2019.2900472
  contributor:
    fullname: Liu
– volume: 13
  start-page: 403
  year: 2009
  ident: B67
  article-title: Expectation (and attention) in visual cognition
  publication-title: Trends Cogn. Sci
  doi: 10.1016/j.tics.2009.06.003
  contributor:
    fullname: Summerfield
– year: 2017
  ident: B73
  article-title: Cure-TSR: challenging unreal and real environments for traffic sign recognition
  publication-title: arXiv [Preprint] arXiv:
  doi: 10.1109/ICMLA.2018.00028
  contributor:
    fullname: Temel
– year: 1992
  ident: B14
  article-title: Progressive image compression,
  doi: 10.1109/IJCNN.1992.227311
  contributor:
    fullname: Gedeon
– volume: 30
  start-page: 57
  year: 2015
  ident: B51
  article-title: Image database tid2013: Peculiarities, results and perspectives
  publication-title: Signal Process
  doi: 10.1016/j.image.2014.10.009
  contributor:
    fullname: Ponomarenko
– year: 2017
  ident: B63
  article-title: Grad-cam: visual explanations from deep networks via gradient-based localization,
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
  doi: 10.1109/ICCV.2017.74
  contributor:
    fullname: Selvaraju
– year: 2020
  ident: B10
  article-title: An investigation of the free energy principle for emotion recognition
  publication-title: Front. Comput. Neurosci
  doi: 10.3389/fncom.2020.00030
  contributor:
    fullname: Demekas
– volume: 17
  start-page: 513
  year: 2010
  ident: B44
  article-title: A two-step framework for constructing blind image quality indices
  publication-title: IEEE Signal Proc. Lett
  doi: 10.1109/LSP.2010.2043888
  contributor:
    fullname: Moorthy
– volume: 20
  start-page: 379
  year: 2017
  ident: B39
  article-title: Reduced-reference image quality assessment in free-energy principle and sparse representation
  publication-title: IEEE Trans. Multim
  doi: 10.1109/TMM.2017.2729020
  contributor:
    fullname: Liu
– volume: 21
  start-page: 41
  year: 2011
  ident: B80
  article-title: A psychovisual quality metric in free-energy principle
  publication-title: IEEE Trans. Image Process
  doi: 10.1109/TIP.2011.2161092
  contributor:
    fullname: Zhai
– year: 2016
  ident: B76
  article-title: Examining the impact of blur on recognition by convolutional networks
  publication-title: arXiv [Preprint] arXiv:
  contributor:
    fullname: Vasiljevic
– volume: 21
  start-page: 3339
  year: 2012
  ident: B60
  article-title: Blind image quality assessment: a natural scene statistics approach in the DCT domain
  publication-title: IEEE Trans. Image Proc
  doi: 10.1109/TIP.2012.2191563
  contributor:
    fullname: Saad
– year: 2023
  ident: B2
  article-title: Degraded reference image quality assessment,
  publication-title: IEEE Transactions in Image Processing
  doi: 10.1109/TIP.2023.3234498
  contributor:
    fullname: Athar
– year: 1993
  ident: B24
  article-title: Autoencoders, minimum description length and Helmholtz free energy,
  publication-title: Advances in Neural Information Processing Systems
  contributor:
    fullname: Hinton
– volume: 13
  start-page: 293
  year: 2009
  ident: B12
  article-title: The free-energy principle: a rough guide to the brain?
  publication-title: Trends Cogn. Sci
  doi: 10.1016/j.tics.2009.04.005
  contributor:
    fullname: Friston
– year: 2015
  ident: B69
  article-title: PerSIM: multi-resolution image quality assessment in the perceptually uniform color domain,
  publication-title: IEEE International Conference on Image Processing
  doi: 10.1109/ICIP.2015.7351087
  contributor:
    fullname: Temel
– volume: 21
  start-page: 4695
  year: 2012
  ident: B43
  article-title: No-reference image quality assessment in the spatial domain
  publication-title: IEEE Trans. Image Proc
  doi: 10.1109/TIP.2012.2214050
  contributor:
    fullname: Mittal
– year: 2016
  ident: B42
  article-title: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections,
  publication-title: Advances in Neural Information Processing Systems
  contributor:
    fullname: Mao
– volume: 113
  start-page: 54
  year: 2019
  ident: B47
  article-title: Continual lifelong learning with neural networks: a review
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2019.01.012
  contributor:
    fullname: Parisi
– year: 2022
  ident: B54
  article-title: Introspective Learning: A two-stage approach for inference in neural networks,
  publication-title: Advances in Neural Information Processing Systems
  contributor:
    fullname: Prabhushankar
– year: 1931
  ident: B49
  publication-title: Collected Papers of Charles Sanders Peirce
  contributor:
    fullname: Peirce
– volume: 27
  start-page: 206
  year: 2017
  ident: B5
  article-title: Deep neural networks for no-reference and full-reference image quality assessment
  publication-title: IEEE Trans. Image Process
  doi: 10.1109/TIP.2017.2760518
  contributor:
    fullname: Bosse
– volume: 13
  start-page: 499
  year: 2002
  ident: B27
  article-title: Evidence for attentional capture by a surprising color singleton in visual search
  publication-title: Psychol. Sci
  doi: 10.1111/1467-9280.00488
  contributor:
    fullname: Horstmann
– ident: B53
  article-title: Extracting causal visual features for limited label classification,
  publication-title: 2021 IEEE International Conference on Image Processing (ICIP)
  doi: 10.1109/ICIP42928.2021.9506393
  contributor:
    fullname: Prabhushankar
– ident: B70
  article-title: Bless: bio-inspired low-level spatiochromatic similarity assisted image quality assessment,
  publication-title: 2016 IEEE International Conference on Multimedia and Expo (ICME)
  doi: 10.1109/ICME.2016.7552874
  contributor:
    fullname: Temel
– volume: 20
  start-page: 1185
  year: 2011
  ident: B78
  article-title: Information content weighting for perceptual image quality assessment
  publication-title: IEEE Trans. Image Process
  doi: 10.1109/TIP.2010.2092435
  contributor:
    fullname: Wang
– year: 2019
  ident: B23
  article-title: AugMix: A simple data processing method to improve robustness and uncertainty,
  publication-title: International Conference on Learning Representations
  contributor:
    fullname: Hendrycks
– year: 2003
  ident: B79
  article-title: Multiscale structural similarity for image quality assessment,
  publication-title: Asilomar Conference on Signals, Systems, and Computers, Vol. 2
  doi: 10.1109/ACSSC.2003.1292216
  contributor:
    fullname: Wang
– year: 2012
  ident: B31
  article-title: Objective quality assessment of multiply distorted images,
  publication-title: Asilomar Conference on Signals, Systems, and Computers
  doi: 10.1109/ACSSC.2012.6489321
  contributor:
    fullname: Jayaraman
– start-page: 305
  year: 2011
  ident: B50
  article-title: Modified image visual quality metrics for contrast change and mean shift accounting,
  publication-title: Proceedings of CADSM
  contributor:
    fullname: Ponomarenko
– year: 2020
  ident: B9
  article-title: A simple framework for contrastive learning of visual representations
  contributor:
    fullname: Chen
– volume: 125
  start-page: 88
  year: 2021
  ident: B25
  article-title: Markov blankets in the brain
  publication-title: Neurosci. Biobehav. Rev
  doi: 10.1016/j.neubiorev.2021.02.003
  contributor:
    fullname: Hipólito
– volume: 13
  start-page: 600
  year: 2004
  ident: B77
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process
  doi: 10.1109/TIP.2003.819861
  contributor:
    fullname: Wang
– start-page: 206
  year: 2020
  ident: B37
  article-title: Backpropagated gradient representations for anomaly detection,
  publication-title: European Conference on Computer Vision
  doi: 10.1007/978-3-030-58589-1_13
  contributor:
    fullname: Kwon
– volume: 48
  start-page: 92
  year: 2019
  ident: B72
  article-title: Perceptual image quality assessment through spectral analysis of error representations
  publication-title: Signal Process
  doi: 10.1016/j.image.2018.09.005
– start-page: 7538
  ident: B16
  article-title: Generalisation in humans and deep neural networks,
  publication-title: Advances in Neural Information Processing Systems
  contributor:
    fullname: Geirhos
– ident: B52
  article-title: Contrastive reasoning in neural networks
  publication-title: arXiv [Preprint] arXiv:
  doi: 10.1109/ICIP40778.2020.9190927
  contributor:
    fullname: Prabhushankar
– volume: 30
  start-page: 3650
  year: 2021
  ident: B41
  article-title: Blind image quality assessment with active inference
  publication-title: IEEE Trans. Image Process
  doi: 10.1109/TIP.2021.3064195
  contributor:
    fullname: Ma
– volume: 2017
  start-page: 30
  ident: B59
  article-title: Ms-unique: multi-model and sharpness-weighted unsupervised image quality estimation
  publication-title: Electron. Imaging
  doi: 10.2352/ISSN.2470-1173.2017.12.IQSP-223
  contributor:
    fullname: Prabhushankar
– year: 2013
  ident: B32
  article-title: Auto-encoding variational bayes
  publication-title: arXiv:1312.6114
  contributor:
    fullname: Kingma
– volume: 17
  start-page: 50
  year: 2014
  ident: B20
  article-title: Using free energy principle for blind image quality assessment
  publication-title: IEEE Trans. Multim
  doi: 10.1109/TMM.2014.2373812
  contributor:
    fullname: Gu
– year: 2019
  ident: B33
  article-title: An introduction to variational autoencoders
  publication-title: arXiv [Preprint] arXiv:
  doi: 10.1561/9781680836233
  contributor:
    fullname: Kingma
– year: 2019
  ident: B13
  article-title: A free energy principle for a particular physics
  publication-title: arXiv [Preprint] arXiv:
  contributor:
    fullname: Friston
– ident: B58
  article-title: Generating adaptive and robust filter sets using an unsupervised learning framework,
  publication-title: 2017 IEEE International Conference on Image Processing (ICIP)
  doi: 10.1109/ICIP.2017.8296841
  contributor:
    fullname: Prabhushankar
– volume: 81
  start-page: 55
  year: 2017
  ident: B7
  article-title: The free energy principle for action and perception: a mathematical review
  publication-title: J. Math. Psychol
  doi: 10.1016/j.jmp.2017.09.004
  contributor:
    fullname: Buckley
– year: 2019
  ident: B36
  article-title: Distorted representation space characterization through backpropagated gradients,
  publication-title: 2019 IEEE International Conference on Image Processing (ICIP)
  doi: 10.1109/ICIP.2019.8803228
  contributor:
    fullname: Kwon
– start-page: 3289
  year: 2020
  ident: B57
  article-title: Contrastive explanations in neural networks,
  publication-title: 2020 IEEE International Conference on Image Processing (ICIP)
  doi: 10.1109/ICIP40778.2020.9190927
  contributor:
    fullname: Prabhushankar
– year: 2022
  ident: B4
  article-title: Forgetful active learning with switch events: efficient sampling for out-of-distribution data,
  publication-title: 2022 IEEE International Conference on Image Processing (ICIP)
  doi: 10.1109/ICIP46576.2022.9897514
  contributor:
    fullname: Benkert
– volume: 23
  start-page: 1414
  year: 2016
  ident: B75
  article-title: UNIQUE: unsupervised image quality estimation
  publication-title: IEEE Signal Process. Lett
  doi: 10.1109/LSP.2016.2601119
  contributor:
    fullname: Temel
– volume: 78
  start-page: 1889
  year: 2016
  ident: B28
  article-title: Perceptual salience captures the eyes on a surprise trial
  publication-title: Attent. Percept. Psychophys
  doi: 10.3758/s13414-016-1102-y
  contributor:
    fullname: Horstmann
– year: 2018
  ident: B56
  article-title: Semantically interpretable and controllable filter sets,
  publication-title: 2018 25th IEEE International Conference on Image Processing (ICIP)
  doi: 10.1109/ICIP.2018.8451220
  contributor:
    fullname: Prabhushankar
– year: 2007
  ident: B29
  article-title: Saliency detection: a spectral residual approach,
  publication-title: 2007 IEEE Conference on Computer Vision and Pattern Recognition
  doi: 10.1109/CVPR.2007.383267
  contributor:
    fullname: Hou
– year: 2007
  ident: B64
  article-title: Multiple-instance active learning,
  publication-title: Advances in Neural Information Processing Systems
  contributor:
    fullname: Settles
– volume: 136
  start-page: 290
  year: 2011
  ident: B3
  article-title: Novelty and saliency in attentional capture by unannounced motion singletons
  publication-title: Acta Psychol
  doi: 10.1016/j.actpsy.2010.12.002
  contributor:
    fullname: Becker
– volume: 35
  start-page: 2810
  year: 2013
  ident: B45
  article-title: Low-level spatiochromatic grouping for saliency estimation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell
  doi: 10.1109/TPAMI.2013.108
  contributor:
    fullname: Murray
– volume: 459
  start-page: 249
  year: 2021
  ident: B26
  article-title: Online learning: a comprehensive survey
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.04.112
  contributor:
    fullname: Hoi
– start-page: 2076
  year: 2018
  ident: B66
  article-title: Towards understanding common features between natural and seismic images,
  publication-title: SEG Technical Program Expanded Abstracts 2018
  doi: 10.1190/segam2018-2996501.1
  contributor:
    fullname: Shafiq
– start-page: 137
  year: 2018
  ident: B74
  article-title: Cure-or: challenging unreal and real environments for object recognition,
  publication-title: 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)
  doi: 10.1109/ICMLA.2018.00028
  contributor:
    fullname: Temel
– year: 2012
  ident: B30
  publication-title: P. 1401: Methods, Metrics and Procedures for Statistical Evaluation, Qualification and Comparison of Objective Quality Prediction Models
– year: 2012
  ident: B35
  article-title: Imagenet classification with deep convolutional neural networks,
  publication-title: Advances in Neural Information Processing Systems, Vol. 25
  contributor:
    fullname: Krizhevsky
– year: 2014
  ident: B18
  article-title: Explaining and harnessing adversarial examples
  publication-title: arXiv [Preprint] arXiv:
  contributor:
    fullname: Goodfellow
– year: 2020
  ident: B19
  article-title: The two kinds of free energy and the bayesian revolution
  publication-title: PLoS Comput. Biol
  doi: 10.1371/journal.pcbi.1008420
  contributor:
    fullname: Gottwald
– year: 2022
  ident: B40
  article-title: Decal: deployable clinical active learning
  publication-title: arXiv [Preprint] arXiv:
  contributor:
    fullname: Logan
SSID ssj0062842
Score 2.3911831
Snippet This paper conjectures and validates a framework that allows for action during inference in supervised neural networks. Supervised neural networks are...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 926418
SubjectTerms Cognitive ability
Energy
Expectancy
Free energy
free-energy principle
human visual saliency
image quality assessment
Neural networks
Neuroscience
Quality control
robust recognition
Statistical analysis
stochastic surprisal
Stochasticity
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1BT1wQtBQCLTIS6gEpbZxJ4ri3LbTqiUPbA7fIdmx1pdZbdXcP_Htm7N2li5C4cI0dx3njjzf2-BngM81yPU18WDZ2bMsmeFvqIHVpWhxHaXRlAq93XF6r7z_6b-csk7O56otjwrI8cAbupEPjHB9_pMIa6WqrqDxtO2mazpp6TKNv1a2dqTwGdzTo1nkPk1wwfRLiNLI2d43HmhgA3_DxZBZKYv1_Y5h_Bko-mXkuXsHLFWUUk1zV1_DMx13Ym0Ryl-9_iiORgjjT6vgeXF0vZu7WsPiymBOGLKF7dyomUUzzyT7q0Hfi_vfCoJgFER69Fz4dAqRsgiUuKVPMAeLzN3BzcX7z9bJcXZtQukY3i9JK2_vOu6CwdhIDdbOAvXK-Gsn_UKGyrfemDy16JD5hiWSR0zXWSvmK3sB92Imz6N-BQEf8r3eIOJrGqdb2rvJkD6YRxDSqAr6sURwesjjGQE4FQz4kyAeGfMiQF3DGOG8ysq51ekDWHlbWHv5l7QIO1lYaVp2NPqKouUm-GKCAT5tk6ia892Giny05j0ZNbFOpAt5mo25qgh35nAplAf2Wubequp0Sp7dJilsmScNWvf8fP_cBXjBeHOEmmwPYWTwu_SE8n4_Lj6l1_wJeKgIc
  priority: 102
  providerName: Directory of Open Access Journals
Title Stochastic surprisal: An inferential measurement of free energy in neural networks
URI https://www.ncbi.nlm.nih.gov/pubmed/36998731
https://www.proquest.com/docview/2786310848
https://search.proquest.com/docview/2793983577
https://pubmed.ncbi.nlm.nih.gov/PMC10043257
https://doaj.org/article/63acc43434bd41c2b7feb9b61a46ba2d
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6xPXFB0PIItJWREAek7MZxEse9LX2oFxCiPXCLbMemK-061T4O_PvOOJulizj1Go8TazwTf2PPfAb4hKtcjQufSAvTlmnhnUmV5yrVpWhbrlWmPe13XN_I77_qi0uiyamGWpiYtG_NbBzmi3GY3cXcyvuFnQx5YpMf3855JJLDUH4EIwSHQ4ze_38r_OHGM86K6oEQkPdnmRiKqYkPs0Ac3bkYK0QCdNPHo9Uokvb_D2n-mzD5aAW6egkvttCRTfshvoJnLhzC0TRg2Lz4wz6zmMwZd8mP4OfNurN3mkiY2Qp1SVS68zM2DWzWV_ihY8_Z4u8GIes880vnmIvFgCjGiOoShUKfKL56DbdXl7fn1-n2-oTUFqpYp4ab2lXOeilyy4VHd_OiltZlLcYh0memdE7XvhROIK4wCLYw-GpzKV2GPcQbOAhdcO-ACYs4sLZCiFYXVpamtpkT2hKcQMSRJfBl0GJz35NkNBhckMqbqPKGVN70Kk_gK-l5J0j81vFBt_zdbGe5qfDtlope0YQKbnMj0YqUqbguKqPzNoHjYZaardPhRySaHacLAhL4uGtGd6EzEB1ctyEZJRSiTikTeNtP6m4kosLYUwqeQL033XtD3W9BC42U3INFvn961w_wnLRE-W28OIaD9XLjTmC0ajencaPgNFr5AytGAvk
link.rule.ids 230,315,729,782,786,866,887,2106,27933,27934,53800,53802
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RcoALBcojpYCREAek7MZxEifcltJqEW2F6B64RbZj05V2nWofB_49M85m6SJOvcaTxPLM2N_YM58B3uMqV-LCJ-JMN3mcOavjyvEqVrloGq6qRDna7xhfycuf5ZdToskp-lqYkLRv9HTgZ_OBn16H3MqbuRn2eWLD7xcnPBDJYSi_B_fRYZOkj9K7GbjAKTecchZUEYSQvDvNxGCsGjo_9cTSnYpBhViA7vq4tR4F2v7_Yc1_UyZvrUFnB3ft_WN4tEGdbNS1P4F71j-Fw5HHiHv-m31gIQ80bLAfwo-rVWuuFfE3syWqgVh4Z5_YyLNpVxyIc8KMzf_uLbLWMbewltlQR4hijFgyUch3OebLZzA5O52cjOPNzQuxyapsFWuuS1tY46RIDRcOPdWJUhqbNBjCSJfo3FpVulxYgZBEI07DuK1JpbQJviGew75vvX0JTBiEkKURQjQqMzLXpUmsUIaQCIKVJIKP_fDXNx2_Ro1xCemqDrqqSVd1p6sIPpOCtoJEjR0etItf9WaI6wK_bqheFq0v4ybVEg2w0gVXWaFV2kRw3Ku33vgr_kSixXK6WyCCd9tm9DQ6PlHetmuSqUSFgFXKCF501rDtiSgwbJWCR1Du2MlOV3db0DwCm3dvDkd3f_UtPBhPLs7r86-X317BQxoxSpPj2THsrxZr-xr2ls36TXCSP6wuF7M
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIiEuvAolUMBIiANSduM4iZPelrarIqCqaA_cItux6Uq7zmofB_49M85m6SJOcI0niZOZsb-xZz4DvMNZrsSJT8SZbvI4c1bHleNVrHLRNFxViXK03nF-JS--l6dnRJNz3NfChKR9oycDP50N_OQm5FbOZ2bY54kNL7-e8EAkh6H8vHHDPbiLTpukfaTejcIFDrthp7OgqiCE5d2OJgZk1dD5iSem7lQMKsQDdN7HrTkpUPf_DW_-mTZ5ax4aP_yfL3gEDzbok406mcdwx_oncDDyGHnPfrL3LOSDhoX2A_h2tWrNjSIeZ7ZEdRAb7_SYjTybdEWCODZM2ez3GiNrHXMLa5kN9YQoxogtE4V8l2u-fArX47Prk_N4cwJDbLIqW8Wa69IW1jgpUsOFQ491opTGJg2GMtIlOrdWlS4XViA00YjXMH5rUiltgneIZ7DvW2-fAxMGoWRphBCNyozMdWkSK5QhRIKgJYngQ6-Cet7xbNQYn5C-6qCvmvRVd_qK4CMpaStIFNnhQrv4UW9-c13g0w3VzaIVZtykWqIhVrrgKiu0SpsIjnoV1xu_xZdItFxOZwxE8HbbjB5H2yjK23ZNMpWoELhKGcFhZxHbnogCw1cpeATljq3sdHW3BU0ksHr3JvHi3299A_cuT8f1l08Xn1_CffphlC3HsyPYXy3W9hXsLZv16-AnvwBsKxoz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+surprisal%3A+An+inferential+measurement+of+free+energy+in+neural+networks&rft.jtitle=Frontiers+in+neuroscience&rft.au=Prabhushankar%2C+Mohit&rft.au=AlRegib%2C+Ghassan&rft.date=2023-03-14&rft.pub=Frontiers+Research+Foundation&rft.issn=1662-4548&rft.eissn=1662-453X&rft_id=info:doi/10.3389%2Ffnins.2023.926418&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-4548&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-4548&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-4548&client=summon