Data-driven simulations for training AI-based segmentation of neutron images

Neutron interferometry uniquely combines neutron imaging and scattering methods to enable characterization of multiple length scales from 1 nm to 10 µm. However, building, operating, and using such neutron imaging instruments poses constraints on the acquisition time and on the number of measured im...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 14; no. 1; p. 6614
Main Authors: Sathe, Pushkar S., Wolf, Caitlyn M., Kim, Youngju, Robinson, Sarah M., Daugherty, M. Cyrus, Murphy, Ryan P., LaManna, Jacob M., Huber, Michael G., Jacobson, David L., Kienzle, Paul A., Weigandt, Katie M., Klimov, Nikolai N., Hussey, Daniel S., Bajcsy, Peter
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 19-03-2024
Nature Publishing Group
Nature Portfolio
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Neutron interferometry uniquely combines neutron imaging and scattering methods to enable characterization of multiple length scales from 1 nm to 10 µm. However, building, operating, and using such neutron imaging instruments poses constraints on the acquisition time and on the number of measured images per sample. Experiment time-constraints yield small quantities of measured images that are insufficient for automating image analyses using supervised artificial intelligence (AI) models. One approach alleviates this problem by supplementing annotated measured images with synthetic images. To this end, we create a data-driven simulation framework that supplements training data beyond typical data-driven augmentations by leveraging statistical intensity models, such as the Johnson family of probability density functions (PDFs). We follow the simulation framework steps for an image segmentation task including Estimate PDFs → Validate PDFs → Design Image Masks → Generate Intensities → Train AI Model for Segmentation. Our goal is to minimize the manual labor needed to execute the steps and maximize our confidence in simulations and segmentation accuracy. We report results for a set of nine known materials (calibration phantoms) that were imaged using a neutron interferometer acquiring four-dimensional images and segmented by AI models trained with synthetic and measured images and their masks.
AbstractList Neutron interferometry uniquely combines neutron imaging and scattering methods to enable characterization of multiple length scales from 1 nm to 10 µm. However, building, operating, and using such neutron imaging instruments poses constraints on the acquisition time and on the number of measured images per sample. Experiment time-constraints yield small quantities of measured images that are insufficient for automating image analyses using supervised artificial intelligence (AI) models. One approach alleviates this problem by supplementing annotated measured images with synthetic images. To this end, we create a data-driven simulation framework that supplements training data beyond typical data-driven augmentations by leveraging statistical intensity models, such as the Johnson family of probability density functions (PDFs). We follow the simulation framework steps for an image segmentation task including Estimate PDFs Validate PDFs Design Image Masks Generate Intensities Train AI Model for Segmentation. Our goal is to minimize the manual labor needed to execute the steps and maximize our confidence in simulations and segmentation accuracy. We report results for a set of nine known materials (calibration phantoms) that were imaged using a neutron interferometer acquiring four-dimensional images and segmented by AI models trained with synthetic and measured images and their masks.
Neutron interferometry uniquely combines neutron imaging and scattering methods to enable characterization of multiple length scales from 1 nm to 10 µm. However, building, operating, and using such neutron imaging instruments poses constraints on the acquisition time and on the number of measured images per sample. Experiment time-constraints yield small quantities of measured images that are insufficient for automating image analyses using supervised artificial intelligence (AI) models. One approach alleviates this problem by supplementing annotated measured images with synthetic images. To this end, we create a data-driven simulation framework that supplements training data beyond typical data-driven augmentations by leveraging statistical intensity models, such as the Johnson family of probability density functions (PDFs). We follow the simulation framework steps for an image segmentation task including Estimate PDFs → Validate PDFs → Design Image Masks → Generate Intensities → Train AI Model for Segmentation. Our goal is to minimize the manual labor needed to execute the steps and maximize our confidence in simulations and segmentation accuracy. We report results for a set of nine known materials (calibration phantoms) that were imaged using a neutron interferometer acquiring four-dimensional images and segmented by AI models trained with synthetic and measured images and their masks.
Neutron interferometry uniquely combines neutron imaging and scattering methods to enable characterization of multiple length scales from 1 nm to 10 µm. However, building, operating, and using such neutron imaging instruments poses constraints on the acquisition time and on the number of measured images per sample. Experiment time-constraints yield small quantities of measured images that are insufficient for automating image analyses using supervised artificial intelligence (AI) models. One approach alleviates this problem by supplementing annotated measured images with synthetic images. To this end, we create a data-driven simulation framework that supplements training data beyond typical data-driven augmentations by leveraging statistical intensity models, such as the Johnson family of probability density functions (PDFs). We follow the simulation framework steps for an image segmentation task including Estimate PDFs $$\,\rightarrow \,$$ → Validate PDFs $$\,\rightarrow \,$$ → Design Image Masks $$\,\rightarrow \,$$ → Generate Intensities $$\,\rightarrow \,$$ → Train AI Model for Segmentation. Our goal is to minimize the manual labor needed to execute the steps and maximize our confidence in simulations and segmentation accuracy. We report results for a set of nine known materials (calibration phantoms) that were imaged using a neutron interferometer acquiring four-dimensional images and segmented by AI models trained with synthetic and measured images and their masks.
Neutron interferometry uniquely combines neutron imaging and scattering methods to enable characterization of multiple length scales from 1 nm to 10 µm. However, building, operating, and using such neutron imaging instruments poses constraints on the acquisition time and on the number of measured images per sample. Experiment time-constraints yield small quantities of measured images that are insufficient for automating image analyses using supervised artificial intelligence (AI) models. One approach alleviates this problem by supplementing annotated measured images with synthetic images. To this end, we create a data-driven simulation framework that supplements training data beyond typical data-driven augmentations by leveraging statistical intensity models, such as the Johnson family of probability density functions (PDFs). We follow the simulation framework steps for an image segmentation task including Estimate PDFs → Validate PDFs → Design Image Masks → Generate Intensities → Train AI Model for Segmentation. Our goal is to minimize the manual labor needed to execute the steps and maximize our confidence in simulations and segmentation accuracy. We report results for a set of nine known materials (calibration phantoms) that were imaged using a neutron interferometer acquiring four-dimensional images and segmented by AI models trained with synthetic and measured images and their masks.
Neutron interferometry uniquely combines neutron imaging and scattering methods to enable characterization of multiple length scales from 1 nm to 10 µm. However, building, operating, and using such neutron imaging instruments poses constraints on the acquisition time and on the number of measured images per sample. Experiment time-constraints yield small quantities of measured images that are insufficient for automating image analyses using supervised artificial intelligence (AI) models. One approach alleviates this problem by supplementing annotated measured images with synthetic images. To this end, we create a data-driven simulation framework that supplements training data beyond typical data-driven augmentations by leveraging statistical intensity models, such as the Johnson family of probability density functions (PDFs). We follow the simulation framework steps for an image segmentation task including Estimate PDFs \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\,\rightarrow \,$$\end{document} → Validate PDFs \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\,\rightarrow \,$$\end{document} → Design Image Masks \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\,\rightarrow \,$$\end{document} → Generate Intensities \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\,\rightarrow \,$$\end{document} → Train AI Model for Segmentation. Our goal is to minimize the manual labor needed to execute the steps and maximize our confidence in simulations and segmentation accuracy. We report results for a set of nine known materials (calibration phantoms) that were imaged using a neutron interferometer acquiring four-dimensional images and segmented by AI models trained with synthetic and measured images and their masks.
Abstract Neutron interferometry uniquely combines neutron imaging and scattering methods to enable characterization of multiple length scales from 1 nm to 10 µm. However, building, operating, and using such neutron imaging instruments poses constraints on the acquisition time and on the number of measured images per sample. Experiment time-constraints yield small quantities of measured images that are insufficient for automating image analyses using supervised artificial intelligence (AI) models. One approach alleviates this problem by supplementing annotated measured images with synthetic images. To this end, we create a data-driven simulation framework that supplements training data beyond typical data-driven augmentations by leveraging statistical intensity models, such as the Johnson family of probability density functions (PDFs). We follow the simulation framework steps for an image segmentation task including Estimate PDFs $$\,\rightarrow \,$$ → Validate PDFs $$\,\rightarrow \,$$ → Design Image Masks $$\,\rightarrow \,$$ → Generate Intensities $$\,\rightarrow \,$$ → Train AI Model for Segmentation. Our goal is to minimize the manual labor needed to execute the steps and maximize our confidence in simulations and segmentation accuracy. We report results for a set of nine known materials (calibration phantoms) that were imaged using a neutron interferometer acquiring four-dimensional images and segmented by AI models trained with synthetic and measured images and their masks.
ArticleNumber 6614
Author Klimov, Nikolai N.
Daugherty, M. Cyrus
Hussey, Daniel S.
Huber, Michael G.
Murphy, Ryan P.
Sathe, Pushkar S.
Kienzle, Paul A.
LaManna, Jacob M.
Robinson, Sarah M.
Wolf, Caitlyn M.
Bajcsy, Peter
Jacobson, David L.
Weigandt, Katie M.
Kim, Youngju
Author_xml – sequence: 1
  givenname: Pushkar S.
  surname: Sathe
  fullname: Sathe, Pushkar S.
  organization: Information Technology Laboratory, NIST
– sequence: 2
  givenname: Caitlyn M.
  surname: Wolf
  fullname: Wolf, Caitlyn M.
  organization: NIST Center for Neutron Research
– sequence: 3
  givenname: Youngju
  surname: Kim
  fullname: Kim, Youngju
  organization: Physical Measurement Laboratory, Department of Chemistry and Biochemistry, University of Maryland
– sequence: 4
  givenname: Sarah M.
  surname: Robinson
  fullname: Robinson, Sarah M.
  organization: Physical Measurement Laboratory
– sequence: 5
  givenname: M. Cyrus
  surname: Daugherty
  fullname: Daugherty, M. Cyrus
  organization: Physical Measurement Laboratory
– sequence: 6
  givenname: Ryan P.
  surname: Murphy
  fullname: Murphy, Ryan P.
  organization: NIST Center for Neutron Research
– sequence: 7
  givenname: Jacob M.
  surname: LaManna
  fullname: LaManna, Jacob M.
  organization: Physical Measurement Laboratory
– sequence: 8
  givenname: Michael G.
  surname: Huber
  fullname: Huber, Michael G.
  organization: Physical Measurement Laboratory
– sequence: 9
  givenname: David L.
  surname: Jacobson
  fullname: Jacobson, David L.
  organization: Physical Measurement Laboratory
– sequence: 10
  givenname: Paul A.
  surname: Kienzle
  fullname: Kienzle, Paul A.
  organization: NIST Center for Neutron Research
– sequence: 11
  givenname: Katie M.
  surname: Weigandt
  fullname: Weigandt, Katie M.
  organization: NIST Center for Neutron Research
– sequence: 12
  givenname: Nikolai N.
  surname: Klimov
  fullname: Klimov, Nikolai N.
  organization: Physical Measurement Laboratory
– sequence: 13
  givenname: Daniel S.
  surname: Hussey
  fullname: Hussey, Daniel S.
  organization: Physical Measurement Laboratory
– sequence: 14
  givenname: Peter
  surname: Bajcsy
  fullname: Bajcsy, Peter
  email: peter.bajcsy@nist.gov
  organization: Information Technology Laboratory, NIST
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38503854$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1vFSEUhompsbX2D7gwk7hxM8rnDKxMU79uchM3uiYMHEZuZqDCTBP_vfROra0L2XACDw8c3ufoJKYICL0k-C3BTL4rnAglW0x5KzqOVcueoDOKuWgpo_TkQX2KLko54DoEVZyoZ-iUSVEdgp-h_QezmNblcAOxKWFeJ7OEFEvjU26WbEIMcWwud-1gCrimwDhDXI5Mk3wTYV1yLcNsRigv0FNvpgIXd_M5-v7p47erL-3-6-fd1eW-tVzRpbXCe-4d7kANzHaYdJS7nsteCsXtMHhKyGAwx1aAwYMfnLLQ4144BoQaw87RbvO6ZA76Otfb8y-dTNDHhZRHbfIS7ASacDlIAMEwI5wRWl29I6rDvWFYEFVd7zfX9TrM4GztLpvpkfTxTgw_9JhuNMFKECp5Nby5M-T0c4Wy6DkUC9NkIqS1aKp62mOuOlbR1_-gh7TmWP-qUp3spOKUVIpulM2plAz-_jUE69vw9Ra-ruHrY_j6Vv3qYR_3R_5EXQG2AaVuxRHy37v_o_0NUWu7XQ
Cites_doi 10.1038/s41467-019-13943-3
10.1063/1.2975848
10.1146/annurev.bb.12.060183.001035
10.1016/j.matdes.2017.12.001
10.1103/PhysRevA.95.043637
10.1613/jair.953
10.1007/s11263-018-1108-0
10.2307/2332539
10.3390/jimaging4010022
10.1109/JBHI.2020.3032060
10.1107/S0021889808026770
10.1038/nmeth.2019
10.1109/TPAMI.2017.2699184
10.1016/j.matdes.2020.109009
10.1016/S1369-7021(11)70139-0
10.2307/1932409
10.3390/app12031281
10.3390/info11020125
10.1088/1742-6596/2605/1/012015
10.1063/5.0045841
10.1016/j.coelec.2017.07.012
10.1109/TGRS.2018.2815613
10.1038/srep38307
10.2138/gselements.17.3.189
10.1186/s40537-019-0197-0
10.1016/j.phpro.2015.07.015
10.1016/j.artint.2015.12.003
10.1515/HF.2009.100
10.1038/s41598-017-13457-2
10.1038/s41598-019-55558-0
10.3390/app12020833
10.1149/2.1011902jes
10.1016/j.coal.2019.103325
10.1371/journal.pone.0078276
10.1073/pnas.2104906119
10.1016/j.inffus.2020.01.007
10.1038/s43586-021-00064-9
10.1214/aoms/1177730491
10.1016/j.cosrev.2023.100553
10.1109/CVPRW.2019.00145
10.1145/3338906.3338942
10.1109/CVPR.2009.5206848
10.1109/IROS.2017.8202133
10.1109/CVPR42600.2020.00271
10.1007/978-3-031-25069-9_30
10.1117/12.2305660
10.1109/ICRA.2019.8794443
10.1007/978-3-319-10602-1_48
ContentType Journal Article
Copyright This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024
2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.
This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024
– notice: 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.
– notice: This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
NPM
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PIMPY
PQEST
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-56409-3
DatabaseName Springer Open Access
PubMed
CrossRef
ProQuest Central (Corporate)
ProQuest_Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database (ProQuest)
Biological Science Database
Publicly Available Content Database (ProQuest Open Access資料庫)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

CrossRef
Publicly Available Content Database


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 6614
ExternalDocumentID oai_doaj_org_article_148b8ee530314312bd97d19607a30519
10_1038_s41598_024_56409_3
38503854
Genre Journal Article
GrantInformation_xml – fundername: National Institute of Standards and Technology
  funderid: http://dx.doi.org/10.13039/100000161
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ADBBV
ADRAZ
AENEX
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNT
RNTTT
RPM
SNYQT
UKHRP
NPM
AAYXX
CITATION
7XB
8FK
K9.
M48
PQEST
PQUKI
Q9U
7X8
5PM
AFPKN
ID FETCH-LOGICAL-c492t-c5ff4fd06e9b3c601624d74878594cbbf211ba040c5ea0bfbd9ce7075d3e12aa3
IEDL.DBID RPM
ISSN 2045-2322
IngestDate Tue Oct 22 15:16:42 EDT 2024
Tue Sep 17 21:29:07 EDT 2024
Sat Oct 26 05:57:57 EDT 2024
Fri Nov 08 20:53:14 EST 2024
Fri Nov 22 00:10:34 EST 2024
Sat Nov 02 11:59:13 EDT 2024
Fri Oct 11 20:55:48 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Data-driven simulation
Semantic segmentation
Neutron imaging
INFER
Language English
License 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-c5ff4fd06e9b3c601624d74878594cbbf211ba040c5ea0bfbd9ce7075d3e12aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10951284/
PMID 38503854
PQID 2968689421
PQPubID 2041939
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_148b8ee530314312bd97d19607a30519
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10951284
proquest_miscellaneous_2972704963
proquest_journals_2968689421
crossref_primary_10_1038_s41598_024_56409_3
pubmed_primary_38503854
springer_journals_10_1038_s41598_024_56409_3
PublicationCentury 2000
PublicationDate 2024-03-19
PublicationDateYYYYMMDD 2024-03-19
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-19
  day: 19
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Davis, Marcus (CR32) 2016; 233
Schindelin (CR50) 2012; 9
Iglesias, Talavera, Díaz-Álvarez (CR26) 2023; 48
Shorten, Khoshgoftaar (CR24) 2019; 6
Kim (CR48) 2023; 2605
CR36
Paszke (CR51) 2019; 32
CR35
Buslaev (CR25) 2020; 11
CR31
Bacak (CR10) 2020; 195
Boillat, Lehmann, Trtik, Cochet (CR16) 2017; 5
Johnson (CR49) 1949; 36
Siegwart (CR17) 2019; 166
Pushin (CR6) 2017; 95
Wen, Miao, Bennett, Adamo, Chen (CR22) 2013; 8
Dice (CR52) 1945; 26
Hotz (CR33) 2022; 119
Andersson, Van Heijkamp, De Schepper, Bouwman (CR29) 2008; 41
CR5
CR7
CR45
CR44
CR43
CR42
Santodonato (CR47) 2015; 69
CR41
Imani, Ghassemian (CR38) 2020; 59
Strobl (CR8) 2019; 9
Gaidon, Lopez, Perronnin (CR40) 2018; 126
Mann, Whitney (CR53) 1947; 18
Grünzweig (CR13) 2008; 93
Vivas, Yanes, Michels (CR30) 2017; 7
Ziesche (CR14) 2020; 11
Zaccai, Jacrot (CR2) 1983; 12
Chen, Papandreou, Kokkinos, Murphy, Yuille (CR39) 2017; 40
Rauscher (CR12) 2016; 6
Schillinger (CR19) 2018; 4
Artioli, Hussey (CR20) 2021; 17
Mannes, Sonderegger, Hering, Lehmann, Niemz (CR18) 2009; 63
Stacke, Eilertsen, Unger, Lundstrom (CR46) 2021; 25
Jeffries (CR3) 2021; 1
Xu (CR4) 2020; 217
Kim (CR21) 2022; 12
Wei, Hore (CR9) 2021; 129
Chawla, Bowyer, Hall, Kegelmeyer (CR34) 2002; 16
Brooks (CR11) 2018; 140
CR28
CR27
CR23
Yang (CR37) 2018; 56
Kardjilov, Manke, Hilger, Strobl, Banhart (CR1) 2011; 14
Brooks (CR15) 2022; 12
M Bacak (56409_CR10) 2020; 195
D Mannes (56409_CR18) 2009; 63
G Artioli (56409_CR20) 2021; 17
H Wen (56409_CR22) 2013; 8
C Shorten (56409_CR24) 2019; 6
G Iglesias (56409_CR26) 2023; 48
M Siegwart (56409_CR17) 2019; 166
NV Chawla (56409_CR34) 2002; 16
B Schillinger (56409_CR19) 2018; 4
56409_CR41
H Xu (56409_CR4) 2020; 217
C Grünzweig (56409_CR13) 2008; 93
VJ Hotz (56409_CR33) 2022; 119
X Yang (56409_CR37) 2018; 56
RF Ziesche (56409_CR14) 2020; 11
56409_CR44
56409_CR45
A Paszke (56409_CR51) 2019; 32
56409_CR42
LR Dice (56409_CR52) 1945; 26
56409_CR43
CM Jeffries (56409_CR3) 2021; 1
A Buslaev (56409_CR25) 2020; 11
56409_CR7
P Rauscher (56409_CR12) 2016; 6
56409_CR5
AJ Brooks (56409_CR15) 2022; 12
L-C Chen (56409_CR39) 2017; 40
M Imani (56409_CR38) 2020; 59
NL Johnson (56409_CR49) 1949; 36
L Santodonato (56409_CR47) 2015; 69
K Stacke (56409_CR46) 2021; 25
56409_CR31
M Strobl (56409_CR8) 2019; 9
56409_CR35
56409_CR36
AJ Brooks (56409_CR11) 2018; 140
E Davis (56409_CR32) 2016; 233
N Kardjilov (56409_CR1) 2011; 14
Y Kim (56409_CR21) 2022; 12
LG Vivas (56409_CR30) 2017; 7
Y Wei (56409_CR9) 2021; 129
Y Kim (56409_CR48) 2023; 2605
56409_CR28
P Boillat (56409_CR16) 2017; 5
G Zaccai (56409_CR2) 1983; 12
DA Pushin (56409_CR6) 2017; 95
56409_CR23
R Andersson (56409_CR29) 2008; 41
56409_CR27
HB Mann (56409_CR53) 1947; 18
A Gaidon (56409_CR40) 2018; 126
J Schindelin (56409_CR50) 2012; 9
References_xml – ident: CR45
– volume: 11
  start-page: 777
  year: 2020
  ident: CR14
  article-title: 4D imaging of lithium-batteries using correlative neutron and X-ray tomography with a virtual unrolling technique
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13943-3
  contributor:
    fullname: Ziesche
– volume: 93
  start-page: 1
  year: 2008
  end-page: 10
  ident: CR13
  article-title: Bulk magnetic domain structures visualized by neutron dark-field imaging
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2975848
  contributor:
    fullname: Grünzweig
– volume: 12
  start-page: 139
  year: 1983
  end-page: 157
  ident: CR2
  article-title: Small angle neutron scattering
  publication-title: Annu. Rev. Biophys. Bioeng.
  doi: 10.1146/annurev.bb.12.060183.001035
  contributor:
    fullname: Jacrot
– volume: 140
  start-page: 420
  year: 2018
  end-page: 430
  ident: CR11
  article-title: Neutron interferometry detection of early crack formation caused by bending fatigue in additively manufactured ss316 dogbones
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2017.12.001
  contributor:
    fullname: Brooks
– volume: 32
  start-page: 8024
  year: 2019
  end-page: 8035
  ident: CR51
  article-title: Pytorch: An imperative style, high-performance deep learning library
  publication-title: Adv. Neural Inform. Process. Syst.
  contributor:
    fullname: Paszke
– volume: 95
  year: 2017
  ident: CR6
  article-title: Far-field interference of a neutron white beam and the applications to noninvasive phase-contrast imaging
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.95.043637
  contributor:
    fullname: Pushin
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  ident: CR34
  article-title: SMOTE: Synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.953
  contributor:
    fullname: Kegelmeyer
– ident: CR35
– ident: CR42
– volume: 126
  start-page: 899
  year: 2018
  end-page: 901
  ident: CR40
  article-title: The reasonable effectiveness of synthetic visual data
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-018-1108-0
  contributor:
    fullname: Perronnin
– volume: 36
  start-page: 149
  year: 1949
  end-page: 176
  ident: CR49
  article-title: Systems of frequency curves generated by methods of translation
  publication-title: Biometrika
  doi: 10.2307/2332539
  contributor:
    fullname: Johnson
– volume: 4
  start-page: 22
  year: 2018
  ident: CR19
  article-title: Neutron imaging in cultural heritage research at the FRM II reactor of the Heinz Maier-Leibnitz center
  publication-title: J. Imaging
  doi: 10.3390/jimaging4010022
  contributor:
    fullname: Schillinger
– volume: 25
  start-page: 325
  year: 2021
  end-page: 336
  ident: CR46
  article-title: Measuring domain shift for deep learning in histopathology
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2020.3032060
  contributor:
    fullname: Lundstrom
– volume: 41
  start-page: 868
  year: 2008
  end-page: 885
  ident: CR29
  article-title: Analysis of spin-echo small-angle neutron scattering measurements
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889808026770
  contributor:
    fullname: Bouwman
– volume: 9
  start-page: 676
  year: 2012
  end-page: 682
  ident: CR50
  article-title: Fiji: An open-source platform for biological-image analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2019
  contributor:
    fullname: Schindelin
– volume: 40
  start-page: 834
  year: 2017
  end-page: 848
  ident: CR39
  article-title: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2699184
  contributor:
    fullname: Yuille
– volume: 195
  year: 2020
  ident: CR10
  article-title: Neutron dark-field imaging applied to porosity and deformation-induced phase transitions in additively manufactured steels
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2020.109009
  contributor:
    fullname: Bacak
– volume: 14
  start-page: 248
  year: 2011
  end-page: 256
  ident: CR1
  article-title: Neutron imaging in materials science
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(11)70139-0
  contributor:
    fullname: Banhart
– volume: 26
  start-page: 297
  year: 1945
  end-page: 302
  ident: CR52
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
  doi: 10.2307/1932409
  contributor:
    fullname: Dice
– volume: 12
  start-page: 1281
  year: 2022
  ident: CR15
  article-title: Intact, commercial lithium-polymer batteries: Spatially resolved grating-based interferometry imaging, Bragg edge imaging, and neutron diffraction
  publication-title: Appl. Sci.
  doi: 10.3390/app12031281
  contributor:
    fullname: Brooks
– volume: 11
  start-page: 125
  year: 2020
  ident: CR25
  article-title: Albumentations: Fast and flexible image augmentations
  publication-title: Information
  doi: 10.3390/info11020125
  contributor:
    fullname: Buslaev
– volume: 2605
  year: 2023
  ident: CR48
  article-title: Simulation framework for infer neutron grating interferometry experiments
  publication-title: J. Phys.
  doi: 10.1088/1742-6596/2605/1/012015
  contributor:
    fullname: Kim
– ident: CR36
– volume: 129
  year: 2021
  ident: CR9
  article-title: Characterizing polymer structure with small-angle neutron scattering: A tutorial
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0045841
  contributor:
    fullname: Hore
– ident: CR5
– volume: 5
  start-page: 3
  year: 2017
  end-page: 10
  ident: CR16
  article-title: Neutron imaging of fuel cells: Recent trends and future prospects
  publication-title: Curr. Opin. Electrochem.
  doi: 10.1016/j.coelec.2017.07.012
  contributor:
    fullname: Cochet
– volume: 56
  start-page: 5408
  year: 2018
  end-page: 5423
  ident: CR37
  article-title: Hyperspectral image classification with deep learning models
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2815613
  contributor:
    fullname: Yang
– volume: 6
  start-page: 38307
  year: 2016
  ident: CR12
  article-title: The influence of laser scribing on magnetic domain formation in grain oriented electrical steel visualized by directional neutron dark-field imaging
  publication-title: Sci. Rep.
  doi: 10.1038/srep38307
  contributor:
    fullname: Rauscher
– volume: 17
  start-page: 189
  year: 2021
  end-page: 194
  ident: CR20
  article-title: Imaging with neutrons
  publication-title: Elem. Int. Mag. Mineral. Geochem. Pet.
  doi: 10.2138/gselements.17.3.189
  contributor:
    fullname: Hussey
– volume: 6
  start-page: 60
  year: 2019
  ident: CR24
  article-title: A survey on image data augmentation for deep learning
  publication-title: J. Big Data
  doi: 10.1186/s40537-019-0197-0
  contributor:
    fullname: Khoshgoftaar
– volume: 69
  start-page: 104
  year: 2015
  end-page: 108
  ident: CR47
  article-title: The CG-1D neutron imaging beamline at the Oak Ridge national laboratory high flux isotope reactor
  publication-title: Phys. Procedia
  doi: 10.1016/j.phpro.2015.07.015
  contributor:
    fullname: Santodonato
– ident: CR43
– volume: 233
  start-page: 60
  year: 2016
  end-page: 72
  ident: CR32
  article-title: The scope and limits of simulation in automated reasoning
  publication-title: Artif. Intell.
  doi: 10.1016/j.artint.2015.12.003
  contributor:
    fullname: Marcus
– volume: 63
  start-page: 589
  year: 2009
  end-page: 596
  ident: CR18
  article-title: Non-destructive determination and quantification of diffusion processes in wood by means of neutron imaging
  publication-title: Holzforschung
  doi: 10.1515/HF.2009.100
  contributor:
    fullname: Niemz
– volume: 7
  start-page: 13060
  year: 2017
  ident: CR30
  article-title: Small-angle neutron scattering modeling of spin disorder in nanoparticles
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-13457-2
  contributor:
    fullname: Michels
– ident: CR27
– volume: 9
  start-page: 19649
  year: 2019
  ident: CR8
  article-title: Achromatic non-interferometric single grating neutron dark-field imaging
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-55558-0
  contributor:
    fullname: Strobl
– ident: CR23
– volume: 12
  start-page: 833
  year: 2022
  ident: CR21
  article-title: Quantitative neutron dark-field imaging of milk: A feasibility study
  publication-title: Appl. Sci.
  doi: 10.3390/app12020833
  contributor:
    fullname: Kim
– ident: CR44
– volume: 166
  start-page: F149
  year: 2019
  ident: CR17
  article-title: Selective visualization of water in fuel cell gas diffusion layers with neutron dark-field imaging
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1011902jes
  contributor:
    fullname: Siegwart
– volume: 217
  year: 2020
  ident: CR4
  article-title: Probing nanopore structure and confined fluid behavior in shale matrix: A review on small-angle neutron scattering studies
  publication-title: Int. J. Coal Geol.
  doi: 10.1016/j.coal.2019.103325
  contributor:
    fullname: Xu
– ident: CR31
– volume: 8
  year: 2013
  ident: CR22
  article-title: Flexible retrospective phase stepping in X-ray scatter correction and phase contrast imaging using structured illumination
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0078276
  contributor:
    fullname: Chen
– volume: 119
  year: 2022
  ident: CR33
  article-title: Balancing data privacy and usability in the federal statistical system
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.2104906119
  contributor:
    fullname: Hotz
– volume: 59
  start-page: 59
  year: 2020
  end-page: 83
  ident: CR38
  article-title: An overview on spectral and spatial information fusion for hyperspectral image classification: Current trends and challenges
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2020.01.007
  contributor:
    fullname: Ghassemian
– volume: 1
  start-page: 70
  year: 2021
  ident: CR3
  article-title: Small-angle X-ray and neutron scattering
  publication-title: Nat. Rev. Methods Primers
  doi: 10.1038/s43586-021-00064-9
  contributor:
    fullname: Jeffries
– volume: 18
  start-page: 50
  year: 1947
  end-page: 60
  ident: CR53
  article-title: On a test of whether one of two random variables is stochastically larger than the other
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177730491
  contributor:
    fullname: Whitney
– ident: CR7
– volume: 48
  year: 2023
  ident: CR26
  article-title: A survey on GANs for computer vision: Recent research, analysis and taxonomy
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2023.100553
  contributor:
    fullname: Díaz-Álvarez
– ident: CR28
– ident: CR41
– volume: 126
  start-page: 899
  year: 2018
  ident: 56409_CR40
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-018-1108-0
  contributor:
    fullname: A Gaidon
– volume: 69
  start-page: 104
  year: 2015
  ident: 56409_CR47
  publication-title: Phys. Procedia
  doi: 10.1016/j.phpro.2015.07.015
  contributor:
    fullname: L Santodonato
– volume: 12
  start-page: 139
  year: 1983
  ident: 56409_CR2
  publication-title: Annu. Rev. Biophys. Bioeng.
  doi: 10.1146/annurev.bb.12.060183.001035
  contributor:
    fullname: G Zaccai
– volume: 56
  start-page: 5408
  year: 2018
  ident: 56409_CR37
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2815613
  contributor:
    fullname: X Yang
– ident: 56409_CR23
  doi: 10.1109/CVPRW.2019.00145
– volume: 119
  year: 2022
  ident: 56409_CR33
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.2104906119
  contributor:
    fullname: VJ Hotz
– volume: 14
  start-page: 248
  year: 2011
  ident: 56409_CR1
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(11)70139-0
  contributor:
    fullname: N Kardjilov
– ident: 56409_CR35
  doi: 10.1145/3338906.3338942
– volume: 233
  start-page: 60
  year: 2016
  ident: 56409_CR32
  publication-title: Artif. Intell.
  doi: 10.1016/j.artint.2015.12.003
  contributor:
    fullname: E Davis
– ident: 56409_CR45
  doi: 10.1109/CVPR.2009.5206848
– volume: 48
  year: 2023
  ident: 56409_CR26
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2023.100553
  contributor:
    fullname: G Iglesias
– volume: 40
  start-page: 834
  year: 2017
  ident: 56409_CR39
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2699184
  contributor:
    fullname: L-C Chen
– volume: 93
  start-page: 1
  year: 2008
  ident: 56409_CR13
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2975848
  contributor:
    fullname: C Grünzweig
– volume: 6
  start-page: 60
  year: 2019
  ident: 56409_CR24
  publication-title: J. Big Data
  doi: 10.1186/s40537-019-0197-0
  contributor:
    fullname: C Shorten
– ident: 56409_CR41
  doi: 10.1109/IROS.2017.8202133
– ident: 56409_CR42
  doi: 10.1109/CVPR42600.2020.00271
– volume: 166
  start-page: F149
  year: 2019
  ident: 56409_CR17
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1011902jes
  contributor:
    fullname: M Siegwart
– volume: 129
  year: 2021
  ident: 56409_CR9
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0045841
  contributor:
    fullname: Y Wei
– volume: 217
  year: 2020
  ident: 56409_CR4
  publication-title: Int. J. Coal Geol.
  doi: 10.1016/j.coal.2019.103325
  contributor:
    fullname: H Xu
– volume: 16
  start-page: 321
  year: 2002
  ident: 56409_CR34
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.953
  contributor:
    fullname: NV Chawla
– volume: 32
  start-page: 8024
  year: 2019
  ident: 56409_CR51
  publication-title: Adv. Neural Inform. Process. Syst.
  contributor:
    fullname: A Paszke
– volume: 4
  start-page: 22
  year: 2018
  ident: 56409_CR19
  publication-title: J. Imaging
  doi: 10.3390/jimaging4010022
  contributor:
    fullname: B Schillinger
– ident: 56409_CR7
– volume: 5
  start-page: 3
  year: 2017
  ident: 56409_CR16
  publication-title: Curr. Opin. Electrochem.
  doi: 10.1016/j.coelec.2017.07.012
  contributor:
    fullname: P Boillat
– volume: 7
  start-page: 13060
  year: 2017
  ident: 56409_CR30
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-13457-2
  contributor:
    fullname: LG Vivas
– ident: 56409_CR36
– volume: 18
  start-page: 50
  year: 1947
  ident: 56409_CR53
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177730491
  contributor:
    fullname: HB Mann
– ident: 56409_CR28
  doi: 10.1007/978-3-031-25069-9_30
– ident: 56409_CR44
  doi: 10.1117/12.2305660
– volume: 12
  start-page: 1281
  year: 2022
  ident: 56409_CR15
  publication-title: Appl. Sci.
  doi: 10.3390/app12031281
  contributor:
    fullname: AJ Brooks
– ident: 56409_CR43
  doi: 10.1109/ICRA.2019.8794443
– volume: 59
  start-page: 59
  year: 2020
  ident: 56409_CR38
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2020.01.007
  contributor:
    fullname: M Imani
– ident: 56409_CR27
  doi: 10.1007/978-3-319-10602-1_48
– volume: 8
  year: 2013
  ident: 56409_CR22
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0078276
  contributor:
    fullname: H Wen
– volume: 25
  start-page: 325
  year: 2021
  ident: 56409_CR46
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2020.3032060
  contributor:
    fullname: K Stacke
– volume: 9
  start-page: 19649
  year: 2019
  ident: 56409_CR8
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-55558-0
  contributor:
    fullname: M Strobl
– volume: 12
  start-page: 833
  year: 2022
  ident: 56409_CR21
  publication-title: Appl. Sci.
  doi: 10.3390/app12020833
  contributor:
    fullname: Y Kim
– volume: 2605
  year: 2023
  ident: 56409_CR48
  publication-title: J. Phys.
  doi: 10.1088/1742-6596/2605/1/012015
  contributor:
    fullname: Y Kim
– volume: 140
  start-page: 420
  year: 2018
  ident: 56409_CR11
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2017.12.001
  contributor:
    fullname: AJ Brooks
– volume: 6
  start-page: 38307
  year: 2016
  ident: 56409_CR12
  publication-title: Sci. Rep.
  doi: 10.1038/srep38307
  contributor:
    fullname: P Rauscher
– volume: 95
  year: 2017
  ident: 56409_CR6
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.95.043637
  contributor:
    fullname: DA Pushin
– volume: 11
  start-page: 777
  year: 2020
  ident: 56409_CR14
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13943-3
  contributor:
    fullname: RF Ziesche
– volume: 9
  start-page: 676
  year: 2012
  ident: 56409_CR50
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2019
  contributor:
    fullname: J Schindelin
– ident: 56409_CR31
– volume: 26
  start-page: 297
  year: 1945
  ident: 56409_CR52
  publication-title: Ecology
  doi: 10.2307/1932409
  contributor:
    fullname: LR Dice
– volume: 1
  start-page: 70
  year: 2021
  ident: 56409_CR3
  publication-title: Nat. Rev. Methods Primers
  doi: 10.1038/s43586-021-00064-9
  contributor:
    fullname: CM Jeffries
– volume: 36
  start-page: 149
  year: 1949
  ident: 56409_CR49
  publication-title: Biometrika
  doi: 10.2307/2332539
  contributor:
    fullname: NL Johnson
– volume: 17
  start-page: 189
  year: 2021
  ident: 56409_CR20
  publication-title: Elem. Int. Mag. Mineral. Geochem. Pet.
  doi: 10.2138/gselements.17.3.189
  contributor:
    fullname: G Artioli
– volume: 195
  year: 2020
  ident: 56409_CR10
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2020.109009
  contributor:
    fullname: M Bacak
– volume: 63
  start-page: 589
  year: 2009
  ident: 56409_CR18
  publication-title: Holzforschung
  doi: 10.1515/HF.2009.100
  contributor:
    fullname: D Mannes
– volume: 41
  start-page: 868
  year: 2008
  ident: 56409_CR29
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889808026770
  contributor:
    fullname: R Andersson
– volume: 11
  start-page: 125
  year: 2020
  ident: 56409_CR25
  publication-title: Information
  doi: 10.3390/info11020125
  contributor:
    fullname: A Buslaev
– ident: 56409_CR5
SSID ssj0000529419
Score 2.4618654
Snippet Neutron interferometry uniquely combines neutron imaging and scattering methods to enable characterization of multiple length scales from 1 nm to 10 µm....
Abstract Neutron interferometry uniquely combines neutron imaging and scattering methods to enable characterization of multiple length scales from 1 nm to 10...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 6614
SubjectTerms 639/301/930/12
639/301/930/2735
639/766/930
639/925/930
Artificial intelligence
Automation
Data-driven simulation
Design
Humanities and Social Sciences
Image processing
INFER
Interferometry
Mathematical models
multidisciplinary
Neutron imaging
Neutrons
Science
Science (multidisciplinary)
Semantic segmentation
Simulation
Statistical analysis
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9QwDLZgJSQuaHkXFhQkbhBtm0eTHBd2V4uEuAAStyivwhyms9rOHPj3a7edgeEhLlybqrI-x7Fdx58BXqosYk6m8Ea0FhOUOvPYKc2bIpI0yZjQUL_zxUfz4Ys9PSOanN2oL7oTNtEDT8AdY7gebSlaEs-6bPDLzmTcNrUJksKP8fStzU_J1MTqLZxq3NwlU0t7PKCnom4yobhuFRX89zzRSNj_pyjz98uSv1RMR0d0fgh35giSnUyS34Ubpb8Ht6aZkt_vw_vTsA48X9EpxobFch7PNTCMTtl2IAQ7ecfJf2U2lK_Luf2oZ6uO9WVDP8fZYokHzfAAPp-ffXp7weeRCTwpJ9Y86a5TXa7b4qJMRLUiVDaYlFjtVIqxw3wvBjTcpEuoY4dopmIwbMiyNCIE-RAO-lVfHgOrQ9CqjVaJUlSrO-u0TkLKbEPjXI4VvNrC5y8nZgw_VrSl9RPYHsH2I9heVvCGEN69SazW4wPUtZ917f-l6wqOtvrxs6kNXrjWttYp0VTwYreMRkKVj9CX1YbewTANc6EW5Xg0qXMnibTEiKNVBXZP0Xui7q_0i28jEXdD8Sn69wpeb_fED7n-jsWT_4HFU7gtaDPT1UJ3BAfrq015BjeHvHk-msI1wpEJAQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Data-driven simulations for training AI-based segmentation of neutron images
URI https://link.springer.com/article/10.1038/s41598-024-56409-3
https://www.ncbi.nlm.nih.gov/pubmed/38503854
https://www.proquest.com/docview/2968689421
https://search.proquest.com/docview/2972704963
https://pubmed.ncbi.nlm.nih.gov/PMC10951284
https://doaj.org/article/148b8ee530314312bd97d19607a30519
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6xlZC4ICivQKmMxA3STfyI7WPpQ0UChARI3CK_UlYi2Wqze-DfM3aShYX20mtsKaOZsf2NZ-YzwGvuqfVOhryklcIApfC5bbjIy0Adk05KU8Z-54sv8tN3dXoWaXKqqRcmFe07uzjqfrZH3eJHqq28at18qhObf_54UkZcgPvqfAYzBId_xegDozfVvNRjh0zB1LzHUyp2klGei4rHZP_OKZTI-q9DmP8XSv6TLU2H0PkDuD-iR3I8SPkQ7oRuH-4O70n-egQfTs3a5H4VdzDSL9rxaa6eIDIl02MQ5Ph9Hs8uT_pw2Y6tRx1ZNqQLm3gxThYtbjL9Y_h2fvb15CIfn0vIHdd0nTvRNLzxRRW0ZS7SrFDuJQYkSmjurG0w1rMGF60TwRS2sV67IBEyeBZKagx7AnvdsgvPgBTGCF5ZxWkIvBKN0kI4yphXptTa2wzeTOqrrwZWjDpls5mqB2XXqOw6KbtmGbyLGt7OjIzW6cNydVmPdsUQRFkVgmCRT5-V6EFaetweCmlYhJkZHEz2qcdl1tdUV6pSmtMyg1fbYVwgMethurDcxDkI0TAOqlCOp4M5t5IwFdlwBM9A7Rh6R9TdEfTJRMI9-WAGbyef-CPXzbp4fvs_vYB7NLpwLCbUB7C3Xm3CS5j1fnOYbhIO0zL4DU8MCvM
link.rule.ids 230,315,729,782,786,866,887,2107,27934,27935,53802,53804
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB7RIgQv3EeggJF4g3QTH4n9WHpoK7YVEkXizfKVshLJVpvdB_494xwLy_HS19hSJp7DM5mZbwDeck-td2VIc1pIDFAyn9qKizQP1LHSlaXJY7_z9HN5_lUeHUeYnGLshemK9p2d7zff6_1m_q2rrbyq3WSsE5t8OjvMo1-AdnWyAzdRYTP6W5TeY3pTxXM19MhkTE5avKdiLxnlqSh4TPdv3UMdXP-_fMy_SyX_yJd219DJvet-wH24Ozie5KBffwA3QvMQbvWjKH88gtmRWZnUL6PxI-28HqZ6tQSdWjLOkSAHp2m89jxpw2U9dC01ZFGRJqzjP3Uyr9E-tY_hy8nxxeE0HSYtpI4rukqdqCpe-awIyjIXEVoo9yXGMlIo7qytMEy0BvXdiWAyW1mvXCjR2_As5NQY9gR2m0UTngHJjBG8sJLTEHghKqmEcJQxL02ulLcJvBvPXV_1gBq6S4QzqXsuaeSS7rikWQIfIms2OyMYdvdgsbzUw4li9CKtDEGwCMXPchQ-VXq0LFlpWPRQE9gbGasHDW01VYUspOI0T-DNZhl1KyZMTBMW67gHvTsMoQqk42kvBxtKmIxAOoInILckZIvU7RWUhg6_e-R-Au9HYfpF1__P4vn13_Qabk8vzmZ6dnr-8QXcoVEPYk2i2oPd1XIdXsJO69evOi36Ca4JH7c
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIhAX3tBAASNxgzSJH7HNrXS7akWpKgESN8uvlJWa7Gqze-DfY-exsDwucI0tZeJ5eCYz8w3AK-qwcZb7tMClCAFK7lJTUZYWHlvCLee6iP3OJx_5-RcxOY4wOW_HXpiuaN-a2UFzVR80s69dbeWittlYJ5ZdfDgqol8Q7Gq2cFW2A9eD0ub0p0i9x_XGkhZy6JPJicjacFfFfjJMU1bSmPLfuos6yP4_-Zm_l0v-kjPtrqLpnf_5iLtwe3BA0WG_5x5c8819uNGPpPz2AM4meqVTt4xGELWzepju1aLg3KJxngQ6PE3j9edQ6y_roXupQfMKNX4d_62jWR3sVPsQPk-PPx2dpMPEhdRSiVepZVVFK5eXXhpiI1ILpo6HmEYwSa0xVQgXjQ56b5nXuamMk9bz4HU44gusNXkEu8288XuAcq0ZLY2g2HtaskpIxiwmxAldSOlMAq_Hs1eLHlhDdQlxIlTPKRU4pTpOKZLAu8iezc4Iit09mC8v1XCqIYoRRnjPSITkJ0UQQsldsDA51yR6qgnsj8xVg6a2CstSlEJSXCTwcrMcdCwmTnTj5-u4J3h5IZQqAx2Pe1nYUEJEBNRhNAGxJSVbpG6vBInocLxHCUjgzShQP-j6-1k8-fc3vYCbF5OpOjs9f_8UbuGoCrE0Ue7D7mq59s9gp3Xr550ifQfHcSI3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+simulations+for+training+AI-based+segmentation+of+neutron+images&rft.jtitle=Scientific+reports&rft.au=Sathe%2C+Pushkar+S.&rft.au=Wolf%2C+Caitlyn+M.&rft.au=Kim%2C+Youngju&rft.au=Robinson%2C+Sarah+M.&rft.date=2024-03-19&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-024-56409-3&rft.externalDocID=10_1038_s41598_024_56409_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon