Antioxidant Compounds, Kirenol and Methyl ent-16α, 17-dihydroxy-kauran-19-oate Bioactivity-Guided Isolated from Siegesbeckia glabrescens Attenuates MITF-Mediated Melanogenesis via Inhibition of Intracellular ROS Production
(Compositae), an annual herb indigenous to Korean mountainous regions and has been eaten as a food in Korea. This study investigated ABTS, DPPH and nitric oxide (NO) radical-scavenging activities, and melanin production and TYR inhibitory effects-guided fractionation to identify therapeutic phytoche...
Saved in:
Published in: | Molecules (Basel, Switzerland) Vol. 26; no. 7; p. 1940 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Switzerland
MDPI AG
30-03-2021
MDPI |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | (Compositae), an annual herb indigenous to Korean mountainous regions and has been eaten as a food in Korea. This study investigated ABTS, DPPH and nitric oxide (NO) radical-scavenging activities, and melanin production and TYR inhibitory effects-guided fractionation to identify therapeutic phytochemicals from
that can attenuate oxidation and melanogenesis in murine melanoma B16F10 cells. Nine compounds with inhibitory effects on melanin production, and TYR activity, and ABTS, DPPH, and NO radical scavenging activity were isolated from the 100% ethanol fraction from
. Among the nine compounds, kirenol (K), methyl ent-16α, 17-dihydroxy-kauran-19-oate (MDK) had strong inhibitory effects on melanin production and TYR activity with antioxidant effects. Western blot analysis revealed that K and MDK suppressed tyrosinase-related protein (TYRP)-1, TYRP-2 and microphthalmia-associated transcription factor (MITF) expression. Moreover, these two compounds inhibited intracellular reactive oxygen species (ROS) level in tert-butyl hydroperoxide (
-BHP)-treated B16F10 cells. Our results suggest that
containing active compounds such as K and MDK, which has antioxidant and antimelanogenesis effects, is the potent therapeutic and functional material for the prevention of oxidation-induced hyperpigmentation. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules26071940 |