IncP-1β Plasmid pGNB1 Isolated from a Bacterial Community from a Wastewater Treatment Plant Mediates Decolorization of Triphenylmethane Dyes
Plasmid pGNB1 was isolated from bacteria residing in the activated sludge compartment of a wastewater treatment plant by using a transformation-based approach. This 60-kb plasmid confers resistance to the triphenylmethane dye crystal violet and enables its host bacterium to decolorize crystal violet...
Saved in:
Published in: | Applied and Environmental Microbiology Vol. 73; no. 20; pp. 6345 - 6350 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Washington, DC
American Society for Microbiology
01-10-2007
American Society for Microbiology (ASM) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Plasmid pGNB1 was isolated from bacteria residing in the activated sludge compartment of a wastewater treatment plant by using a transformation-based approach. This 60-kb plasmid confers resistance to the triphenylmethane dye crystal violet and enables its host bacterium to decolorize crystal violet. Partial sequencing of pGNB1 revealed that its backbone is very similar to that of previously sequenced IncP-1β plasmids. The two accessory regions of the plasmid, one located downstream of the replication initiation gene trfA and the other located between the conjugative transfer modules Tra and Trb, were completely sequenced. Accessory region L1 contains a transposon related to Tn5501 and a gene encoding a Cupin 2 conserved barrel protein with an unknown function. The triphenylmethane reductase gene tmr and a truncated dihydrolipoamide dehydrogenase gene that is flanked by IS1071 and another putative insertion element were identified in accessory region L2. Subcloning of the pGNB1 tmr gene demonstrated that this gene is responsible for the observed crystal violet resistance phenotype and mediates decolorization of the triphenylmethane dyes crystal violet, malachite green, and basic fuchsin. Plasmid pGNB1 and the associated phenotype are transferable to the α-proteobacterium Sinorhizobium meliloti and the γ-proteobacterium Escherichia coli. This is the first report of a promiscuous IncP-1β plasmid isolated from the bacterial community from a wastewater treatment plant that harbors a triphenylmethane reductase gene. The pGNB1-encoded enzyme activity is discussed with respect to bioremediation of sewage polluted with triphenylmethane dyes. |
---|---|
Bibliography: | http://aem.asm.org/contents-by-date.0.shtml ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 Corresponding author. Mailing address: Fakultät für Biologie, Lehrstuhl für Genetik, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany. Phone: 49 (0)521/106-2036. Fax: 49 (0)521/106-5626. E-mail: Andreas.Schlueter@Genetik.Uni-Bielefeld.de |
ISSN: | 0099-2240 1098-5336 |
DOI: | 10.1128/AEM.01177-07 |