Dominant role of the asymmetric ring current in producing the stormtime Dst

Three storms are examined to determine the contribution to the Dst* index from the symmetric and asymmetric (partial) components of the ring current. The storms (September 24–25, 1998, October 18–19, 1998, and May 14–15, 1997) all have a similar solar wind trigger (an initial shock followed by a cor...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Geophysical Research: Space Physics Vol. 106; no. A6; pp. 10883 - 10904
Main Authors: Liemohn, M. W., Kozyra, J. U., Thomsen, M. F., Roeder, J. L., Lu, G., Borovsky, J. E., Cayton, T. E.
Format: Journal Article
Language:English
Published: Washington, DC Blackwell Publishing Ltd 01-06-2001
American Geophysical Union
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Three storms are examined to determine the contribution to the Dst* index from the symmetric and asymmetric (partial) components of the ring current. The storms (September 24–25, 1998, October 18–19, 1998, and May 14–15, 1997) all have a similar solar wind trigger (an initial shock followed by a coronal mass ejection with southward interplanetary magnetic field) and placement in the solar cycle (rising phase). The near‐Earth ion distribution function is simulated for each storm using a kinetic transport model. The use of a McIlwain magnetospheric electric field description improves the simulation results over the Volland‐Stern field used previously. It is found that most of the main phase magnetic field depression is due to the asymmetric component of the ring current (≥80% at the Dst* minimum for the three storms). Note that this is a minimum asymmetric ring current contribution, because the closed‐trajectory ions may also be spatially asymmetric. Ions in the partial ring current make one pass through the inner magnetosphere on open drift paths that intersect the dayside magnetopause. Changes in the density of the inner plasma sheet are transmitted directly along these open drift paths. For a steady convection field, an increase in the source population produces a decrease (more intense perturbation) in Dst*, while a decrease produces a Dst* recovery. As the storm recovery proceeds, a decrease in the electric field results in a conversion of open to closed drift paths, forming a trapped, symmetric ring current that dominates Dst*. The mostly H+ composition of the ring current for all three storms rules out the possibility of differential charge exchange being the cause of the fast and slow decay timescales, confirming that outflow is the main loss of ring current‐generated Dst* during the early phase decay. The slow decay timescale in the late recovery, however, is dominated by charge exchange with the hydrogen geocorona. The symmetric‐asymmetric ring current is also placed in the context of the solar wind and plasma sheet drivers.
AbstractList Three storms are examined to determine the contribution to the Dst* index from the symmetric and asymmetric (partial) components of the ring current. The storms (September 24–25, 1998, October 18–19, 1998, and May 14–15, 1997) all have a similar solar wind trigger (an initial shock followed by a coronal mass ejection with southward interplanetary magnetic field) and placement in the solar cycle (rising phase). The near‐Earth ion distribution function is simulated for each storm using a kinetic transport model. The use of a McIlwain magnetospheric electric field description improves the simulation results over the Volland‐Stern field used previously. It is found that most of the main phase magnetic field depression is due to the asymmetric component of the ring current (≥80% at the Dst* minimum for the three storms). Note that this is a minimum asymmetric ring current contribution, because the closed‐trajectory ions may also be spatially asymmetric. Ions in the partial ring current make one pass through the inner magnetosphere on open drift paths that intersect the dayside magnetopause. Changes in the density of the inner plasma sheet are transmitted directly along these open drift paths. For a steady convection field, an increase in the source population produces a decrease (more intense perturbation) in Dst*, while a decrease produces a Dst* recovery. As the storm recovery proceeds, a decrease in the electric field results in a conversion of open to closed drift paths, forming a trapped, symmetric ring current that dominates Dst*. The mostly H+ composition of the ring current for all three storms rules out the possibility of differential charge exchange being the cause of the fast and slow decay timescales, confirming that outflow is the main loss of ring current‐generated Dst* during the early phase decay. The slow decay timescale in the late recovery, however, is dominated by charge exchange with the hydrogen geocorona. The symmetric‐asymmetric ring current is also placed in the context of the solar wind and plasma sheet drivers.
Three storms are examined to determine the contribution to the Dst * index from the symmetric and asymmetric (partial) components of the ring current. The storms (September 24–25, 1998, October 18–19, 1998, and May 14–15, 1997) all have a similar solar wind trigger (an initial shock followed by a coronal mass ejection with southward interplanetary magnetic field) and placement in the solar cycle (rising phase). The near‐Earth ion distribution function is simulated for each storm using a kinetic transport model. The use of a McIlwain magnetospheric electric field description improves the simulation results over the Volland‐Stern field used previously. It is found that most of the main phase magnetic field depression is due to the asymmetric component of the ring current (≥80% at the Dst * minimum for the three storms). Note that this is a minimum asymmetric ring current contribution, because the closed‐trajectory ions may also be spatially asymmetric. Ions in the partial ring current make one pass through the inner magnetosphere on open drift paths that intersect the dayside magnetopause. Changes in the density of the inner plasma sheet are transmitted directly along these open drift paths. For a steady convection field, an increase in the source population produces a decrease (more intense perturbation) in Dst *, while a decrease produces a Dst * recovery. As the storm recovery proceeds, a decrease in the electric field results in a conversion of open to closed drift paths, forming a trapped, symmetric ring current that dominates Dst *. The mostly H + composition of the ring current for all three storms rules out the possibility of differential charge exchange being the cause of the fast and slow decay timescales, confirming that outflow is the main loss of ring current‐generated Dst * during the early phase decay. The slow decay timescale in the late recovery, however, is dominated by charge exchange with the hydrogen geocorona. The symmetric‐asymmetric ring current is also placed in the context of the solar wind and plasma sheet drivers.
Author Liemohn, M. W.
Kozyra, J. U.
Lu, G.
Roeder, J. L.
Cayton, T. E.
Borovsky, J. E.
Thomsen, M. F.
Author_xml – sequence: 1
  givenname: M. W.
  surname: Liemohn
  fullname: Liemohn, M. W.
– sequence: 2
  givenname: J. U.
  surname: Kozyra
  fullname: Kozyra, J. U.
– sequence: 3
  givenname: M. F.
  surname: Thomsen
  fullname: Thomsen, M. F.
– sequence: 4
  givenname: J. L.
  surname: Roeder
  fullname: Roeder, J. L.
– sequence: 5
  givenname: G.
  surname: Lu
  fullname: Lu, G.
– sequence: 6
  givenname: J. E.
  surname: Borovsky
  fullname: Borovsky, J. E.
– sequence: 7
  givenname: T. E.
  surname: Cayton
  fullname: Cayton, T. E.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1067238$$DView record in Pascal Francis
BookMark eNp9kMtOwzAQRS1UJErpjg_wgiUpYzu2k2XV0kKpQIJC2VlO4oAhj8pOBf17UgWhrtjMSKNzrkb3FPWqujIInRMYEaDxFQWAxbgdjIoj1KeEi4BSoD3UBxJGAVAqT9DQ-4-WgZCLEEgf3U3r0la6arCrC4PrHDfvBmu_K0vTOJtiZ6s3nG6dMy1jK7xxdbZN98c96JvalY0tDZ765gwd57rwZvi7B-h5dr2a3ATLh_ntZLwM0jBmEGhmQHCSJybkYSRlEkcCooRzLjiHSMtQsCyXiaaUZAJkIiBJGJck14LIOGMDdNnlpq723plcbZwttdspAmrfhTrsosUvOnyjfaqL3Okqtf7AEZKyqMVYh33Zwuz-jVSL-eOYtP9CawWdZX1jvv8s7T6VkExytb6fqxeyfiVP65lasR-uYXwi
CitedBy_id crossref_primary_10_1029_2001GL014270
crossref_primary_10_1029_2018SW002067
crossref_primary_10_1016_j_jastp_2006_09_009
crossref_primary_10_1029_2003JA010304
crossref_primary_10_1134_S001679322202013X
crossref_primary_10_1029_2005JA011559
crossref_primary_10_1029_2020JA028554
crossref_primary_10_1007_s11214_017_0412_2
crossref_primary_10_1029_2006JA011853
crossref_primary_10_1029_2005JA011440
crossref_primary_10_3389_fspas_2023_1278820
crossref_primary_10_1029_2001JA000023
crossref_primary_10_1029_2002JA009808
crossref_primary_10_1029_2004JA010970
crossref_primary_10_1029_2006JA011619
crossref_primary_10_1007_s11214_009_9494_9
crossref_primary_10_1016_j_jastp_2019_05_013
crossref_primary_10_1029_1999JA000332
crossref_primary_10_1029_2010JA015759
crossref_primary_10_5194_angeo_33_1369_2015
crossref_primary_10_1016_j_asr_2005_07_082
crossref_primary_10_1016_j_jastp_2015_09_016
crossref_primary_10_1029_2009JA014443
crossref_primary_10_1029_2019JA027493
crossref_primary_10_1029_2024JA032430
crossref_primary_10_1029_2020JA028423
crossref_primary_10_1029_2002JA009705
crossref_primary_10_1029_2018JA025690
crossref_primary_10_1029_2006JA011970
crossref_primary_10_1029_2018JA025692
crossref_primary_10_1029_2023JA031832
crossref_primary_10_1016_j_jastp_2012_03_010
crossref_primary_10_1029_2010JA015628
crossref_primary_10_1029_2006JA011609
crossref_primary_10_1016_S1364_6826_01_00087_6
crossref_primary_10_1002_2017JA024476
crossref_primary_10_1029_2005JA011532
crossref_primary_10_1029_2020SW002561
crossref_primary_10_1029_2001JA000243
crossref_primary_10_1029_2003JA010090
crossref_primary_10_1007_s11214_013_9993_6
crossref_primary_10_1186_s40623_015_0234_y
crossref_primary_10_1002_2014JA020562
crossref_primary_10_1016_j_jastp_2007_08_069
crossref_primary_10_1007_s10712_005_1758_7
crossref_primary_10_3389_fspas_2022_990789
crossref_primary_10_1016_j_asr_2004_03_025
crossref_primary_10_1029_2002JA009601
crossref_primary_10_1029_2002JA009722
crossref_primary_10_5194_angeo_31_395_2013
crossref_primary_10_1007_s11214_008_9480_7
crossref_primary_10_1002_2016JA022885
crossref_primary_10_1002_2013JA018937
crossref_primary_10_1029_2004JA010737
crossref_primary_10_1029_2010JA015281
crossref_primary_10_3389_fspas_2023_1138616
crossref_primary_10_1029_2020JA028685
crossref_primary_10_1007_s10712_018_9487_x
crossref_primary_10_1029_2005JA011097
crossref_primary_10_1029_2006JA011867
crossref_primary_10_1002_2015JA021901
crossref_primary_10_1002_2017JA024250
crossref_primary_10_1002_2017JA024131
crossref_primary_10_1016_j_jastp_2012_12_015
crossref_primary_10_1002_cjg2_1501
crossref_primary_10_1002_jgra_50501
crossref_primary_10_1029_2002GL016153
crossref_primary_10_1016_S1364_6826_03_00088_9
crossref_primary_10_1029_2022GL098031
crossref_primary_10_1002_cjg2_1374
crossref_primary_10_2478_s11600_008_0055_5
crossref_primary_10_1029_2003JA010190
crossref_primary_10_1029_2007JA012883
crossref_primary_10_1134_S0016793208060066
crossref_primary_10_1002_2014JA020065
crossref_primary_10_1029_2022SW003314
crossref_primary_10_1029_2002JA009584
crossref_primary_10_1029_2003JA009881
crossref_primary_10_1029_2005JA011109
crossref_primary_10_1002_2013JA019607
crossref_primary_10_1002_2016JA023679
crossref_primary_10_5194_angeo_33_965_2015
crossref_primary_10_1002_2014JA019876
crossref_primary_10_1029_2021JA029643
crossref_primary_10_12737_szf_63202005
crossref_primary_10_1029_2018JA025766
crossref_primary_10_1016_j_jastp_2006_08_011
crossref_primary_10_1029_2002JA009581
crossref_primary_10_1029_2009JA015062
crossref_primary_10_1134_S0016793208060078
crossref_primary_10_1029_2011JA017189
crossref_primary_10_1007_s11434_008_0364_8
crossref_primary_10_1007_s10686_021_09784_y
crossref_primary_10_31857_S0023420623010028
crossref_primary_10_1029_2003JA010186
crossref_primary_10_1029_2006JA011808
crossref_primary_10_1002_2017JA024679
crossref_primary_10_1002_swe_20038
crossref_primary_10_1029_2007GL030189
crossref_primary_10_1029_2008JA013420
crossref_primary_10_1029_2011JA017093
crossref_primary_10_1186_s40623_016_0484_3
crossref_primary_10_1029_2009JA014658
crossref_primary_10_1029_2004JA010544
crossref_primary_10_1002_2017SW001695
crossref_primary_10_1029_2003JA009851
crossref_primary_10_1007_s11214_017_0411_3
crossref_primary_10_1029_2012JA017915
crossref_primary_10_1029_2001JA000045
crossref_primary_10_1029_2008SW000459
crossref_primary_10_1029_2006JA011956
crossref_primary_10_1029_2001JA000163
crossref_primary_10_1134_S0010952523010021
crossref_primary_10_1134_S0016793219020051
crossref_primary_10_1016_j_jastp_2018_01_007
crossref_primary_10_1029_2018JA025430
crossref_primary_10_1029_2004JA010532
crossref_primary_10_1029_2005JA011447
crossref_primary_10_1029_2022JA030589
crossref_primary_10_1029_2021GL092567
crossref_primary_10_1029_2007JA012612
crossref_primary_10_1029_2008JA013529
crossref_primary_10_1029_2006JA011700
crossref_primary_10_1002_2015JA021545
crossref_primary_10_1029_2001JA000051
crossref_primary_10_12737_stp_63202005
crossref_primary_10_1016_j_asr_2005_05_089
crossref_primary_10_1016_j_jastp_2005_02_016
crossref_primary_10_1029_2003JA009839
crossref_primary_10_1029_2011JA017393
crossref_primary_10_1029_2004JA010449
crossref_primary_10_5194_hgss_3_1_2012
crossref_primary_10_1007_s11434_010_3260_y
crossref_primary_10_1016_j_jastp_2008_04_023
crossref_primary_10_1007_s11214_015_0187_2
crossref_primary_10_1029_2010JA015914
crossref_primary_10_1029_2002JA009302
crossref_primary_10_1029_2002JA009544
crossref_primary_10_1029_2019JA026683
crossref_primary_10_1029_2004JA010435
crossref_primary_10_1029_2004JA010798
crossref_primary_10_1051_swsc_2019007
crossref_primary_10_1029_2005JA011397
crossref_primary_10_3389_feart_2021_730162
crossref_primary_10_1029_2004GI000091
crossref_primary_10_1029_2012JA017684
crossref_primary_10_1002_2015JA021641
crossref_primary_10_1029_2012JA017566
crossref_primary_10_1029_2011JA017026
crossref_primary_10_1002_2016JA022391
crossref_primary_10_1016_j_jastp_2009_06_015
crossref_primary_10_1029_2007JA012390
crossref_primary_10_1016_j_jastp_2004_04_001
crossref_primary_10_1029_2002GL016576
crossref_primary_10_1029_2022SW003064
crossref_primary_10_1016_j_jastp_2006_07_016
crossref_primary_10_1029_2002JA009793
crossref_primary_10_1029_2007JA013003
crossref_primary_10_1029_2005JA011019
crossref_primary_10_1029_2020JA028854
crossref_primary_10_1029_2011JA016886
crossref_primary_10_3390_universe9080350
crossref_primary_10_1029_2005GL024894
crossref_primary_10_1103_PhysRevD_108_103030
crossref_primary_10_1029_2001JA000084
crossref_primary_10_1029_2009SW000518
crossref_primary_10_1186_BF03352949
crossref_primary_10_1002_jgra_50455
crossref_primary_10_1029_2018JA026282
crossref_primary_10_1029_2002JA009440
crossref_primary_10_1016_S0273_1177_03_00640_9
crossref_primary_10_1029_2007JA012260
crossref_primary_10_1029_2020JA027873
crossref_primary_10_1029_2022JA031006
crossref_primary_10_1016_j_pss_2013_01_008
crossref_primary_10_2478_s11600_008_0063_5
crossref_primary_10_1029_2004JA010584
crossref_primary_10_1029_2012JA017788
crossref_primary_10_1029_2023JA031457
crossref_primary_10_12737_szf_61202004
crossref_primary_10_1029_2004JA010465
crossref_primary_10_1098_rspa_2010_0075
crossref_primary_10_1007_s11431_018_9344_5
crossref_primary_10_1007_s12040_019_1194_6
crossref_primary_10_1002_2015JA021063
crossref_primary_10_1016_j_pss_2006_04_007
crossref_primary_10_1002_2017JA024496
crossref_primary_10_1002_2016RS006106
crossref_primary_10_1029_2004JA010924
crossref_primary_10_1029_2001JA000219
crossref_primary_10_1002_2013JA019345
crossref_primary_10_1029_2010JA016000
crossref_primary_10_1029_2001JA000220
crossref_primary_10_5194_angeo_30_177_2012
crossref_primary_10_1186_s40645_019_0264_3
crossref_primary_10_1002_jgra_50512
crossref_primary_10_1029_2004RG000160
crossref_primary_10_3390_rs14030652
crossref_primary_10_1029_2003JA010351
crossref_primary_10_1029_2008JA013111
crossref_primary_10_1016_j_jastp_2006_07_026
crossref_primary_10_1029_2009JA014806
crossref_primary_10_1029_2002JA009624
crossref_primary_10_1029_2010JA015380
crossref_primary_10_1002_2016GL069133
crossref_primary_10_1016_j_jastp_2011_12_010
crossref_primary_10_1016_j_jastp_2006_01_008
crossref_primary_10_1029_2000JA002233
crossref_primary_10_1029_2008JA013466
crossref_primary_10_1002_2015JA021285
crossref_primary_10_1029_2003JA010208
crossref_primary_10_1016_j_jastp_2006_06_013
crossref_primary_10_1029_2010JA015491
crossref_primary_10_1016_j_jastp_2011_01_010
crossref_primary_10_1002_2014JA020122
crossref_primary_10_1002_2015JA022003
crossref_primary_10_1029_2009JA015116
crossref_primary_10_1029_2002GL015430
crossref_primary_10_1029_2007JA012584
crossref_primary_10_1029_2002GL015556
crossref_primary_10_1029_2022JA030747
crossref_primary_10_1002_2014JA020239
crossref_primary_10_1134_S0016793211010026
crossref_primary_10_5194_angeo_31_1745_2013
crossref_primary_10_1029_2001GL014416
crossref_primary_10_1029_2007SW000355
crossref_primary_10_1029_2001GL013449
crossref_primary_10_1016_j_jastp_2009_02_004
crossref_primary_10_1134_S001679322360114X
crossref_primary_10_1029_2006JA011789
crossref_primary_10_1029_2011JA017124
crossref_primary_10_5194_gi_7_129_2018
Cites_doi 10.1029/2000GL000052
10.1029/1999GL900611
10.1029/JA094iA06p06597
10.1029/JA075i019p03848
10.1007/978-3-642-65108-3
10.1029/96GL02085
10.1029/97JA00562
10.1029/93JA02867
10.1029/97JA02367
10.1007/BF00751330
10.1029/JZ064i012p02239
10.1029/JA091iA03p03061
10.1063/1.51525
10.1029/2000JA000235
10.1029/GL013i007p00652
10.1029/1999JA900292
10.1029/98JA01103
10.1029/93JA01848
10.1029/1999JA900467
10.1029/93JA01896
10.1029/RS021i003p00343
10.1029/JZ071i013p03125
10.1029/JA078i001p00171
10.1029/JA088iA07p05692
10.1029/97GL01255
10.1029/95JA02000
10.1029/92JA01139
10.1029/96GL02255
10.1029/96JA03699
10.1029/96JA02469
10.1029/JA079i007p01110
10.1029/GM098p0077
10.1029/93JA02771
10.1007/978-94-011-4798-9_158
10.1029/98GL00411
10.1029/JA087iA11p09077
10.1029/93JA03526
10.2514/3.25503
10.1029/96JA02870
10.1029/91JA01548
10.1029/97JA03330
10.1016/0032-0633(93)90015-T
10.1029/97JA02246
10.1063/1.51524
10.1029/JA091iA12p13613
10.1029/GL014i006p00652
10.1029/JA080i031p04204
10.1029/JA091iA10p11281
10.1029/1998JA900096
10.1029/98GL00514
10.1029/1998JA000437
10.1029/1999JA000248
10.1007/BF00218810
10.1029/JA080i007p01009
10.1029/98GL00649
10.1029/98GL01085
10.1016/0273-1177(86)90331-5
10.1029/97JA03051
10.1029/94JA00822
10.1029/GM098p0131
10.1029/RG011i002p00289
10.1029/JA083iA10p04798
10.1029/JA092iA05p04649
10.1029/97GL00351
10.1029/1999JA900185
10.1007/BF00751326
10.1016/0021-9169(95)00103-4
10.1029/JA086iA02p00768
10.1029/JA093iA06p05741
10.1029/97JA02986
10.1029/96JA01274
10.1029/1999JA000284
10.1029/97JA03337
10.1029/JA080i004p00595
10.1029/JA076i031p07632
10.1029/1998GL900006
10.1029/1999GL900456
10.1016/0032-0633(90)90021-H
10.1029/1999JA900339
10.1029/JA093iA12p14343
10.1029/94GL02695
10.1029/93JA00726
10.1029/95JA03509
10.1029/96JA03431
10.1029/98JA01964
ContentType Journal Article
Copyright Copyright 2001 by the American Geophysical Union.
2001 INIST-CNRS
Copyright_xml – notice: Copyright 2001 by the American Geophysical Union.
– notice: 2001 INIST-CNRS
DBID BSCLL
IQODW
AAYXX
CITATION
DOI 10.1029/2000JA000326
DatabaseName Istex
Pascal-Francis
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Oceanography
Geology
Astronomy & Astrophysics
Physics
EISSN 2156-2202
EndPage 10904
ExternalDocumentID 10_1029_2000JA000326
1067238
JGRA15560
ark_67375_WNG_V1WX1SWF_T
Genre article
GroupedDBID 12K
1OC
24P
AAXRX
ACAHQ
ACCZN
ACXBN
AEIGN
AEUYR
AFFPM
AHBTC
AITYG
ALMA_UNASSIGNED_HOLDINGS
BENPR
BRXPI
BSCLL
DCZOG
DRFUL
DRSTM
DU5
GUQSH
HCIFZ
LATKE
LITHE
LOXES
LUTES
LYRES
M2O
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
P-X
WHG
WIN
WXSBR
XSW
~OA
~~A
08R
7XC
88I
8FE
8FH
8G5
8R4
8R5
AANLZ
ABUWG
ALUQN
AMYDB
ATCPS
BBNVY
BHPHI
BKSAR
BPHCQ
DWQXO
GNUQQ
IQODW
M2P
Q2X
RNS
AAYXX
CITATION
ID FETCH-LOGICAL-c4930-a3e0651fbe454877b98608b55565508a7463df7ba221d607b60bb3571fa6179d3
ISSN 0148-0227
IngestDate Fri Aug 23 00:43:10 EDT 2024
Sun Oct 22 16:05:59 EDT 2023
Sat Aug 24 00:55:31 EDT 2024
Wed Oct 30 09:52:33 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue A6
Keywords Kinetic model
Magnetic storm
Electric field
Partial ring current
Ring current
Numerical simulation
Trajectory
Magnetic field
Ion distribution
Magnetosphere
Velocity distribution function
Dst variation
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4930-a3e0651fbe454877b98608b55565508a7463df7ba221d607b60bb3571fa6179d3
Notes ArticleID:2000JA000326
ark:/67375/WNG-V1WX1SWF-T
istex:78439D69E73F9B5811145B14782D9A99EAEECD09
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2000JA000326
PageCount 22
ParticipantIDs crossref_primary_10_1029_2000JA000326
pascalfrancis_primary_1067238
wiley_primary_10_1029_2000JA000326_JGRA15560
istex_primary_ark_67375_WNG_V1WX1SWF_T
PublicationCentury 2000
PublicationDate 1 June 2001
PublicationDateYYYYMMDD 2001-06-01
PublicationDate_xml – month: 06
  year: 2001
  text: 1 June 2001
  day: 01
PublicationDecade 2000
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
PublicationTitle Journal of Geophysical Research: Space Physics
PublicationTitleAlternate J. Geophys. Res
PublicationYear 2001
Publisher Blackwell Publishing Ltd
American Geophysical Union
Publisher_xml – name: Blackwell Publishing Ltd
– name: American Geophysical Union
References Jordanova, V. K., C. J. Farrugia, J. M. Quinn, R. M. Thorne, K. W. Ogilvie, R. P. Lepping, G. Lu, A. J. Lazarus, M. F. Thomsen, R. D. Belian, Effects of wave-particle interactions on ring current evolution for January 10-11, 1997: Initial results, Geophys. Res. Lett., 25, 2971, 1998b.
Kozyra, J. U., V. K. Jordanova, J. E. Borovsky, M. F. Thomsen, D. J. Knipp, D. S. Evans, D. J. McComas, T. E. Cayton, Effects of a high-density plasma sheet on ring current development during the November 2-6, 1993 magnetic storm, J. Geophys. Res., 103, 26,285, 1998b.
Elphic, R. C., L. A. Weiss, M. F. Thomsen, D. J. McComas, M. B. Moldwin, Evolution of plasmaspheric ions at geosynchronous orbit during times of high geomagnetic activity, Geophys. Res. Lett., 23, 2189, 1996.
Gonzalez, W. D., J. A. Joselyn, Y. Kamide, H. W. Kroehl, G. Rostoker, B. T. Tsurutani, V. M. Vasyliunas, What is a geomagnetic storm?, J. Geophys. Res., 99, 5771, 1994.
Rairden, R. L., L. A. Frank, J. D. Craven, Geocoronal imaging with Dynamics Explorer, J. Geophys. Res., 91, 13,613, 1986.
Roelof, E. C., Energetic neutral atom image of storm-time ring current, Geophys. Res. Lett., 14, 652, 1987.
Wilken, B., W. Weiss, D. Hall, M. Grande, F. Sørass, J. F. Fennell, Magnetospheric ion composition spectrometer onboard the CRRES spacecraft, J. Spacecr. Rockets, 29, 585, 1992.
Jordanova, V. K., J. U. Kozyra, A. F. Nagy, G. V. Khazanov, Kinetic model of the ring current-atmosphere interactions, J. Geophys. Res., 102, 14,279, 1997.
Lepping, R. P., et al., The WIND magnetic field investigation, The Global Geospace Mission, Space Sci. Rev., 71, 207, 1995.
Thomsen, M. F., J. E. Borovsky, D. J. McComas, R. C. Elphic, S. Maurice, The magnetospheric response to the CME passage of January 10-11, 1997, as seen at geosynchronous orbit, Geophys. Res., Lett., 25, 2545, 1998.
Chappell, C. R., K. K. Harris, G. W. Sharp, The morphology of the bulge region of the plasmasphere, J. Geophys. Res., 75, 3848, 1970.
Liemohn, M. W., J. U. Kozyra, V. K. Jordanova, G. V. Khazanov, M. F. Thomsen, T. E. Cayton, Analysis of early phase ring current recovery mechanisms during geomagnetic storms, Geophys. Res. Lett., 25, 2845, 1999.
Moore, T. E., et al., Ionospheric mass ejection in response to a CME, Geophys. Res. Lett., 26, 2339, 1999.
O'Brien, T. P., R. L. McPherron, An empirical phase space analysis of ring current dynamics: Solar wind control of injection and decay, J. Geophys. Res., 105, 7707, 2000.
Carovillano, R. L., G. L. Siscoe, Energy and momentum theorems in magnetospheric processes, Rev. Geophys., 11, 289, 1973.
Liemohn, M. W., G. V. Khazanov, J. U. Kozyra, Banded electron structure formation in the inner magnetosphere, Geophys. Res. Lett., 25, 877, 1998.
Ebihara, Y., M. Ejiri, Modeling of solar wind control of the ring current buildup: A case study of the magnetic storms in April 1997, Geophys. Res. Lett., 25, 3751, 1998.
Jordanova, V. K., R. B. Torbert, R. M. Thorne, H. L. Collin, J. L. Roeder, J. C. Foster, Ring current activity during the early Bz<0 phase of the January 1997 magnetic cloud, J. Geophys. Res., 104, 24,895, 1999.
Volland, H., A semiempirical model of large-scale magnetospheric electric fields, J. Geophys. Res., 78, 171, 1973.
Daglis, I. A., E. T. Sarris, B. Wilken, AMPTE/CCE observations of the ion population at geosynchronous altitudes, Ann. Geophys., 11, 685, 1993.
Gussenhoven, M. S., D. A. Hardy, W. J. Burke, DMSP/F2 electron observations of equatorward auroral boundaries and their relationship to magnetospheric electric fields, J. Geophys. Res., 86, 768, 1981.
McComas, D. J., J. T. Gosling, R. M. Skoug, Ulysses observations of the irregularly structured mid-latitude solar wind during the approach to solar maximum, Geophys. Res. Lett., 27, 2437, 2000.
Ober, D. M., J. L. Horwitz, M. F. Thomsen, R. C. Elphic, D. J. McComas, R. D. Belian, M. B. Moldwin, Premidnight plasmaspheric "plumes,", J. Geophys. Res., 102, 11,325, 1997.
Burton, R. K., R. L. McPherron, C. T. Russell, An empirical relationship between interplanetary conditions and Dst, J. Geophys. Res., 80, 4204, 1975.
Yanenko, N. N., The Method of Fractional Steps: The Solution of Problems of Mathematical Physics in Several Variables, Springer-Verlag, New York, 1971.
Fok, M-C., J. U. Kozyra, A. F. Nagy, C. E. Rasmussen, G. V. Khazanov, A decay model of equatorial ring current and the associated aeronomical consequences, J. Geophys. Res., 98, 19,381, 1993.
Stern, D. P., The motion of a proton in the equatorial magnetosphere, J. Geophys. Res., 80, 595, 1975.
Belian, R. D., G. R. Gisler, T. Cayton, R. Christensen, High-Z energetic particles at geosynchronous orbit during the great solar proton event series of October 1989, J. Geophys. Res., 97, 16,897, 1992.
Borovsky, J. E., M. F. Thomsen, D. J. McComas, The superdense plasma sheet: Plasmaspheric origin, solar wind origin, or ionospheric origin?, J. Geophys. Res., 102, 22,089, 1997.
Bilitza, D., International reference ionosphere: Recent developments, Radio Sci., 21, 343, 1986.
Akasofu, S.-I., Energy coupling between the solar wind and the magnetosphere, Space Sci. Rev., 28, 121, 1981.
Bittencourt, J. A., Fundamentals of Plasma Physics, Pergamon, New York, 1986.
Chen, J., T. A. Fritz, R. B. Sheldon, H. E. Spence, W. N. Spjeldvik, J. F. Fennell, S. Livi, C. T. Russell, J. S. Pickett, D. A. Gurnett, Cusp energetic particle events: Implications for a major acceleration region of the magnetosphere, J. Geophys. Res., 103, 69, 1998.
Fok, M.-C., T. E. Moore, Ring current modeling in a realistic magnetic field configuration, Geophys. Res. Lett., 24, 1775, 1997.
Maynard, N. C., A. J. Chen, Isolated cold plasma regions: Observations and their relation to possible production mechanisms, J. Geophys. Res., 80, 1009, 1975.
Hamilton, D. C., G. Gloeckler, F. M. Ipavich, W. Studemann, B. Wilkey, G. Kremser, Ring current development during the great geomagnetic storm of February 1986, J. Geophys. Res., 93, 14343, 1988.
Shue, J.-H., et al., Magnetopause location under extreme solar wind conditions, J. Geophys. Res., 103, 17,691, 1998.
Sojka, J. J., C. E. Rasmussen, R. W. Schunk, An interplanetary magnetic field dependent model of the ionospheric convection electric field, J. Geophys. Res., 91, 11,281, 1986.
Crooker, N. U., A. H. McAllister, Transients associated with recurrent storms, J. Geophys. Res., 102, 14,041, 1997.
Jordanova, V. K., J. U. Kozyra, G. V. Khazanov, A. F. Nagy, C. E. Rasmussen, M.-C. Fok, A bounce-averaged kinetic model of the ring current ion population, Geophys. Res. Lett., 21, 2785, 1994.
Shue, J.-H., P. Song, C. T. Russell, J. K. Chao, Y.-H. Yang, Toward predicting the position of the magnetopause within geosynchronous orbit, J. Geophys. Res., 105, 2641, 2000.
Weiss, L. A., R. L. Lambour, R. C. Elphic, M. F. Thomsen, Study of plasmaspheric evolution using geosynchronous observations and global modeling, Geophys. Res. Lett., 24, 599, 1997.
Chen, M. W., L. R. Lyons, M. Schulz, Simulations of phase space distributions of storm time proton ring current, J. Geophys. Res., 99, 5745, 1994.
Watari, S., T. Watanabe, The solar drivers of geomagnetic disturbances during solar minimum, Geophys. Res. Lett., 25, 2489, 1998.
Gosling, J. T., The solar flare myth, J. Geophys. Res., 98, 18,937, 1993.
Baumjohann, W., G. Paschmann, C. A. Cattell, Average plasma properties in the central plasma sheet, J. Geophys. Res., 94, 6597, 1989.
Sugiura, M., T. Kamei, Equatorial Dst Index 1957-1986, ISGI Publ. Off., Saint-Maur-des-Fosses, France, 1991.
Fok, M.-C., R. A. Wolf, R. W. Spiro, T. E. Moore, Comprehensive computational model of the Earth's ring current, J. Geophys. Res., 2001.
Richmond, A. D., Y. Kamide, Mapping electrodynamic features of the high-latitude ionosphere from localized observations: Technique, J. Geophys. Res., 93, 5741, 1988.
Borovsky, J. E., M. F. Thomsen, R. C. Elphic, The driving of the plasma sheet by the solar wind, J. Geophys. Res., 103, 17,617, 1998a.
Huang, C. Y., L. A. Frank, A statistical study of the central plasma sheet: Implications for substorm models, Geophys. Res. Lett., 13, 652, 1986.
Ogilvie, K. W., et al., SWE, A comprehensive plasma instrument for the WIND spacecraft, The Global Geospace Mission, Space Sci. Rev., 71, 55, 1995.
Takahashi, S., T. Iyemori, M. Takeda, A simulation of the storm-time ring current, Planet. Space Sci., 38, 1133, 1990.
Jordanova, V. K., C. J. Farrugia, L. Janoo, J. M. Quinn, R. B. Torbert, K. W. Ogilvie, R. P. Lepping, J. T. Steinberg, D. J. McComas, R. D. Belian, October 1995 magnetic cloud and accompanying storm activity: Ring current evolution, J. Geophys. Res., 103, 79, 1998a.
Turner, N. E., D. N. Baker, T. I. Pulkkinen, R. L. McPherron, Evaluation of the tail current contribution to Dst, J. Geophys. Res., 105, 5431, 2000.
McIlwain, C. E., A Kp dependent equatorial electric field model, Adv. Space Res., 63, 187, 1986.
Korth, H., M. F. Thomsen, J. E. Borovsky, D. J. McComas, Plasma sheet access to geosynchronous orbit, J. Geophys. Res., 104, 25,047, 1999.
Fok, M.-C., T. E. Moore, M. E. Greenspan, Ring current development during storm main phase, J. Geophys. Res., 101, 15,311, 1996.
Hedin, A. E., MSIS-86 thermospheric model, J. Geophys. Res., 92, 4649, 1987.
Sckopke, N., A general relation between the energy of trapped particles and the disturbance field near the Earth, J. Geophys. Res., 71, 3125, 1966.
Kozyra, J. U., M.-C. Fok, E. R. Sanchez, D. S. Evans, D. C. Hamilton, A. F. Nagy, The role of precipitation losses in producing the rapid early recovery phase of the great magnetic storm of February 1986, J. Geophys. Res., 103, 6801, 1998a.
Siscoe, G. L., N. U. Crooker, On the partial ring current contribution to Dst, J. Geophys. Res., 79, 1110-1112, 1974.
Borovsky, J. E., M. F. Thomsen, D. J. McComas, T. E. Cayton, D. J. Knipp, Magnetospheric dynamics and mass flow during the November 1993 storm, J. Geophys. Res., 103, 26,373, 1998b.
Chappell, C. R., K. K. Harris, G. W. Sharp, The dayside of the plasmasphere, J. Geophys. Res., 76, 7632, 1971.
Ejiri, M., Trajectory traces of charged par
1959; 64
1995; 71
1973; 11
1970; 75
1971
1996; 383
1992; 97
1996; 101
1981; 86
1994; 21
1997; 102
2001
2000
1997; 98
1999; 17
1986; 6
1986
1975; 80
1996; 23
1987; 14
1986; 91
1974; 79
2000; 27
1990; 38
1987; 92
1973; 78
1986; 13
1997; 24
1999; 26
1999; 25
1993; 41
1998
1966; 71
1981; 28
1993
1992
1991
1996; 58
1999; 104
1988; 93
1998; 25
1989; 94
1971; 76
1986; 21
2000; 105
1993; 11
1993; 98
1978; 83
1982; 87
1994; 99
1992; 29
1998; 103
1983; 88
e_1_2_1_60_1
Press W. H. (e_1_2_1_68_1) 1992
Bittencourt J. A. (e_1_2_1_8_1) 1986
e_1_2_1_20_1
e_1_2_1_41_1
e_1_2_1_66_1
e_1_2_1_87_1
Daglis I. A. (e_1_2_1_21_1) 1993; 11
e_1_2_1_89_1
e_1_2_1_24_1
e_1_2_1_45_1
e_1_2_1_62_1
e_1_2_1_83_1
e_1_2_1_22_1
e_1_2_1_43_1
e_1_2_1_64_1
e_1_2_1_85_1
e_1_2_1_28_1
e_1_2_1_49_1
e_1_2_1_26_1
e_1_2_1_47_1
e_1_2_1_92_1
e_1_2_1_71_1
e_1_2_1_90_1
Sugiura M. (e_1_2_1_81_1) 1991
e_1_2_1_31_1
e_1_2_1_54_1
e_1_2_1_77_1
e_1_2_1_56_1
e_1_2_1_79_1
e_1_2_1_6_1
e_1_2_1_12_1
e_1_2_1_50_1
e_1_2_1_73_1
e_1_2_1_4_1
e_1_2_1_10_1
e_1_2_1_33_1
e_1_2_1_52_1
e_1_2_1_75_1
e_1_2_1_2_1
e_1_2_1_16_1
e_1_2_1_39_1
e_1_2_1_14_1
e_1_2_1_37_1
e_1_2_1_58_1
e_1_2_1_18_1
e_1_2_1_80_1
e_1_2_1_82_1
e_1_2_1_42_1
e_1_2_1_65_1
e_1_2_1_88_1
e_1_2_1_40_1
e_1_2_1_67_1
e_1_2_1_23_1
e_1_2_1_46_1
e_1_2_1_61_1
e_1_2_1_84_1
e_1_2_1_44_1
e_1_2_1_63_1
e_1_2_1_86_1
e_1_2_1_27_1
e_1_2_1_25_1
e_1_2_1_48_1
e_1_2_1_69_1
e_1_2_1_29_1
Grafe A. (e_1_2_1_35_1) 1999; 17
e_1_2_1_93_1
e_1_2_1_70_1
e_1_2_1_91_1
e_1_2_1_7_1
e_1_2_1_30_1
e_1_2_1_55_1
e_1_2_1_76_1
e_1_2_1_5_1
e_1_2_1_57_1
e_1_2_1_78_1
e_1_2_1_3_1
e_1_2_1_13_1
e_1_2_1_34_1
e_1_2_1_51_1
e_1_2_1_72_1
e_1_2_1_11_1
e_1_2_1_32_1
e_1_2_1_53_1
e_1_2_1_74_1
e_1_2_1_17_1
e_1_2_1_38_1
e_1_2_1_15_1
e_1_2_1_36_1
Borovsky J. E. (e_1_2_1_9_1) 1997; 102
e_1_2_1_59_1
e_1_2_1_19_1
References_xml – volume: 28
  start-page: 121
  year: 1981
  article-title: Energy coupling between the solar wind and the magnetosphere
  publication-title: Space Sci. Rev.
– volume: 27
  start-page: 2437
  year: 2000
  article-title: Ulysses observations of the irregularly structured mid‐latitude solar wind during the approach to solar maximum
  publication-title: Geophys. Res. Lett.
– volume: 6
  start-page: 187
  issue: 3
  year: 1986
  article-title: A Kp dependent equatorial electric field model
  publication-title: Adv. Space Res.
– volume: 94
  start-page: 6597
  year: 1989
  article-title: Average plasma properties in the central plasma sheet
  publication-title: J. Geophys. Res.
– volume: 104
  start-page: 24,895
  year: 1999
  article-title: Ring current activity during the early <0 phase of the January 1997 magnetic cloud
  publication-title: J. Geophys. Res.
– volume: 101
  start-page: 111
  year: 1996
  article-title: Collisional losses of ring current ions
  publication-title: J. Geophys. Res.
– volume: 79
  start-page: 1110
  year: 1974
  end-page: 1112
  article-title: On the partial ring current contribution to
  publication-title: J. Geophys. Res.
– volume: 87
  start-page: 9077
  year: 1982
  article-title: Correlations of magnetospheric ion composition with geomagnetic and solar activity
  publication-title: J. Geophys. Res.
– volume: 104
  start-page: 4567
  year: 1999
  article-title: Influence of the substorm current wedge on the index
  publication-title: J. Geophys. Res.
– volume: 105
  start-page: 5431
  year: 2000
  article-title: Evaluation of the tail current contribution to
  publication-title: J. Geophys. Res.
– year: 1971
– volume: 103
  start-page: 79
  year: 1998
  article-title: October 1995 magnetic cloud and accompanying storm activity: Ring current evolution
  publication-title: J. Geophys. Res.
– volume: 11
  start-page: 289
  year: 1973
  article-title: Energy and momentum theorems in magnetospheric processes
  publication-title: Rev. Geophys.
– volume: 101
  start-page: 15,311
  year: 1996
  article-title: Ring current development during storm main phase
  publication-title: J. Geophys. Res.
– volume: 91
  start-page: 13,613
  year: 1986
  article-title: Geocoronal imaging with Dynamics Explorer
  publication-title: J. Geophys. Res.
– volume: 26
  start-page: 2339
  year: 1999
  article-title: Ionospheric mass ejection in response to a CME
  publication-title: Geophys. Res. Lett.
– volume: 78
  start-page: 171
  year: 1973
  article-title: A semiempirical model of large‐scale magnetospheric electric fields
  publication-title: J. Geophys. Res.
– volume: 105
  start-page: 5419
  year: 2000
  article-title: A test of the Dessler‐Parker‐Sckopke relation during magnetic storms
  publication-title: J. Geophys. Res.
– year: 1998
– volume: 25
  start-page: 2845
  year: 1999
  article-title: Analysis of early phase ring current recovery mechanisms during geomagnetic storms
  publication-title: Geophys. Res. Lett.
– year: 1986
– year: 2001
  article-title: Comprehensive computational model of the Earth's ring current
  publication-title: J. Geophys. Res.
– volume: 25
  start-page: 2971
  year: 1998
  article-title: Effects of wave‐particle interactions on ring current evolution for January 10–11, 1997: Initial results
  publication-title: Geophys. Res. Lett.
– volume: 38
  start-page: 1133
  year: 1990
  article-title: A simulation of the storm‐time ring current
  publication-title: Planet. Space Sci.
– volume: 23
  start-page: 2549
  year: 1996
  article-title: A flexible, IMF dependent model of high‐latitude electric potentials having “space weather” applications
  publication-title: Geophys. Res. Lett.
– volume: 99
  start-page: 5745
  year: 1994
  article-title: Simulations of phase space distributions of storm time proton ring current
  publication-title: J. Geophys. Res.
– volume: 24
  start-page: 1775
  year: 1997
  article-title: Ring current modeling in a realistic magnetic field configuration
  publication-title: Geophys. Res. Lett.
– volume: 98
  start-page: 77
  year: 1997
– volume: 104
  start-page: 24,957
  year: 1999
  article-title: The geomagnetic response as a function of storm phase and amplitude and the solar wind electric field
  publication-title: J. Geophys. Res.
– volume: 91
  start-page: 11,281
  year: 1986
  article-title: An interplanetary magnetic field dependent model of the ionospheric convection electric field
  publication-title: J. Geophys. Res.
– volume: 91
  start-page: 3061
  year: 1986
  article-title: Survey of 0.1‐ to 16‐keV/e plasma sheet ion composition
  publication-title: J. Geophys. Res.
– volume: 102
  start-page: 22,089
  year: 1997
  article-title: The superdense plasma sheet: Plasmaspheric origin, solar wind origin, or ionospheric origin?
  publication-title: J. Geophys. Res.
– volume: 101
  start-page: 7737
  year: 1996
  article-title: Magnetic storms and magnetotail currents
  publication-title: J. Geophys. Res.
– volume: 80
  start-page: 1009
  year: 1975
  article-title: Isolated cold plasma regions: Observations and their relation to possible production mechanisms
  publication-title: J. Geophys. Res.
– volume: 11
  start-page: 685
  year: 1993
  article-title: AMPTE/CCE observations of the ion population at geosynchronous altitudes
  publication-title: Ann. Geophys.
– volume: 92
  start-page: 4649
  year: 1987
  article-title: MSIS‐86 thermospheric model
  publication-title: J. Geophys. Res.
– volume: 383
  start-page: 137
  year: 1996
  article-title: Evolution of the ring current ion population as observed by the CRRES/MICS instrument
  publication-title: AIP Conf. Proc.
– volume: 97
  start-page: 16,897
  year: 1992
  article-title: High‐Z energetic particles at geosynchronous orbit during the great solar proton event series of October 1989
  publication-title: J. Geophys. Res.
– volume: 102
  start-page: 14,041
  year: 1997
  article-title: Transients associated with recurrent storms
  publication-title: J. Geophys. Res.
– volume: 23
  start-page: 2189
  year: 1996
  article-title: Evolution of plasmaspheric ions at geosynchronous orbit during times of high geomagnetic activity
  publication-title: Geophys. Res. Lett.
– year: 1993
– volume: 102
  start-page: 14,279
  year: 1997
  article-title: Kinetic model of the ring current‐atmosphere interactions
  publication-title: J. Geophys. Res.
– volume: 98
  start-page: 131
  year: 1997
  end-page: 147
– volume: 103
  start-page: 6801
  year: 1998
  article-title: The role of precipitation losses in producing the rapid early recovery phase of the great magnetic storm of February 1986
  publication-title: J. Geophys. Res.
– volume: 25
  start-page: 2545
  year: 1998
  article-title: The magnetospheric response to the CME passage of January 10–11, 1997, as seen at geosynchronous orbit
  publication-title: Geophys. Res., Lett.
– volume: 103
  start-page: 17,691
  year: 1998
  article-title: Magnetopause location under extreme solar wind conditions
  publication-title: J. Geophys. Res.
– volume: 86
  start-page: 768
  year: 1981
  article-title: DMSP/F2 electron observations of equatorward auroral boundaries and their relationship to magnetospheric electric fields
  publication-title: J. Geophys. Res.
– volume: 71
  start-page: 55
  year: 1995
  article-title: SWE, A comprehensive plasma instrument for the WIND spacecraft, The Global Geospace Mission
  publication-title: Space Sci. Rev.
– volume: 88
  start-page: 5692
  year: 1983
  article-title: Systematics of the equatorward diffuse auroral boundary
  publication-title: J. Geophys. Res.
– volume: 98
  start-page: 18,937
  year: 1993
  article-title: The solar flare myth
  publication-title: J. Geophys. Res.
– volume: 383
  start-page: 131
  year: 1996
– volume: 58
  start-page: 1171
  year: 1996
  article-title: Geomagnetic storms, the ring‐current myth and lognormal distributions
  publication-title: J. Atmos. Terr. Phys.
– volume: 71
  start-page: 3125
  year: 1966
  article-title: A general relation between the energy of trapped particles and the disturbance field near the Earth
  publication-title: J. Geophys. Res.
– volume: 105
  start-page: 7707
  year: 2000
  article-title: An empirical phase space analysis of ring current dynamics: Solar wind control of injection and decay
  publication-title: J. Geophys. Res.
– volume: 102
  start-page: 2309
  year: 1997
  article-title: Characteristic plasma properties during dispersionless substorm injections at geosynchronous orbit
  publication-title: J. Geophys. Res.
– volume: 103
  start-page: 17,617
  year: 1998
  article-title: The driving of the plasma sheet by the solar wind
  publication-title: J. Geophys. Res.
– volume: 17
  start-page: 1
  year: 1999
  article-title: Are our ideas about correct?
  publication-title: Ann. Geophys.
– volume: 97
  start-page: 1097
  year: 1992
  article-title: An ISEE/whistler model of equatorial electron density in the magnetosphere
  publication-title: J. Geophys. Res.
– volume: 104
  start-page: 25,047
  year: 1999
  article-title: Plasma sheet access to geosynchronous orbit
  publication-title: J. Geophys. Res.
– year: 2000
– volume: 103
  start-page: 26,373
  year: 1998
  article-title: Magnetospheric dynamics and mass flow during the November 1993 storm
  publication-title: J. Geophys. Res.
– volume: 99
  start-page: 5771
  year: 1994
  article-title: What is a geomagnetic storm?
  publication-title: J. Geophys. Res.
– volume: 41
  start-page: 35
  year: 1993
  article-title: Two‐dimensional model of the plasmasphere: Refilling time constants
  publication-title: Planet. Space Sci.
– volume: 80
  start-page: 4204
  year: 1975
  article-title: An empirical relationship between interplanetary conditions and
  publication-title: J. Geophys. Res.
– volume: 13
  start-page: 652
  year: 1986
  article-title: A statistical study of the central plasma sheet: Implications for substorm models
  publication-title: Geophys. Res. Lett.
– volume: 21
  start-page: 2785
  year: 1994
  article-title: A bounce‐averaged kinetic model of the ring current ion population
  publication-title: Geophys. Res. Lett.
– volume: 64
  start-page: 2239
  year: 1959
  article-title: Hydromagnetic theory of geomagnetic storms
  publication-title: J. Geophys. Res.
– volume: 98
  start-page: 19,381
  year: 1993
  article-title: A decay model of equatorial ring current and the associated aeronomical consequences
  publication-title: J. Geophys. Res.
– volume: 25
  start-page: 2489
  year: 1998
  article-title: The solar drivers of geomagnetic disturbances during solar minimum
  publication-title: Geophys. Res. Lett.
– volume: 103
  start-page: 26,285
  year: 1998
  article-title: Effects of a high‐density plasma sheet on ring current development during the November 2–6, 1993 magnetic storm
  publication-title: J. Geophys. Res.
– volume: 103
  start-page: 69
  year: 1998
  article-title: Cusp energetic particle events: Implications for a major acceleration region of the magnetosphere
  publication-title: J. Geophys. Res.
– volume: 83
  start-page: 4798
  year: 1978
  article-title: Trajectory traces of charged particles in the magnetosphere
  publication-title: J. Geophys. Res.
– volume: 14
  start-page: 652
  year: 1987
  article-title: Energetic neutral atom image of storm‐time ring current
  publication-title: Geophys. Res. Lett.
– volume: 99
  start-page: 11,475
  year: 1994
  article-title: An examination of the structure and dynamics of the outer plasmasphere using multiple geosynchronous satellites
  publication-title: J. Geophys. Res.
– volume: 24
  start-page: 599
  year: 1997
  article-title: Study of plasmaspheric evolution using geosynchronous observations and global modeling
  publication-title: Geophys. Res. Lett.
– volume: 80
  start-page: 595
  year: 1975
  article-title: The motion of a proton in the equatorial magnetosphere
  publication-title: J. Geophys. Res.
– volume: 102
  start-page: 11,325
  year: 1997
  article-title: Premidnight plasmaspheric “plumes,”
  publication-title: J. Geophys. Res.
– volume: 99
  start-page: 13,251
  year: 1994
  article-title: Electric potential patterns in the northern and southern polar regions parameterized by the interplanetary magnetic field
  publication-title: J. Geophys. Res.
– volume: 93
  start-page: 14343
  year: 1988
  article-title: Ring current development during the great geomagnetic storm of February 1986
  publication-title: J. Geophys. Res.
– volume: 93
  start-page: 5741
  year: 1988
  article-title: Mapping electrodynamic features of the high‐latitude ionosphere from localized observations: Technique
  publication-title: J. Geophys. Res.
– volume: 25
  start-page: 3751
  year: 1998
  article-title: Modeling of solar wind control of the ring current buildup: A case study of the magnetic storms in April 1997
  publication-title: Geophys. Res. Lett.
– start-page: 352
  year: 1992
– volume: 105
  start-page: 2641
  year: 2000
  article-title: Toward predicting the position of the magnetopause within geosynchronous orbit
  publication-title: J. Geophys. Res.
– volume: 29
  start-page: 585
  year: 1992
  article-title: Magnetospheric ion composition spectrometer onboard the CRRES spacecraft
  publication-title: J. Spacecr. Rockets
– volume: 103
  start-page: 6917
  year: 1998
  article-title: Two‐step development of geomagnetic storms
  publication-title: J. Geophys. Res.
– volume: 71
  start-page: 207
  year: 1995
  article-title: The WIND magnetic field investigation, The Global Geospace Mission
  publication-title: Space Sci. Rev.
– year: 1991
– volume: 25
  start-page: 877
  year: 1998
  article-title: Banded electron structure formation in the inner magnetosphere
  publication-title: Geophys. Res. Lett.
– volume: 75
  start-page: 3848
  year: 1970
  article-title: The morphology of the bulge region of the plasmasphere
  publication-title: J. Geophys. Res.
– volume: 76
  start-page: 7632
  year: 1971
  article-title: The dayside of the plasmasphere
  publication-title: J. Geophys. Res.
– volume: 98
  start-page: 13,453
  year: 1993
  article-title: Magnetospheric plasma analyzer: Initial three‐spacecraft observations from geosynchronous orbit
  publication-title: J. Geophys. Res.
– volume: 21
  start-page: 343
  year: 1986
  article-title: International reference ionosphere: Recent developments
  publication-title: Radio Sci.
– ident: e_1_2_1_60_1
  doi: 10.1029/2000GL000052
– ident: e_1_2_1_57_1
  doi: 10.1029/1999GL900611
– ident: e_1_2_1_4_1
  doi: 10.1029/JA094iA06p06597
– ident: e_1_2_1_16_1
  doi: 10.1029/JA075i019p03848
– ident: e_1_2_1_92_1
  doi: 10.1007/978-3-642-65108-3
– ident: e_1_2_1_25_1
  doi: 10.1029/96GL02085
– ident: e_1_2_1_65_1
  doi: 10.1029/97JA00562
– ident: e_1_2_1_33_1
  doi: 10.1029/93JA02867
– ident: e_1_2_1_46_1
  doi: 10.1029/97JA02367
– ident: e_1_2_1_55_1
  doi: 10.1007/BF00751330
– ident: e_1_2_1_22_1
  doi: 10.1029/JZ064i012p02239
– ident: e_1_2_1_54_1
  doi: 10.1029/JA091iA03p03061
– ident: e_1_2_1_36_1
  doi: 10.1063/1.51525
– ident: e_1_2_1_30_1
  doi: 10.1029/2000JA000235
– ident: e_1_2_1_42_1
  doi: 10.1029/GL013i007p00652
– ident: e_1_2_1_50_1
  doi: 10.1029/1999JA900292
– ident: e_1_2_1_76_1
  doi: 10.1029/98JA01103
– ident: e_1_2_1_28_1
  doi: 10.1029/93JA01848
– ident: e_1_2_1_77_1
  doi: 10.1029/1999JA900467
– ident: e_1_2_1_34_1
  doi: 10.1029/93JA01896
– volume-title: Equatorial Dst Index 1957–1986
  year: 1991
  ident: e_1_2_1_81_1
  contributor:
    fullname: Sugiura M.
– ident: e_1_2_1_6_1
  doi: 10.1029/RS021i003p00343
– ident: e_1_2_1_75_1
  doi: 10.1029/JZ071i013p03125
– ident: e_1_2_1_87_1
  doi: 10.1029/JA078i001p00171
– ident: e_1_2_1_39_1
  doi: 10.1029/JA088iA07p05692
– ident: e_1_2_1_27_1
  doi: 10.1029/97GL01255
– ident: e_1_2_1_44_1
  doi: 10.1029/95JA02000
– start-page: 352
  volume-title: Numerical Recipes in FORTRAN
  year: 1992
  ident: e_1_2_1_68_1
  contributor:
    fullname: Press W. H.
– ident: e_1_2_1_5_1
  doi: 10.1029/92JA01139
– ident: e_1_2_1_89_1
  doi: 10.1029/96GL02255
– ident: e_1_2_1_45_1
  doi: 10.1029/96JA03699
– volume: 102
  start-page: 22,089
  year: 1997
  ident: e_1_2_1_9_1
  article-title: The superdense plasma sheet: Plasmaspheric origin, solar wind origin, or ionospheric origin?
  publication-title: J. Geophys. Res.
  doi: 10.1029/96JA02469
  contributor:
    fullname: Borovsky J. E.
– ident: e_1_2_1_78_1
  doi: 10.1029/JA079i007p01110
– ident: e_1_2_1_84_1
  doi: 10.1029/GM098p0077
– volume-title: Fundamentals of Plasma Physics
  year: 1986
  ident: e_1_2_1_8_1
  contributor:
    fullname: Bittencourt J. A.
– ident: e_1_2_1_18_1
  doi: 10.1029/93JA02771
– ident: e_1_2_1_53_1
  doi: 10.1007/978-94-011-4798-9_158
– ident: e_1_2_1_56_1
  doi: 10.1029/98GL00411
– ident: e_1_2_1_93_1
  doi: 10.1029/JA087iA11p09077
– ident: e_1_2_1_63_1
  doi: 10.1029/93JA03526
– ident: e_1_2_1_91_1
  doi: 10.2514/3.25503
– ident: e_1_2_1_7_1
  doi: 10.1029/96JA02870
– ident: e_1_2_1_15_1
  doi: 10.1029/91JA01548
– ident: e_1_2_1_51_1
  doi: 10.1029/97JA03330
– ident: e_1_2_1_71_1
  doi: 10.1016/0032-0633(93)90015-T
– ident: e_1_2_1_19_1
  doi: 10.1029/97JA02246
– ident: e_1_2_1_73_1
  doi: 10.1063/1.51524
– ident: e_1_2_1_32_1
– ident: e_1_2_1_70_1
  doi: 10.1029/JA091iA12p13613
– ident: e_1_2_1_74_1
  doi: 10.1029/GL014i006p00652
– ident: e_1_2_1_12_1
  doi: 10.1029/JA080i031p04204
– ident: e_1_2_1_79_1
  doi: 10.1029/JA091iA10p11281
– ident: e_1_2_1_31_1
  doi: 10.1029/1998JA900096
– ident: e_1_2_1_83_1
  doi: 10.1029/98GL00514
– ident: e_1_2_1_66_1
  doi: 10.1029/1998JA000437
– ident: e_1_2_1_85_1
  doi: 10.1029/1999JA000248
– ident: e_1_2_1_2_1
  doi: 10.1007/BF00218810
– ident: e_1_2_1_58_1
  doi: 10.1029/JA080i007p01009
– ident: e_1_2_1_47_1
  doi: 10.1029/98GL00649
– ident: e_1_2_1_88_1
  doi: 10.1029/98GL01085
– ident: e_1_2_1_61_1
  doi: 10.1016/0273-1177(86)90331-5
– ident: e_1_2_1_11_1
  doi: 10.1029/97JA03051
– ident: e_1_2_1_69_1
  doi: 10.1029/94JA00822
– ident: e_1_2_1_62_1
  doi: 10.1029/GM098p0131
– ident: e_1_2_1_14_1
  doi: 10.1029/RG011i002p00289
– ident: e_1_2_1_24_1
  doi: 10.1029/JA083iA10p04798
– volume: 17
  start-page: 1
  year: 1999
  ident: e_1_2_1_35_1
  article-title: Are our ideas about Dst correct?
  publication-title: Ann. Geophys.
  contributor:
    fullname: Grafe A.
– ident: e_1_2_1_41_1
  doi: 10.1029/JA092iA05p04649
– ident: e_1_2_1_90_1
  doi: 10.1029/97GL00351
– ident: e_1_2_1_86_1
  doi: 10.1029/1999JA900185
– ident: e_1_2_1_67_1
  doi: 10.1007/BF00751326
– ident: e_1_2_1_13_1
  doi: 10.1016/0021-9169(95)00103-4
– ident: e_1_2_1_38_1
  doi: 10.1029/JA086iA02p00768
– ident: e_1_2_1_72_1
  doi: 10.1029/JA093iA06p05741
– ident: e_1_2_1_10_1
  doi: 10.1029/97JA02986
– ident: e_1_2_1_29_1
  doi: 10.1029/96JA01274
– ident: e_1_2_1_37_1
  doi: 10.1029/1999JA000284
– ident: e_1_2_1_49_1
  doi: 10.1029/97JA03337
– volume: 11
  start-page: 685
  year: 1993
  ident: e_1_2_1_21_1
  article-title: AMPTE/CCE observations of the ion population at geosynchronous altitudes
  publication-title: Ann. Geophys.
  contributor:
    fullname: Daglis I. A.
– ident: e_1_2_1_80_1
  doi: 10.1029/JA080i004p00595
– ident: e_1_2_1_17_1
  doi: 10.1029/JA076i031p07632
– ident: e_1_2_1_23_1
  doi: 10.1029/1998GL900006
– ident: e_1_2_1_64_1
  doi: 10.1029/1999GL900456
– ident: e_1_2_1_82_1
  doi: 10.1016/0032-0633(90)90021-H
– ident: e_1_2_1_48_1
  doi: 10.1029/1999JA900339
– ident: e_1_2_1_40_1
  doi: 10.1029/JA093iA12p14343
– ident: e_1_2_1_43_1
  doi: 10.1029/94GL02695
– ident: e_1_2_1_59_1
  doi: 10.1029/93JA00726
– ident: e_1_2_1_3_1
  doi: 10.1029/95JA03509
– ident: e_1_2_1_20_1
  doi: 10.1029/96JA03431
– ident: e_1_2_1_26_1
  doi: 10.1029/93JA01848
– ident: e_1_2_1_52_1
  doi: 10.1029/98JA01964
SSID ssj0000456401
ssj0014561
ssj0030581
ssj0030583
ssj0043761
ssj0030582
ssj0030585
ssj0030584
ssj0030586
Score 2.240871
Snippet Three storms are examined to determine the contribution to the Dst* index from the symmetric and asymmetric (partial) components of the ring current. The...
Three storms are examined to determine the contribution to the Dst * index from the symmetric and asymmetric (partial) components of the ring current. The...
SourceID crossref
pascalfrancis
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 10883
SubjectTerms Earth, ocean, space
Exact sciences and technology
External geophysics
Physics of the magnetosphere
Trapped particles
Title Dominant role of the asymmetric ring current in producing the stormtime Dst
URI https://api.istex.fr/ark:/67375/WNG-V1WX1SWF-T/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2000JA000326
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe6VkgICcEArcCQH2AvJSVxHCd5rNaPaYwhtR0dT1E-HK2CNlNDJcpfz_kjqSNNE3vgJfK5l1Tp3fnu3J_vEHoPTj9zaepYacASi3phZgUZSa0wCHObxXHiyULaZzP_8joYjuio1aq67O3n_qukYQ5kLU7OPkDa9UNhAsYgc7iC1OH6T3IfFgrcUuMGRWQZl7vVSvTOSnsSb5fqqkxLCdDKtml1aEpgJVei33xvWDZ27Y3AdcKL20q6FXBPbCzMIP3mspmOgaC_WPJVcaMAw_3eol8v8MWf3UbhdPu9q3pa4FP0nhCwj-v5acEzpVzAftFv7FUYmCpj-1IULVTeR85BzMEsQuzmmmwzQ_kG5hLrwLroGv5aIEvpnc7AJqKWqjiLdD4QuR-5o-Z2zefdxyn9_flkOoDoi9kHqENgWfPaqDMYXX2f1nt6sjbPHmLkUHloWBGwrgYNgpiEaxLUJDyTYBVBwS-oVpv6B9VnOuBVPpmv0Yi2OmLh-C3Qv3EJKpKrzi3NrEyGVfNn6KlWKzxQivwctfj6EB0NSvEPTbHa4RMsx0rhykP0SDVP3cFowvWo-wUyv2IjKbjh9OcS0jD92ZOvKY_Xui473KTV8wX6XBkKFoaCixyD_uO9oWBhKFgbCl6ucW0okrE2FAyG8hJdjUfz0zNLdxaxUhq6thW7HEJvJ084FRm7n4QBs4PEA-lCxh7EPmVulvtJTIiTMdtPmJ0kruc7eQwRf5i5r1B7Xaz5EcKM-gnxue8SX1QLTALiZSQLuJ1Tj4BH7KIPlQSiW1VAJpLADxJGpqS66ESKp2aKNz8E6NL3osXlJPrmLK6d2WIczbvouCE_46lMdBDsoo9Snvd-W1Qr8-uHsb9Bj_eG_Ra1f222_BgdlNn2nbaGv85UyNw
link.rule.ids 315,782,786,27935,27936
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dominant+role+of+the+asymmetric+ring+current+in+producing+the+stormtime+Dst&rft.jtitle=Journal+of+Geophysical+Research%3A+Space+Physics&rft.au=Liemohn%2C+M.+W.&rft.au=Kozyra%2C+J.+U.&rft.au=Thomsen%2C+M.+F.&rft.au=Roeder%2C+J.+L.&rft.date=2001-06-01&rft.issn=0148-0227&rft.eissn=2156-2202&rft.volume=106&rft.issue=A6&rft.spage=10883&rft.epage=10904&rft_id=info:doi/10.1029%2F2000JA000326&rft.externalDBID=10.1029%252F2000JA000326&rft.externalDocID=JGRA15560
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon