DNA Breaks Promote Genomic Instability by Impeding Proper Chromosome Segregation

Background: Unrepaired DNA double-stranded breaks (DSBs) can result in the whole or partial loss of chromosomes. Previously, we showed that the ends of broken chromosomes remain associated. Here, we have examined the machinery that holds broken chromosome ends together, and we have explored the beha...

Full description

Saved in:
Bibliographic Details
Published in:Current biology Vol. 14; no. 23; pp. 2096 - 2106
Main Authors: Kaye, Julia A., Melo, Justine A., Cheung, Stephanie K., Vaze, Moreshwar B., Haber, James E., Toczyski, David P.
Format: Journal Article
Language:English
Published: England Elsevier Inc 14-12-2004
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Background: Unrepaired DNA double-stranded breaks (DSBs) can result in the whole or partial loss of chromosomes. Previously, we showed that the ends of broken chromosomes remain associated. Here, we have examined the machinery that holds broken chromosome ends together, and we have explored the behavior of broken chromosomes as they pass through mitosis. Results: Using GFP-localized arrays flanking an HO endonuclease site, we examined the association of broken chromosome ends in yeast cells that are checkpoint-arrested in metaphase. This association is partially dependent upon Rad50 and Rad52. After 6–8 hr, cells adapted to the checkpoint and resumed mitosis, segregating the broken chromosome. When this occurred, we found that the acentric fragments cosegregated into either the mother or daughter cell 95% of the time. Similarly, pedigree analysis showed that postmitotic repair of a broken chromosome (rejoining the centric and acentric fragments) occurred in either the mother or daughter cell, but rarely both, consistent with a model in which both acentric sister chromatid fragments are passaged into the same nucleus. Conclusions: These data suggest two related phenomena: an intrachromosomal association that holds the halves of a single broken sister chromatid together in metaphase and an interchromosomal force that tethers broken sister chromatids to each other and promotes their missegregation. Strikingly, the interchromosomal association of DNA breaks also promotes the missegregation of centromeric chromosomal fragments, albeit to a lesser extent than acentric fragments. The DNA break-induced missegregation of acentric and centric chromosome fragments provides a novel mechanism for the loss of heterozygosity that precedes tumorigenesis in mammalian cells.
AbstractList BACKGROUNDUnrepaired DNA double-stranded breaks (DSBs) can result in the whole or partial loss of chromosomes. Previously, we showed that the ends of broken chromosomes remain associated. Here, we have examined the machinery that holds broken chromosome ends together, and we have explored the behavior of broken chromosomes as they pass through mitosis.RESULTSUsing GFP-localized arrays flanking an HO endonuclease site, we examined the association of broken chromosome ends in yeast cells that are checkpoint-arrested in metaphase. This association is partially dependent upon Rad50 and Rad52. After 6-8 hr, cells adapted to the checkpoint and resumed mitosis, segregating the broken chromosome. When this occurred, we found that the acentric fragments cosegregated into either the mother or daughter cell 95% of the time. Similarly, pedigree analysis showed that postmitotic repair of a broken chromosome (rejoining the centric and acentric fragments) occurred in either the mother or daughter cell, but rarely both, consistent with a model in which both acentric sister chromatid fragments are passaged into the same nucleus.CONCLUSIONSThese data suggest two related phenomena: an intrachromosomal association that holds the halves of a single broken sister chromatid together in metaphase and an interchromosomal force that tethers broken sister chromatids to each other and promotes their missegregation. Strikingly, the interchromosomal association of DNA breaks also promotes the missegregation of centromeric chromosomal fragments, albeit to a lesser extent than acentric fragments. The DNA break-induced missegregation of acentric and centric chromosome fragments provides a novel mechanism for the loss of heterozygosity that precedes tumorigenesis in mammalian cells.
Unrepaired DNA double-stranded breaks (DSBs) can result in the whole or partial loss of chromosomes. Previously, we showed that the ends of broken chromosomes remain associated. Here, we have examined the machinery that holds broken chromosome ends together, and we have explored the behavior of broken chromosomes as they pass through mitosis. Using GFP-localized arrays flanking an HO endonuclease site, we examined the association of broken chromosome ends in yeast cells that are checkpoint-arrested in metaphase. This association is partially dependent upon Rad50 and Rad52. After 6-8 hr, cells adapted to the checkpoint and resumed mitosis, segregating the broken chromosome. When this occurred, we found that the acentric fragments cosegregated into either the mother or daughter cell 95% of the time. Similarly, pedigree analysis showed that postmitotic repair of a broken chromosome (rejoining the centric and acentric fragments) occurred in either the mother or daughter cell, but rarely both, consistent with a model in which both acentric sister chromatid fragments are passaged into the same nucleus. These data suggest two related phenomena: an intrachromosomal association that holds the halves of a single broken sister chromatid together in metaphase and an interchromosomal force that tethers broken sister chromatids to each other and promotes their missegregation. Strikingly, the interchromosomal association of DNA breaks also promotes the missegregation of centromeric chromosomal fragments, albeit to a lesser extent than acentric fragments. The DNA break-induced missegregation of acentric and centric chromosome fragments provides a novel mechanism for the loss of heterozygosity that precedes tumorigenesis in mammalian cells.
Unrepaired DNA double-stranded breaks (DSBs) can result in the whole or partial loss of chromosomes. Previously, we showed that the ends of broken chromosomes remain associated. Here, we have examined the machinery that holds broken chromosome ends together, and we have explored the behavior of broken chromosomes as they pass through mitosis. Using GFP-localized arrays flanking an HO endonuclease site, we examined the association of broken chromosome ends in yeast cells that are checkpoint-arrested in metaphase. This association is partially dependent upon Rad50 and Rad52. After 6-8 hr, cells adapted to the checkpoint and resumed mitosis, segregating the broken chromosome. When this occurred, we found that the acentric fragments cosegregated into either the mother or daughter cell 95% of the time. Similarly, pedigree analysis showed that postmitotic repair of a broken chromosome (rejoining the centric and acentric fragments) occurred in either the mother or daughter cell, but rarely both, consistent with a model in which both acentric sister chromatid fragments are passaged into the same nucleus. These data suggest two related phenomena: an intrachromosomal association that holds the halves of a single broken sister chromatid together in metaphase and an interchromosomal force that tethers broken sister chromatids to each other and promotes their missegregation. Strikingly, the interchromosomal association of DNA breaks also promotes the missegregation of centromeric chromosomal fragments, albeit to a lesser extent than acentric fragments. The DNA break-induced missegregation of acentric and centric chromosome fragments provides a novel mechanism for the loss of heterozygosity that precedes tumorigenesis in mammalian cells.
Background: Unrepaired DNA double-stranded breaks (DSBs) can result in the whole or partial loss of chromosomes. Previously, we showed that the ends of broken chromosomes remain associated. Here, we have examined the machinery that holds broken chromosome ends together, and we have explored the behavior of broken chromosomes as they pass through mitosis. Results: Using GFP-localized arrays flanking an HO endonuclease site, we examined the association of broken chromosome ends in yeast cells that are checkpoint-arrested in metaphase. This association is partially dependent upon Rad50 and Rad52. After 6–8 hr, cells adapted to the checkpoint and resumed mitosis, segregating the broken chromosome. When this occurred, we found that the acentric fragments cosegregated into either the mother or daughter cell 95% of the time. Similarly, pedigree analysis showed that postmitotic repair of a broken chromosome (rejoining the centric and acentric fragments) occurred in either the mother or daughter cell, but rarely both, consistent with a model in which both acentric sister chromatid fragments are passaged into the same nucleus. Conclusions: These data suggest two related phenomena: an intrachromosomal association that holds the halves of a single broken sister chromatid together in metaphase and an interchromosomal force that tethers broken sister chromatids to each other and promotes their missegregation. Strikingly, the interchromosomal association of DNA breaks also promotes the missegregation of centromeric chromosomal fragments, albeit to a lesser extent than acentric fragments. The DNA break-induced missegregation of acentric and centric chromosome fragments provides a novel mechanism for the loss of heterozygosity that precedes tumorigenesis in mammalian cells.
Author Vaze, Moreshwar B.
Kaye, Julia A.
Haber, James E.
Melo, Justine A.
Cheung, Stephanie K.
Toczyski, David P.
Author_xml – sequence: 1
  givenname: Julia A.
  surname: Kaye
  fullname: Kaye, Julia A.
  organization: Cancer Research Institute, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94115 USA
– sequence: 2
  givenname: Justine A.
  surname: Melo
  fullname: Melo, Justine A.
  organization: Cancer Research Institute, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94115 USA
– sequence: 3
  givenname: Stephanie K.
  surname: Cheung
  fullname: Cheung, Stephanie K.
  organization: Cancer Research Institute, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94115 USA
– sequence: 4
  givenname: Moreshwar B.
  surname: Vaze
  fullname: Vaze, Moreshwar B.
  organization: Brandeis University, Waltham, MA 02454 USA
– sequence: 5
  givenname: James E.
  surname: Haber
  fullname: Haber, James E.
  organization: Brandeis University, Waltham, MA 02454 USA
– sequence: 6
  givenname: David P.
  surname: Toczyski
  fullname: Toczyski, David P.
  email: toczyski@cc.ucsf.edu
  organization: Cancer Research Institute, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94115 USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15589151$$D View this record in MEDLINE/PubMed
BookMark eNqFkMtu2zAQRYkiReO4_YBuAq2ykzMjUXwgq8RJEwNGG6DtmqDokUPXEh1SLuC_rwQb6C5ZDe7g3Ls4F-ysCx0x9hVhhoDiejNz-3pWAPAhz6DCD2yCSuocOK_O2AS0gFyrojhnFyltALBQWnxi51hVSmOFE_Z8__02u4tk_6TsOYY29JQ9Uhda77JFl3pb-63vD1l9yBbtjla-W4_cjmI2fxn5FFrKftI60tr2PnSf2cfGbhN9Od0p-_3t4df8KV_-eFzMb5e54xr7nFxJKyU5FBYkFLwpRcMLLSsqSgG8lMgbKmsrhXYORFVrBbZulBUkHDpXTtnVcXcXw-ueUm9anxxtt7ajsE9GSBQKK3gXRKlKBMkHEI-giyGlSI3ZRd_aeDAIZvRtNmbwbUbf42vwPXQuT-P7uqXV_8ZJ8ADcHAEaXPz1FE1ynjo3mIzkerMK_o35f5YLkWY
CitedBy_id crossref_primary_10_1534_genetics_114_166140
crossref_primary_10_1016_j_dnarep_2016_03_013
crossref_primary_10_1139_O07_069
crossref_primary_10_1093_nar_gkz1203
crossref_primary_10_1007_s00294_006_0072_3
crossref_primary_10_1093_nar_gky086
crossref_primary_10_3390_cells11203224
crossref_primary_10_1007_s10440_022_00501_1
crossref_primary_10_1016_j_molcel_2008_05_028
crossref_primary_10_1016_j_tig_2010_11_001
crossref_primary_10_3390_ijms25052936
crossref_primary_10_1074_jbc_M505277200
crossref_primary_10_1002_bies_201700229
crossref_primary_10_1093_nar_gkr340
crossref_primary_10_1038_nrm1599
crossref_primary_10_1016_j_cell_2006_04_042
crossref_primary_10_1016_j_cell_2009_12_043
crossref_primary_10_1016_j_ceb_2018_03_007
crossref_primary_10_1530_ERC_17_0187
crossref_primary_10_1128_MCB_01740_06
crossref_primary_10_1016_j_dnarep_2009_07_006
crossref_primary_10_1101_gad_318485_118
crossref_primary_10_1111_j_1365_2958_2011_07532_x
crossref_primary_10_1371_journal_pone_0004075
crossref_primary_10_1038_emboj_2008_11
crossref_primary_10_1016_j_cell_2009_02_016
crossref_primary_10_1091_mbc_E15_01_0026
crossref_primary_10_1038_nrg2593
crossref_primary_10_1007_s00294_018_0861_5
crossref_primary_10_1093_nar_gkad062
crossref_primary_10_3892_ol_2018_9545
crossref_primary_10_1016_j_gde_2012_11_015
crossref_primary_10_1101_gad_1782209
crossref_primary_10_1186_1476_4598_13_249
crossref_primary_10_1016_j_csbj_2020_05_013
crossref_primary_10_1016_j_molcel_2007_01_028
crossref_primary_10_1038_nsmb_2225
crossref_primary_10_1111_j_1365_2958_2006_05186_x
crossref_primary_10_1038_ncb2941
crossref_primary_10_3390_genes9120589
crossref_primary_10_1146_annurev_genet_40_051206_105231
crossref_primary_10_1371_journal_pgen_1000973
crossref_primary_10_2139_ssrn_3352501
crossref_primary_10_1083_jcb_201504059
crossref_primary_10_1098_rsos_210460
crossref_primary_10_1534_genetics_112_138818
crossref_primary_10_1534_genetics_108_093625
crossref_primary_10_1038_s41380_021_01142_w
crossref_primary_10_1016_j_dnarep_2020_102869
crossref_primary_10_1128_MCB_00135_07
crossref_primary_10_1093_mutage_gem011
crossref_primary_10_1038_sj_onc_1210873
crossref_primary_10_1073_pnas_0810317106
crossref_primary_10_1083_jcb_202401085
crossref_primary_10_1007_s10577_020_09636_z
crossref_primary_10_3389_fcell_2021_669041
crossref_primary_10_1371_journal_pbio_1002387
crossref_primary_10_1038_s41586_023_06216_z
crossref_primary_10_1016_j_molcel_2016_10_032
crossref_primary_10_1080_19491034_2017_1419847
crossref_primary_10_1016_j_celrep_2019_07_018
crossref_primary_10_1128_MCB_25_13_5738_5751_2005
crossref_primary_10_1038_s41556_019_0388_0
crossref_primary_10_15252_embj_2020104847
crossref_primary_10_1016_j_celrep_2018_10_030
crossref_primary_10_1016_j_tcb_2019_01_005
crossref_primary_10_1073_pnas_0607343103
crossref_primary_10_1016_j_dnarep_2005_06_006
crossref_primary_10_1534_genetics_111_137851
crossref_primary_10_1084_jem_20082271
crossref_primary_10_1093_genetics_iyac171
crossref_primary_10_1038_ncb1591
crossref_primary_10_1371_journal_pgen_1005976
crossref_primary_10_3390_cancers14205110
crossref_primary_10_1007_s00294_019_00933_7
crossref_primary_10_1101_gad_1751209
crossref_primary_10_1371_journal_pgen_1004928
crossref_primary_10_1534_genetics_118_301031
crossref_primary_10_1007_s10577_008_9016_8
crossref_primary_10_1371_journal_pgen_1003420
crossref_primary_10_2139_ssrn_4139796
crossref_primary_10_1038_nn_3553
crossref_primary_10_1016_j_dnarep_2014_07_004
crossref_primary_10_1146_annurev_genet_120215_035043
crossref_primary_10_1016_j_molcel_2023_11_002
crossref_primary_10_1038_embor_2013_142
crossref_primary_10_1016_j_jep_2019_112004
crossref_primary_10_1016_j_mrfmmm_2008_09_009
crossref_primary_10_1007_s11434_007_0382_y
crossref_primary_10_1016_j_mrfmmm_2017_03_003
crossref_primary_10_1016_j_dnarep_2020_102939
crossref_primary_10_1371_journal_pone_0064660
crossref_primary_10_1038_ncb0405_329
crossref_primary_10_1128_MCB_01717_07
crossref_primary_10_1128_MCB_01269_10
crossref_primary_10_1016_j_dnarep_2007_09_006
crossref_primary_10_1534_genetics_110_120683
crossref_primary_10_1007_s00018_010_0493_5
crossref_primary_10_1038_ncb2745
crossref_primary_10_1101_gad_280685_116
crossref_primary_10_1371_journal_pbio_1002213
crossref_primary_10_3390_ijms22010169
crossref_primary_10_1002_gcc_20473
crossref_primary_10_1007_s00018_009_0068_5
crossref_primary_10_1371_journal_pgen_0020098
crossref_primary_10_1074_jbc_M112_384750
crossref_primary_10_3389_fmolb_2019_00043
crossref_primary_10_1016_j_dnarep_2010_02_013
crossref_primary_10_1091_mbc_e16_12_0846
crossref_primary_10_3724_SP_J_1008_2010_00349
crossref_primary_10_1016_j_tcb_2013_05_006
crossref_primary_10_1016_j_pbiomolbio_2016_08_001
crossref_primary_10_1534_genetics_106_057836
crossref_primary_10_1074_jbc_M508339200
crossref_primary_10_1002_yea_1497
crossref_primary_10_1038_nature07054
crossref_primary_10_1093_nar_gkad1246
crossref_primary_10_1371_journal_pone_0058015
crossref_primary_10_1002_yea_3433
crossref_primary_10_1091_mbc_e17_05_0317
crossref_primary_10_1093_femsyr_fou004
crossref_primary_10_1016_j_dnarep_2010_09_015
Cites_doi 10.1126/science.277.5325.574
10.1093/emboj/cdf299
10.1002/1098-2280(2000)36:2<105::AID-EM4>3.0.CO;2-X
10.1038/12687
10.1146/annurev.genet.36.060402.113540
10.1093/genetics/161.2.493
10.1016/S1097-2765(03)00242-9
10.1038/19560
10.1038/35020592
10.1093/genetics/23.6.596
10.1038/ncb997
10.1016/0092-8674(93)90493-A
10.1016/0022-2836(88)90136-2
10.1093/genetics/147.2.371
10.1128/MCB.23.23.8820-8828.2003
10.1101/gad.7.12a.2345
10.1093/emboj/17.2.609
10.1016/S1097-2765(02)00593-2
10.1016/S0092-8674(00)80932-0
10.1128/MCB.12.3.1292
10.1101/gad.970702
10.1016/S0092-8674(00)80375-X
10.1002/j.1460-2075.1993.tb05846.x
10.1371/journal.pbio.0020021
10.4161/cc.2.5.483
10.1128/MCB.21.5.1710-1718.2001
10.1126/science.3317838
10.1093/carcin/23.5.687
10.1083/jcb.132.6.1093
10.1101/gad.970602
10.1101/gad.12.14.2208
10.1016/S0027-5107(00)00041-5
10.1073/pnas.93.14.7131
10.1016/S1097-2765(01)00388-4
10.1093/nar/gkf574
10.1016/S0960-9822(00)00300-6
10.1101/gad.903501
10.1016/0092-8674(83)90553-6
10.1126/science.1063827
10.1073/pnas.25.8.405
10.1128/MMBR.66.4.630-670.2002
10.1126/science.1074757
10.1016/S1097-2765(03)00269-7
10.1128/MCB.15.11.6128
10.1128/MCB.8.9.3918
ContentType Journal Article
Copyright 2004 Elsevier Ltd
Copyright_xml – notice: 2004 Elsevier Ltd
DBID 6I.
AAFTH
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TM
8FD
FR3
P64
RC3
7X8
DOI 10.1016/j.cub.2004.10.051
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Genetics Abstracts
Engineering Research Database
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Genetics Abstracts
MEDLINE

Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1879-0445
EndPage 2106
ExternalDocumentID 10_1016_j_cub_2004_10_051
15589151
S0960982204008553
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, U.S. Gov't, P.H.S
Comparative Study
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: GM61766
– fundername: NIGMS NIH HHS
  grantid: GM59691
– fundername: NIGMS NIH HHS
  grantid: GM20056
GroupedDBID ---
--K
-DZ
-~X
0R~
1RT
1~5
2WC
4.4
457
4G.
53G
5GY
62-
6I.
6J9
7-5
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKRW
AALRI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGHFR
AGHSJ
AGKMS
AGUBO
AHHHB
AHPSJ
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FIRID
HZ~
IHE
IXB
J1W
JIG
LX5
M3Z
M41
NCXOZ
O-L
O9-
OK1
OZT
P2P
RCE
RIG
ROL
RPZ
SCP
SDG
SES
SSZ
TR2
WQ6
XIH
ZA5
0SF
AAMRU
ADVLN
AKAPO
AKRWK
CGR
CUY
CVF
ECM
EIF
NPM
29F
5VS
AAQFI
AAQXK
AAYXX
ADMUD
ASPBG
AVWKF
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HVGLF
R2-
SEW
UHS
XPP
Y6R
ZGI
7TM
8FD
FR3
P64
RC3
7X8
ID FETCH-LOGICAL-c491t-ec3ed87402a07024f36f42975e236043714fe3ba769cc065b980abf8a6e6c1cc3
ISSN 0960-9822
IngestDate Fri Oct 25 08:14:34 EDT 2024
Fri Oct 25 23:31:17 EDT 2024
Thu Sep 26 17:16:20 EDT 2024
Sat Sep 28 07:45:24 EDT 2024
Fri Feb 23 02:27:25 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c491t-ec3ed87402a07024f36f42975e236043714fe3ba769cc065b980abf8a6e6c1cc3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://dx.doi.org/10.1016/j.cub.2004.10.051
PMID 15589151
PQID 17831074
PQPubID 23462
PageCount 11
ParticipantIDs proquest_miscellaneous_67168150
proquest_miscellaneous_17831074
crossref_primary_10_1016_j_cub_2004_10_051
pubmed_primary_15589151
elsevier_sciencedirect_doi_10_1016_j_cub_2004_10_051
PublicationCentury 2000
PublicationDate 2004-12-14
PublicationDateYYYYMMDD 2004-12-14
PublicationDate_xml – month: 12
  year: 2004
  text: 2004-12-14
  day: 14
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Current biology
PublicationTitleAlternate Curr Biol
PublicationYear 2004
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References DeFazio, Stansel, Griffith, Chu (BIB32) 2002; 21
Su, Walker, Stumpff (BIB43) 2000; 10
Kramer, Haber (BIB12) 1993; 7
Sugawara, Wang, Haber (BIB4) 2003; 12
Chen, Trujillo, Ramos, Sung, Tomkinson (BIB35) 2001; 8
Koshland, Hartwell (BIB41) 1987; 238
Fishman-Lobell, Rudin, Haber (BIB19) 1992; 12
Murray, Szostak (BIB21) 1983; 34
Nasmyth (BIB37) 2002; 297
Wang, Haber (BIB6) 2004; 2
Kondo, Wakayama, Naiki, Matsumoto, Sugimoto (BIB17) 2001; 294
Surana, Amon, Dowzer, McGrew, Byers, Nasmyth (BIB20) 1993; 12
Garvik, Carson, Hartwell (BIB22) 1995; 15
Yazdi, Wang, Zhao, Patel, Lee, Qin (BIB38) 2002; 16
Wolner, van Komen, Sung, Peterson (BIB5) 2003; 12
Rudin, Haber (BIB23) 1988; 8
Kim, Xu, Kastan (BIB39) 2002; 16
Jackson (BIB2) 2002; 23
Straight, Marshall, Sedat, Murray (BIB18) 1997; 277
Toczyski, Galgoczy, Hartwell (BIB11) 1997; 90
McClintock (BIB27) 1939; 25
Sandell, Zakian (BIB10) 1993; 75
Lisby, De Mayolo, Mortensen, Rothstein (BIB16) 2003; 2
Moore, Martin, Paquin (BIB29) 2000; 36
Khodjakov, Cole, Bajer, Rieder (BIB40) 1996; 132
de Jager, Wyman, van Gent, Kanaar (BIB33) 2002; 30
Van Dyck, Stasiak, Stasiak, West (BIB34) 1999; 398
Lisby, Mortensen, Rothstein (BIB36) 2003; 5
van Steensel, Smogorzewska, de Lange (BIB42) 1998; 92
Gasior, Wong, Kora, Shinohara, Bishop (BIB7) 1998; 12
Malkova, Ivanov, Haber (BIB13) 1996; 93
Morrow, Connelly, Hieter (BIB26) 1997; 147
Melo, Cohen, Toczyski (BIB15) 2001; 15
Nyberg, Michelson, Putnam, Weinert (BIB9) 2002; 36
Ma, Kim, Haber, Lee (BIB8) 2003; 23
Galgoczy, Toczyski (BIB14) 2001; 21
Craven, Greenwell, Dominska, Petes (BIB28) 2002; 161
Symington (BIB3) 2002; 66
Ramsden, Gellert (BIB31) 1998; 17
Lewis, Resnick (BIB1) 2000; 451
Carlson (BIB44) 1938; 23
Vaze, Pellicioli, Lee, Ira, Liberi, Arbel-Eden, Foiani, Haber (BIB25) 2002; 10
Chen, Kolodner (BIB30) 1999; 23
Ray, Siddiqi, Kolodkin, Stahl (BIB24) 1988; 201
Artandi, Chang, Lee, Alson, Gottlieb, Chin, DePinho (BIB45) 2000; 406
15589147 - Curr Biol. 2004 Dec 14;14(23):R994-6
Fishman-Lobell (10.1016/j.cub.2004.10.051_BIB19) 1992; 12
Nasmyth (10.1016/j.cub.2004.10.051_BIB37) 2002; 297
Straight (10.1016/j.cub.2004.10.051_BIB18) 1997; 277
McClintock (10.1016/j.cub.2004.10.051_BIB27) 1939; 25
Wolner (10.1016/j.cub.2004.10.051_BIB5) 2003; 12
Malkova (10.1016/j.cub.2004.10.051_BIB13) 1996; 93
Murray (10.1016/j.cub.2004.10.051_BIB21) 1983; 34
Khodjakov (10.1016/j.cub.2004.10.051_BIB40) 1996; 132
Wang (10.1016/j.cub.2004.10.051_BIB6) 2004; 2
Kim (10.1016/j.cub.2004.10.051_BIB39) 2002; 16
Toczyski (10.1016/j.cub.2004.10.051_BIB11) 1997; 90
Rudin (10.1016/j.cub.2004.10.051_BIB23) 1988; 8
Morrow (10.1016/j.cub.2004.10.051_BIB26) 1997; 147
Kramer (10.1016/j.cub.2004.10.051_BIB12) 1993; 7
Garvik (10.1016/j.cub.2004.10.051_BIB22) 1995; 15
Lisby (10.1016/j.cub.2004.10.051_BIB16) 2003; 2
Craven (10.1016/j.cub.2004.10.051_BIB28) 2002; 161
Koshland (10.1016/j.cub.2004.10.051_BIB41) 1987; 238
Yazdi (10.1016/j.cub.2004.10.051_BIB38) 2002; 16
Chen (10.1016/j.cub.2004.10.051_BIB30) 1999; 23
Moore (10.1016/j.cub.2004.10.051_BIB29) 2000; 36
Ray (10.1016/j.cub.2004.10.051_BIB24) 1988; 201
de Jager (10.1016/j.cub.2004.10.051_BIB33) 2002; 30
Carlson (10.1016/j.cub.2004.10.051_BIB44) 1938; 23
Surana (10.1016/j.cub.2004.10.051_BIB20) 1993; 12
Van Dyck (10.1016/j.cub.2004.10.051_BIB34) 1999; 398
Sandell (10.1016/j.cub.2004.10.051_BIB10) 1993; 75
Vaze (10.1016/j.cub.2004.10.051_BIB25) 2002; 10
Su (10.1016/j.cub.2004.10.051_BIB43) 2000; 10
Gasior (10.1016/j.cub.2004.10.051_BIB7) 1998; 12
Kondo (10.1016/j.cub.2004.10.051_BIB17) 2001; 294
Sugawara (10.1016/j.cub.2004.10.051_BIB4) 2003; 12
Lisby (10.1016/j.cub.2004.10.051_BIB36) 2003; 5
Melo (10.1016/j.cub.2004.10.051_BIB15) 2001; 15
Symington (10.1016/j.cub.2004.10.051_BIB3) 2002; 66
van Steensel (10.1016/j.cub.2004.10.051_BIB42) 1998; 92
Lewis (10.1016/j.cub.2004.10.051_BIB1) 2000; 451
Jackson (10.1016/j.cub.2004.10.051_BIB2) 2002; 23
Artandi (10.1016/j.cub.2004.10.051_BIB45) 2000; 406
Ma (10.1016/j.cub.2004.10.051_BIB8) 2003; 23
Nyberg (10.1016/j.cub.2004.10.051_BIB9) 2002; 36
Galgoczy (10.1016/j.cub.2004.10.051_BIB14) 2001; 21
DeFazio (10.1016/j.cub.2004.10.051_BIB32) 2002; 21
Chen (10.1016/j.cub.2004.10.051_BIB35) 2001; 8
Ramsden (10.1016/j.cub.2004.10.051_BIB31) 1998; 17
References_xml – volume: 201
  start-page: 247
  year: 1988
  end-page: 260
  ident: BIB24
  article-title: Intra-chromosomal gene conversion induced by a DNA double-strand break in
  publication-title: J. Mol. Biol
  contributor:
    fullname: Stahl
– volume: 161
  start-page: 493
  year: 2002
  end-page: 507
  ident: BIB28
  article-title: Regulation of genome stability by TEL1 and MEC1, yeast homologs of the mammalian ATM and ATR genes
  publication-title: Genetics
  contributor:
    fullname: Petes
– volume: 398
  start-page: 728
  year: 1999
  end-page: 731
  ident: BIB34
  article-title: Binding of double-strand breaks in DNA by human Rad52 protein
  publication-title: Nature
  contributor:
    fullname: West
– volume: 147
  start-page: 371
  year: 1997
  end-page: 382
  ident: BIB26
  article-title: Break copy duplication
  publication-title: Genetics
  contributor:
    fullname: Hieter
– volume: 297
  start-page: 559
  year: 2002
  end-page: 565
  ident: BIB37
  article-title: Segregating sister genomes
  publication-title: Science
  contributor:
    fullname: Nasmyth
– volume: 23
  start-page: 596
  year: 1938
  end-page: 609
  ident: BIB44
  article-title: Some effects of X-radiation on the neuroblast chromosomes of the grasshopper, Chortophaga viridifasciata
  publication-title: Genetics
  contributor:
    fullname: Carlson
– volume: 23
  start-page: 8820
  year: 2003
  end-page: 8828
  ident: BIB8
  article-title: Yeast Mre11 and Rad1 proteins define a Ku-independent mechanism to repair double-strand breaks lacking overlapping end sequences
  publication-title: Mol. Cell. Biol
  contributor:
    fullname: Lee
– volume: 21
  start-page: 1710
  year: 2001
  end-page: 1718
  ident: BIB14
  article-title: Checkpoint adaptation precedes spontaneous and damage-induced genomic instability in yeast
  publication-title: Mol. Cell. Biol
  contributor:
    fullname: Toczyski
– volume: 23
  start-page: 81
  year: 1999
  end-page: 85
  ident: BIB30
  article-title: Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants
  publication-title: Nat. Genet
  contributor:
    fullname: Kolodner
– volume: 16
  start-page: 571
  year: 2002
  end-page: 582
  ident: BIB38
  article-title: SMC1 is a downstream effector in the ATM/NBS1 branch of the human S-phase checkpoint
  publication-title: Genes Dev
  contributor:
    fullname: Qin
– volume: 132
  start-page: 1093
  year: 1996
  end-page: 1104
  ident: BIB40
  article-title: The force for poleward chromosome motion in Haemanthus cells acts along the length of the chromosome during metaphase but only at the kinetochore during anaphase
  publication-title: J. Cell Biol
  contributor:
    fullname: Rieder
– volume: 93
  start-page: 7131
  year: 1996
  end-page: 7136
  ident: BIB13
  article-title: Double-strand break repair in the absence of RAD51 in yeast
  publication-title: Proc. Natl. Acad. Sci. USA
  contributor:
    fullname: Haber
– volume: 10
  start-page: 119
  year: 2000
  end-page: 126
  ident: BIB43
  article-title: Activating the DNA damage checkpoint in a developmental context
  publication-title: Curr. Biol
  contributor:
    fullname: Stumpff
– volume: 2
  start-page: E21
  year: 2004
  ident: BIB6
  article-title: Role of Saccharomyces Single-Stranded DNA-Binding Protein RPA in the Strand Invasion Step of Double-Strand Break Repair
  publication-title: PLoS Biol
  contributor:
    fullname: Haber
– volume: 90
  start-page: 1097
  year: 1997
  end-page: 1106
  ident: BIB11
  article-title: CDC5 and CKII control adaptation to the yeast DNA damage checkpoint
  publication-title: Cell
  contributor:
    fullname: Hartwell
– volume: 17
  start-page: 609
  year: 1998
  end-page: 614
  ident: BIB31
  article-title: Ku protein stimulates DNA end joining by mammalian DNA ligases
  publication-title: EMBO J
  contributor:
    fullname: Gellert
– volume: 294
  start-page: 867
  year: 2001
  end-page: 870
  ident: BIB17
  article-title: Recruitment of mec1 and ddc1 checkpoint proteins to double-strand breaks through distinct mechanisms
  publication-title: Science
  contributor:
    fullname: Sugimoto
– volume: 36
  start-page: 617
  year: 2002
  end-page: 656
  ident: BIB9
  article-title: Toward maintaining the genome
  publication-title: Annu. Rev. Genet
  contributor:
    fullname: Weinert
– volume: 15
  start-page: 6128
  year: 1995
  end-page: 6138
  ident: BIB22
  article-title: Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint
  publication-title: Mol. Cell. Biol
  contributor:
    fullname: Hartwell
– volume: 12
  start-page: 221
  year: 2003
  end-page: 232
  ident: BIB5
  article-title: Recruitment of the recombinational repair machinery to a DNA double-strand break in yeast
  publication-title: Mol. Cell
  contributor:
    fullname: Peterson
– volume: 12
  start-page: 1292
  year: 1992
  end-page: 1303
  ident: BIB19
  article-title: Two alternative pathways of double-strand break repair that are kinetically separable and independently modulated
  publication-title: Mol. Cell. Biol
  contributor:
    fullname: Haber
– volume: 12
  start-page: 1969
  year: 1993
  end-page: 1978
  ident: BIB20
  article-title: Destruction of the CDC28/CLB mitotic kinase is not required for the metaphase to anaphase transition in budding yeast
  publication-title: EMBO J
  contributor:
    fullname: Nasmyth
– volume: 12
  start-page: 209
  year: 2003
  end-page: 219
  ident: BIB4
  article-title: In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination
  publication-title: Mol. Cell
  contributor:
    fullname: Haber
– volume: 238
  start-page: 1713
  year: 1987
  end-page: 1716
  ident: BIB41
  article-title: The structure of sister minichromosome DNA before anaphase in Saccharomyces cerevisiae
  publication-title: Science
  contributor:
    fullname: Hartwell
– volume: 16
  start-page: 560
  year: 2002
  end-page: 570
  ident: BIB39
  article-title: Involvement of the cohesin protein, Smc1, in Atm-dependent and independent responses to DNA damage
  publication-title: Genes Dev
  contributor:
    fullname: Kastan
– volume: 25
  start-page: 405
  year: 1939
  end-page: 416
  ident: BIB27
  article-title: The behavior in successive nuclear divisions of a chromosome broken at meiosis
  publication-title: Proc. Natl. Acad. Sci. USA
  contributor:
    fullname: McClintock
– volume: 2
  start-page: 479
  year: 2003
  end-page: 483
  ident: BIB16
  article-title: Cell cycle-regulated centers of DNA double-strand break repair
  publication-title: Cell Cycle
  contributor:
    fullname: Rothstein
– volume: 8
  start-page: 1105
  year: 2001
  end-page: 1115
  ident: BIB35
  article-title: Promotion of Dnl4-catalyzed DNA end-joining by the Rad50/Mre11/Xrs2 and Hdf1/Hdf2 complexes
  publication-title: Mol. Cell
  contributor:
    fullname: Tomkinson
– volume: 15
  start-page: 2809
  year: 2001
  end-page: 2821
  ident: BIB15
  article-title: Two checkpoint complexes are independently recruited to sites of DNA damage in vivo
  publication-title: Genes Dev
  contributor:
    fullname: Toczyski
– volume: 36
  start-page: 105
  year: 2000
  end-page: 112
  ident: BIB29
  article-title: Telomere sequences at the novel joints of four independent amplifications in Saccharomyces cerevisiae
  publication-title: Environ. Mol. Mutagen
  contributor:
    fullname: Paquin
– volume: 8
  start-page: 3918
  year: 1988
  end-page: 3928
  ident: BIB23
  article-title: Efficient repair of HO-induced chromosomal breaks in
  publication-title: Mol. Biol. Cell
  contributor:
    fullname: Haber
– volume: 7
  start-page: 2345
  year: 1993
  end-page: 2356
  ident: BIB12
  article-title: New telomeres in yeast are initiated with a highly selected subset of TG1–3 repeats
  publication-title: Genes Dev
  contributor:
    fullname: Haber
– volume: 12
  start-page: 2208
  year: 1998
  end-page: 2221
  ident: BIB7
  article-title: Rad52 associates with RPA and functions with rad55 and rad57 to assemble meiotic recombination complexes
  publication-title: Genes Dev
  contributor:
    fullname: Bishop
– volume: 75
  start-page: 729
  year: 1993
  end-page: 739
  ident: BIB10
  article-title: Loss of a yeast telomere
  publication-title: Cell
  contributor:
    fullname: Zakian
– volume: 66
  start-page: 630
  year: 2002
  end-page: 670
  ident: BIB3
  article-title: Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair
  publication-title: Microbiol. Mol. Biol. Rev
  contributor:
    fullname: Symington
– volume: 277
  start-page: 574
  year: 1997
  end-page: 578
  ident: BIB18
  article-title: Mitosis in living budding yeast
  publication-title: Science
  contributor:
    fullname: Murray
– volume: 30
  start-page: 4425
  year: 2002
  end-page: 4431
  ident: BIB33
  article-title: DNA end-binding specificity of human Rad50/Mre11 is influenced by ATP
  publication-title: Nucleic Acids Res
  contributor:
    fullname: Kanaar
– volume: 92
  start-page: 401
  year: 1998
  end-page: 413
  ident: BIB42
  article-title: TRF2 protects human telomeres from end-to-end fusions
  publication-title: Cell
  contributor:
    fullname: de Lange
– volume: 10
  start-page: 373
  year: 2002
  end-page: 385
  ident: BIB25
  article-title: Recovery from checkpoint-mediated arrest after repair of a double-strand break requires Srs2 helicase
  publication-title: Mol. Cell
  contributor:
    fullname: Haber
– volume: 23
  start-page: 687
  year: 2002
  end-page: 696
  ident: BIB2
  article-title: Sensing and repairing DNA double-strand breaks
  publication-title: Carcinogenesis
  contributor:
    fullname: Jackson
– volume: 5
  start-page: 572
  year: 2003
  end-page: 577
  ident: BIB36
  article-title: Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre
  publication-title: Nat. Cell Biol
  contributor:
    fullname: Rothstein
– volume: 406
  start-page: 641
  year: 2000
  end-page: 645
  ident: BIB45
  article-title: Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice
  publication-title: Nature
  contributor:
    fullname: DePinho
– volume: 21
  start-page: 3192
  year: 2002
  end-page: 3200
  ident: BIB32
  article-title: Synapsis of DNA ends by DNA-dependent protein kinase
  publication-title: EMBO J
  contributor:
    fullname: Chu
– volume: 451
  start-page: 71
  year: 2000
  end-page: 89
  ident: BIB1
  article-title: Tying up loose ends
  publication-title: Mutat. Res
  contributor:
    fullname: Resnick
– volume: 34
  start-page: 961
  year: 1983
  end-page: 970
  ident: BIB21
  article-title: Pedigree analysis of plasmid segregation in yeast
  publication-title: Cell
  contributor:
    fullname: Szostak
– volume: 277
  start-page: 574
  year: 1997
  ident: 10.1016/j.cub.2004.10.051_BIB18
  article-title: Mitosis in living budding yeast
  publication-title: Science
  doi: 10.1126/science.277.5325.574
  contributor:
    fullname: Straight
– volume: 21
  start-page: 3192
  year: 2002
  ident: 10.1016/j.cub.2004.10.051_BIB32
  article-title: Synapsis of DNA ends by DNA-dependent protein kinase
  publication-title: EMBO J
  doi: 10.1093/emboj/cdf299
  contributor:
    fullname: DeFazio
– volume: 36
  start-page: 105
  year: 2000
  ident: 10.1016/j.cub.2004.10.051_BIB29
  article-title: Telomere sequences at the novel joints of four independent amplifications in Saccharomyces cerevisiae
  publication-title: Environ. Mol. Mutagen
  doi: 10.1002/1098-2280(2000)36:2<105::AID-EM4>3.0.CO;2-X
  contributor:
    fullname: Moore
– volume: 23
  start-page: 81
  year: 1999
  ident: 10.1016/j.cub.2004.10.051_BIB30
  article-title: Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants
  publication-title: Nat. Genet
  doi: 10.1038/12687
  contributor:
    fullname: Chen
– volume: 36
  start-page: 617
  year: 2002
  ident: 10.1016/j.cub.2004.10.051_BIB9
  article-title: Toward maintaining the genome
  publication-title: Annu. Rev. Genet
  doi: 10.1146/annurev.genet.36.060402.113540
  contributor:
    fullname: Nyberg
– volume: 161
  start-page: 493
  year: 2002
  ident: 10.1016/j.cub.2004.10.051_BIB28
  article-title: Regulation of genome stability by TEL1 and MEC1, yeast homologs of the mammalian ATM and ATR genes
  publication-title: Genetics
  doi: 10.1093/genetics/161.2.493
  contributor:
    fullname: Craven
– volume: 12
  start-page: 221
  year: 2003
  ident: 10.1016/j.cub.2004.10.051_BIB5
  article-title: Recruitment of the recombinational repair machinery to a DNA double-strand break in yeast
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(03)00242-9
  contributor:
    fullname: Wolner
– volume: 398
  start-page: 728
  year: 1999
  ident: 10.1016/j.cub.2004.10.051_BIB34
  article-title: Binding of double-strand breaks in DNA by human Rad52 protein
  publication-title: Nature
  doi: 10.1038/19560
  contributor:
    fullname: Van Dyck
– volume: 406
  start-page: 641
  year: 2000
  ident: 10.1016/j.cub.2004.10.051_BIB45
  article-title: Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice
  publication-title: Nature
  doi: 10.1038/35020592
  contributor:
    fullname: Artandi
– volume: 23
  start-page: 596
  year: 1938
  ident: 10.1016/j.cub.2004.10.051_BIB44
  article-title: Some effects of X-radiation on the neuroblast chromosomes of the grasshopper, Chortophaga viridifasciata
  publication-title: Genetics
  doi: 10.1093/genetics/23.6.596
  contributor:
    fullname: Carlson
– volume: 5
  start-page: 572
  year: 2003
  ident: 10.1016/j.cub.2004.10.051_BIB36
  article-title: Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre
  publication-title: Nat. Cell Biol
  doi: 10.1038/ncb997
  contributor:
    fullname: Lisby
– volume: 75
  start-page: 729
  year: 1993
  ident: 10.1016/j.cub.2004.10.051_BIB10
  article-title: Loss of a yeast telomere
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90493-A
  contributor:
    fullname: Sandell
– volume: 201
  start-page: 247
  year: 1988
  ident: 10.1016/j.cub.2004.10.051_BIB24
  article-title: Intra-chromosomal gene conversion induced by a DNA double-strand break in Saccharomyces cerevisiae
  publication-title: J. Mol. Biol
  doi: 10.1016/0022-2836(88)90136-2
  contributor:
    fullname: Ray
– volume: 147
  start-page: 371
  year: 1997
  ident: 10.1016/j.cub.2004.10.051_BIB26
  article-title: Break copy duplication
  publication-title: Genetics
  doi: 10.1093/genetics/147.2.371
  contributor:
    fullname: Morrow
– volume: 23
  start-page: 8820
  year: 2003
  ident: 10.1016/j.cub.2004.10.051_BIB8
  article-title: Yeast Mre11 and Rad1 proteins define a Ku-independent mechanism to repair double-strand breaks lacking overlapping end sequences
  publication-title: Mol. Cell. Biol
  doi: 10.1128/MCB.23.23.8820-8828.2003
  contributor:
    fullname: Ma
– volume: 7
  start-page: 2345
  year: 1993
  ident: 10.1016/j.cub.2004.10.051_BIB12
  article-title: New telomeres in yeast are initiated with a highly selected subset of TG1–3 repeats
  publication-title: Genes Dev
  doi: 10.1101/gad.7.12a.2345
  contributor:
    fullname: Kramer
– volume: 17
  start-page: 609
  year: 1998
  ident: 10.1016/j.cub.2004.10.051_BIB31
  article-title: Ku protein stimulates DNA end joining by mammalian DNA ligases
  publication-title: EMBO J
  doi: 10.1093/emboj/17.2.609
  contributor:
    fullname: Ramsden
– volume: 10
  start-page: 373
  year: 2002
  ident: 10.1016/j.cub.2004.10.051_BIB25
  article-title: Recovery from checkpoint-mediated arrest after repair of a double-strand break requires Srs2 helicase
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(02)00593-2
  contributor:
    fullname: Vaze
– volume: 92
  start-page: 401
  year: 1998
  ident: 10.1016/j.cub.2004.10.051_BIB42
  article-title: TRF2 protects human telomeres from end-to-end fusions
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80932-0
  contributor:
    fullname: van Steensel
– volume: 12
  start-page: 1292
  year: 1992
  ident: 10.1016/j.cub.2004.10.051_BIB19
  article-title: Two alternative pathways of double-strand break repair that are kinetically separable and independently modulated
  publication-title: Mol. Cell. Biol
  doi: 10.1128/MCB.12.3.1292
  contributor:
    fullname: Fishman-Lobell
– volume: 16
  start-page: 571
  year: 2002
  ident: 10.1016/j.cub.2004.10.051_BIB38
  article-title: SMC1 is a downstream effector in the ATM/NBS1 branch of the human S-phase checkpoint
  publication-title: Genes Dev
  doi: 10.1101/gad.970702
  contributor:
    fullname: Yazdi
– volume: 90
  start-page: 1097
  year: 1997
  ident: 10.1016/j.cub.2004.10.051_BIB11
  article-title: CDC5 and CKII control adaptation to the yeast DNA damage checkpoint
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80375-X
  contributor:
    fullname: Toczyski
– volume: 12
  start-page: 1969
  year: 1993
  ident: 10.1016/j.cub.2004.10.051_BIB20
  article-title: Destruction of the CDC28/CLB mitotic kinase is not required for the metaphase to anaphase transition in budding yeast
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1993.tb05846.x
  contributor:
    fullname: Surana
– volume: 2
  start-page: E21
  year: 2004
  ident: 10.1016/j.cub.2004.10.051_BIB6
  article-title: Role of Saccharomyces Single-Stranded DNA-Binding Protein RPA in the Strand Invasion Step of Double-Strand Break Repair
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0020021
  contributor:
    fullname: Wang
– volume: 2
  start-page: 479
  year: 2003
  ident: 10.1016/j.cub.2004.10.051_BIB16
  article-title: Cell cycle-regulated centers of DNA double-strand break repair
  publication-title: Cell Cycle
  doi: 10.4161/cc.2.5.483
  contributor:
    fullname: Lisby
– volume: 21
  start-page: 1710
  year: 2001
  ident: 10.1016/j.cub.2004.10.051_BIB14
  article-title: Checkpoint adaptation precedes spontaneous and damage-induced genomic instability in yeast
  publication-title: Mol. Cell. Biol
  doi: 10.1128/MCB.21.5.1710-1718.2001
  contributor:
    fullname: Galgoczy
– volume: 238
  start-page: 1713
  year: 1987
  ident: 10.1016/j.cub.2004.10.051_BIB41
  article-title: The structure of sister minichromosome DNA before anaphase in Saccharomyces cerevisiae
  publication-title: Science
  doi: 10.1126/science.3317838
  contributor:
    fullname: Koshland
– volume: 23
  start-page: 687
  year: 2002
  ident: 10.1016/j.cub.2004.10.051_BIB2
  article-title: Sensing and repairing DNA double-strand breaks
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/23.5.687
  contributor:
    fullname: Jackson
– volume: 132
  start-page: 1093
  year: 1996
  ident: 10.1016/j.cub.2004.10.051_BIB40
  article-title: The force for poleward chromosome motion in Haemanthus cells acts along the length of the chromosome during metaphase but only at the kinetochore during anaphase
  publication-title: J. Cell Biol
  doi: 10.1083/jcb.132.6.1093
  contributor:
    fullname: Khodjakov
– volume: 16
  start-page: 560
  year: 2002
  ident: 10.1016/j.cub.2004.10.051_BIB39
  article-title: Involvement of the cohesin protein, Smc1, in Atm-dependent and independent responses to DNA damage
  publication-title: Genes Dev
  doi: 10.1101/gad.970602
  contributor:
    fullname: Kim
– volume: 12
  start-page: 2208
  year: 1998
  ident: 10.1016/j.cub.2004.10.051_BIB7
  article-title: Rad52 associates with RPA and functions with rad55 and rad57 to assemble meiotic recombination complexes
  publication-title: Genes Dev
  doi: 10.1101/gad.12.14.2208
  contributor:
    fullname: Gasior
– volume: 451
  start-page: 71
  year: 2000
  ident: 10.1016/j.cub.2004.10.051_BIB1
  article-title: Tying up loose ends
  publication-title: Mutat. Res
  doi: 10.1016/S0027-5107(00)00041-5
  contributor:
    fullname: Lewis
– volume: 93
  start-page: 7131
  year: 1996
  ident: 10.1016/j.cub.2004.10.051_BIB13
  article-title: Double-strand break repair in the absence of RAD51 in yeast
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.93.14.7131
  contributor:
    fullname: Malkova
– volume: 8
  start-page: 1105
  year: 2001
  ident: 10.1016/j.cub.2004.10.051_BIB35
  article-title: Promotion of Dnl4-catalyzed DNA end-joining by the Rad50/Mre11/Xrs2 and Hdf1/Hdf2 complexes
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(01)00388-4
  contributor:
    fullname: Chen
– volume: 30
  start-page: 4425
  year: 2002
  ident: 10.1016/j.cub.2004.10.051_BIB33
  article-title: DNA end-binding specificity of human Rad50/Mre11 is influenced by ATP
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkf574
  contributor:
    fullname: de Jager
– volume: 10
  start-page: 119
  year: 2000
  ident: 10.1016/j.cub.2004.10.051_BIB43
  article-title: Activating the DNA damage checkpoint in a developmental context
  publication-title: Curr. Biol
  doi: 10.1016/S0960-9822(00)00300-6
  contributor:
    fullname: Su
– volume: 15
  start-page: 2809
  year: 2001
  ident: 10.1016/j.cub.2004.10.051_BIB15
  article-title: Two checkpoint complexes are independently recruited to sites of DNA damage in vivo
  publication-title: Genes Dev
  doi: 10.1101/gad.903501
  contributor:
    fullname: Melo
– volume: 34
  start-page: 961
  year: 1983
  ident: 10.1016/j.cub.2004.10.051_BIB21
  article-title: Pedigree analysis of plasmid segregation in yeast
  publication-title: Cell
  doi: 10.1016/0092-8674(83)90553-6
  contributor:
    fullname: Murray
– volume: 294
  start-page: 867
  year: 2001
  ident: 10.1016/j.cub.2004.10.051_BIB17
  article-title: Recruitment of mec1 and ddc1 checkpoint proteins to double-strand breaks through distinct mechanisms
  publication-title: Science
  doi: 10.1126/science.1063827
  contributor:
    fullname: Kondo
– volume: 25
  start-page: 405
  year: 1939
  ident: 10.1016/j.cub.2004.10.051_BIB27
  article-title: The behavior in successive nuclear divisions of a chromosome broken at meiosis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.25.8.405
  contributor:
    fullname: McClintock
– volume: 66
  start-page: 630
  year: 2002
  ident: 10.1016/j.cub.2004.10.051_BIB3
  article-title: Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair
  publication-title: Microbiol. Mol. Biol. Rev
  doi: 10.1128/MMBR.66.4.630-670.2002
  contributor:
    fullname: Symington
– volume: 297
  start-page: 559
  year: 2002
  ident: 10.1016/j.cub.2004.10.051_BIB37
  article-title: Segregating sister genomes
  publication-title: Science
  doi: 10.1126/science.1074757
  contributor:
    fullname: Nasmyth
– volume: 12
  start-page: 209
  year: 2003
  ident: 10.1016/j.cub.2004.10.051_BIB4
  article-title: In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(03)00269-7
  contributor:
    fullname: Sugawara
– volume: 15
  start-page: 6128
  year: 1995
  ident: 10.1016/j.cub.2004.10.051_BIB22
  article-title: Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint
  publication-title: Mol. Cell. Biol
  doi: 10.1128/MCB.15.11.6128
  contributor:
    fullname: Garvik
– volume: 8
  start-page: 3918
  year: 1988
  ident: 10.1016/j.cub.2004.10.051_BIB23
  article-title: Efficient repair of HO-induced chromosomal breaks in Saccharomyces cerevisiae by recombination between flanking homologous sequences
  publication-title: Mol. Biol. Cell
  doi: 10.1128/MCB.8.9.3918
  contributor:
    fullname: Rudin
SSID ssj0012896
Score 2.2467353
Snippet Background: Unrepaired DNA double-stranded breaks (DSBs) can result in the whole or partial loss of chromosomes. Previously, we showed that the ends of broken...
Unrepaired DNA double-stranded breaks (DSBs) can result in the whole or partial loss of chromosomes. Previously, we showed that the ends of broken chromosomes...
BACKGROUNDUnrepaired DNA double-stranded breaks (DSBs) can result in the whole or partial loss of chromosomes. Previously, we showed that the ends of broken...
SourceID proquest
crossref
pubmed
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 2096
SubjectTerms Chromosome Breakage - physiology
Chromosome Segregation - physiology
DNA Repair - physiology
DNA Repair Enzymes - metabolism
DNA Repair Enzymes - physiology
DNA-Binding Proteins - physiology
Genomic Instability - physiology
Green Fluorescent Proteins
Microscopy, Fluorescence
Mitosis - genetics
Mitosis - physiology
Plasmids - genetics
Rad52 DNA Repair and Recombination Protein
Spindle Apparatus - physiology
Yeasts
Title DNA Breaks Promote Genomic Instability by Impeding Proper Chromosome Segregation
URI https://dx.doi.org/10.1016/j.cub.2004.10.051
https://www.ncbi.nlm.nih.gov/pubmed/15589151
https://search.proquest.com/docview/17831074
https://search.proquest.com/docview/67168150
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdpx2AvY99L96WHPa04RJYsy4-hzWgplEK7sTcjy-eVjCUjbhjpX787yR_JWMY22IsJshMrutPpPn_H2FudVuPMORNZIcpIJYWMjIM0ckaWMbhKaiBD8eQyPf9kjqdqOhi0vQD7sf9KaRxDWlPl7F9Qu_tRHMDPSHO8ItXx-kd0Pz6fIMHAfqmpCAAJ4aGlqfbYJwYEWO41aZ2nqDH7kpYLcsgvCWcAn68XXwElCJrhn3uizbYhShvkpk5Y2zW0tdb2cDLqiAhNXIc6hqEy2985uoZGyPgsMypzPzzr7n60t8FfvlhCff3dUjnMlnfCYyCK3jvZlc1sZXWS2RQRcGA4hILkNSlFaQK2ZCea1QYLxnJT0I4zvXFoo-Gqf3kgBN_EbORWhXcGjCiVr4G43cbZvvTgezgpEmsmSeQeuxOj9PJ2-ulZF5pCC9UHwNv_0IbKfdLgT6_ZpezsMma8UnP1gN1vrBE-CWz0kA1g_ojdDf1J14_ZBTITD8zEG2biDTPxDWbixZq3zMQDM_GemfgGMz1hH95Pr45OoqYFR-RUJm4icBJK6toYWzwbYoV7t1JUjA2x1ASLJVQFsrCpxg2P2myRmbEtKmM1aCeck0_Z_nwxh-eMZ8YUZVKNy1KgzqvjLBYOjXXpUCVNMoiH7F27Vvm3gLSStymIsxwXljqmKhrChR0y1a5m3qiKQQXMkfC_-9qbduVzFKMUG7NzWKzqXKTUcS9Vu5_QOFmD5tOQPQsk62eZUGvORBz826ResHv9znnJ9m-WK3jF9upy9dpz3g9VvqXB
link.rule.ids 315,782,786,27933,27934
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DNA+Breaks+Promote+Genomic+Instability+by+Impeding+Proper+Chromosome+Segregation&rft.jtitle=Current+biology&rft.au=Kaye%2C+Julia+A.&rft.au=Melo%2C+Justine+A.&rft.au=Cheung%2C+Stephanie+K.&rft.au=Vaze%2C+Moreshwar+B.&rft.date=2004-12-14&rft.pub=Elsevier+Inc&rft.issn=0960-9822&rft.eissn=1879-0445&rft.volume=14&rft.issue=23&rft.spage=2096&rft.epage=2106&rft_id=info:doi/10.1016%2Fj.cub.2004.10.051&rft.externalDocID=S0960982204008553
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-9822&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-9822&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-9822&client=summon