Antioxidant Compounds, Kirenol and Methyl ent-16α, 17-dihydroxy-kauran-19-oate Bioactivity-Guided Isolated from Siegesbeckia glabrescens Attenuates MITF-Mediated Melanogenesis via Inhibition of Intracellular ROS Production

(Compositae), an annual herb indigenous to Korean mountainous regions and has been eaten as a food in Korea. This study investigated ABTS, DPPH and nitric oxide (NO) radical-scavenging activities, and melanin production and TYR inhibitory effects-guided fractionation to identify therapeutic phytoche...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Vol. 26; no. 7; p. 1940
Main Authors: Shim, Sun-Yup, Lee, Ye Eun, Lee, Mina
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 30-03-2021
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:(Compositae), an annual herb indigenous to Korean mountainous regions and has been eaten as a food in Korea. This study investigated ABTS, DPPH and nitric oxide (NO) radical-scavenging activities, and melanin production and TYR inhibitory effects-guided fractionation to identify therapeutic phytochemicals from that can attenuate oxidation and melanogenesis in murine melanoma B16F10 cells. Nine compounds with inhibitory effects on melanin production, and TYR activity, and ABTS, DPPH, and NO radical scavenging activity were isolated from the 100% ethanol fraction from . Among the nine compounds, kirenol (K), methyl ent-16α, 17-dihydroxy-kauran-19-oate (MDK) had strong inhibitory effects on melanin production and TYR activity with antioxidant effects. Western blot analysis revealed that K and MDK suppressed tyrosinase-related protein (TYRP)-1, TYRP-2 and microphthalmia-associated transcription factor (MITF) expression. Moreover, these two compounds inhibited intracellular reactive oxygen species (ROS) level in tert-butyl hydroperoxide ( -BHP)-treated B16F10 cells. Our results suggest that containing active compounds such as K and MDK, which has antioxidant and antimelanogenesis effects, is the potent therapeutic and functional material for the prevention of oxidation-induced hyperpigmentation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules26071940