Nutritional Value and Biological Activity of Gluten-Free Bread Enriched with Cricket Powder
Cricket powder, described in the literature as a source of nutrients, can be a valuable ingredient to supplement deficiencies in various food products. Work continues on the implementation of cricket powder in products that are widely consumed. The aim of this study was to obtain gluten-free bread w...
Saved in:
Published in: | Molecules (Basel, Switzerland) Vol. 26; no. 4; p. 1184 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Switzerland
MDPI AG
23-02-2021
MDPI |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cricket powder, described in the literature as a source of nutrients, can be a valuable ingredient to supplement deficiencies in various food products. Work continues on the implementation of cricket powder in products that are widely consumed. The aim of this study was to obtain gluten-free bread with a superior nutritional profile by means of insect powder addition. Gluten-free breads enriched with 2%, 6%, and 10% of cricket (
) powder were formulated and extensively characterized. The nutritional value, as well as antioxidant and β-glucuronidase activities, were assessed after simulated in vitro digestion. Addition of cricket powder significantly increased the nutritional value, both in terms of the protein content (exceeding two-, four-, and seven-fold the reference bread (RB), respectively) and above all mineral compounds. The most significant changes were observed for Cu, P, and Zn. A significant increase in the content of polyphenolic compounds and antioxidant activity in the enriched bread was also demonstrated; moreover, both values additionally increased after the digestion process. The total polyphenolic compounds content increased about five-fold from RB to bread with 10% CP (BCP10), and respectively about three-fold after digestion. Similarly, the total antioxidant capacity before digestion increased about four-fold, and after digestion about six-fold. The use of CP also reduced the undesirable activity of β-glucuronidase by 65.9% (RB vs. BCP10) in the small intestine, down to 78.9% in the large intestine. The influence of bread on the intestinal microflora was also evaluated, and no inhibitory effect on the growth of microflora was demonstrated, both beneficial (
and
) and pathogenic (
and
). Our results underscore the benefits of using cricket powder to increase the nutritional value and biological activity of gluten-free food products. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules26041184 |