DNA Breaks Promote Genomic Instability by Impeding Proper Chromosome Segregation
Background: Unrepaired DNA double-stranded breaks (DSBs) can result in the whole or partial loss of chromosomes. Previously, we showed that the ends of broken chromosomes remain associated. Here, we have examined the machinery that holds broken chromosome ends together, and we have explored the beha...
Saved in:
Published in: | Current biology Vol. 14; no. 23; pp. 2096 - 2106 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Elsevier Inc
14-12-2004
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Background: Unrepaired DNA double-stranded breaks (DSBs) can result in the whole or partial loss of chromosomes. Previously, we showed that the ends of broken chromosomes remain associated. Here, we have examined the machinery that holds broken chromosome ends together, and we have explored the behavior of broken chromosomes as they pass through mitosis.
Results: Using GFP-localized arrays flanking an HO endonuclease site, we examined the association of broken chromosome ends in yeast cells that are checkpoint-arrested in metaphase. This association is partially dependent upon Rad50 and Rad52. After 6–8 hr, cells adapted to the checkpoint and resumed mitosis, segregating the broken chromosome. When this occurred, we found that the acentric fragments cosegregated into either the mother or daughter cell 95% of the time. Similarly, pedigree analysis showed that postmitotic repair of a broken chromosome (rejoining the centric and acentric fragments) occurred in either the mother or daughter cell, but rarely both, consistent with a model in which both acentric sister chromatid fragments are passaged into the same nucleus.
Conclusions: These data suggest two related phenomena: an intrachromosomal association that holds the halves of a single broken sister chromatid together in metaphase and an interchromosomal force that tethers broken sister chromatids to each other and promotes their missegregation. Strikingly, the interchromosomal association of DNA breaks also promotes the missegregation of centromeric chromosomal fragments, albeit to a lesser extent than acentric fragments. The DNA break-induced missegregation of acentric and centric chromosome fragments provides a novel mechanism for the loss of heterozygosity that precedes tumorigenesis in mammalian cells. |
---|---|
AbstractList | BACKGROUNDUnrepaired DNA double-stranded breaks (DSBs) can result in the whole or partial loss of chromosomes. Previously, we showed that the ends of broken chromosomes remain associated. Here, we have examined the machinery that holds broken chromosome ends together, and we have explored the behavior of broken chromosomes as they pass through mitosis.RESULTSUsing GFP-localized arrays flanking an HO endonuclease site, we examined the association of broken chromosome ends in yeast cells that are checkpoint-arrested in metaphase. This association is partially dependent upon Rad50 and Rad52. After 6-8 hr, cells adapted to the checkpoint and resumed mitosis, segregating the broken chromosome. When this occurred, we found that the acentric fragments cosegregated into either the mother or daughter cell 95% of the time. Similarly, pedigree analysis showed that postmitotic repair of a broken chromosome (rejoining the centric and acentric fragments) occurred in either the mother or daughter cell, but rarely both, consistent with a model in which both acentric sister chromatid fragments are passaged into the same nucleus.CONCLUSIONSThese data suggest two related phenomena: an intrachromosomal association that holds the halves of a single broken sister chromatid together in metaphase and an interchromosomal force that tethers broken sister chromatids to each other and promotes their missegregation. Strikingly, the interchromosomal association of DNA breaks also promotes the missegregation of centromeric chromosomal fragments, albeit to a lesser extent than acentric fragments. The DNA break-induced missegregation of acentric and centric chromosome fragments provides a novel mechanism for the loss of heterozygosity that precedes tumorigenesis in mammalian cells. Unrepaired DNA double-stranded breaks (DSBs) can result in the whole or partial loss of chromosomes. Previously, we showed that the ends of broken chromosomes remain associated. Here, we have examined the machinery that holds broken chromosome ends together, and we have explored the behavior of broken chromosomes as they pass through mitosis. Using GFP-localized arrays flanking an HO endonuclease site, we examined the association of broken chromosome ends in yeast cells that are checkpoint-arrested in metaphase. This association is partially dependent upon Rad50 and Rad52. After 6-8 hr, cells adapted to the checkpoint and resumed mitosis, segregating the broken chromosome. When this occurred, we found that the acentric fragments cosegregated into either the mother or daughter cell 95% of the time. Similarly, pedigree analysis showed that postmitotic repair of a broken chromosome (rejoining the centric and acentric fragments) occurred in either the mother or daughter cell, but rarely both, consistent with a model in which both acentric sister chromatid fragments are passaged into the same nucleus. These data suggest two related phenomena: an intrachromosomal association that holds the halves of a single broken sister chromatid together in metaphase and an interchromosomal force that tethers broken sister chromatids to each other and promotes their missegregation. Strikingly, the interchromosomal association of DNA breaks also promotes the missegregation of centromeric chromosomal fragments, albeit to a lesser extent than acentric fragments. The DNA break-induced missegregation of acentric and centric chromosome fragments provides a novel mechanism for the loss of heterozygosity that precedes tumorigenesis in mammalian cells. Unrepaired DNA double-stranded breaks (DSBs) can result in the whole or partial loss of chromosomes. Previously, we showed that the ends of broken chromosomes remain associated. Here, we have examined the machinery that holds broken chromosome ends together, and we have explored the behavior of broken chromosomes as they pass through mitosis. Using GFP-localized arrays flanking an HO endonuclease site, we examined the association of broken chromosome ends in yeast cells that are checkpoint-arrested in metaphase. This association is partially dependent upon Rad50 and Rad52. After 6-8 hr, cells adapted to the checkpoint and resumed mitosis, segregating the broken chromosome. When this occurred, we found that the acentric fragments cosegregated into either the mother or daughter cell 95% of the time. Similarly, pedigree analysis showed that postmitotic repair of a broken chromosome (rejoining the centric and acentric fragments) occurred in either the mother or daughter cell, but rarely both, consistent with a model in which both acentric sister chromatid fragments are passaged into the same nucleus. These data suggest two related phenomena: an intrachromosomal association that holds the halves of a single broken sister chromatid together in metaphase and an interchromosomal force that tethers broken sister chromatids to each other and promotes their missegregation. Strikingly, the interchromosomal association of DNA breaks also promotes the missegregation of centromeric chromosomal fragments, albeit to a lesser extent than acentric fragments. The DNA break-induced missegregation of acentric and centric chromosome fragments provides a novel mechanism for the loss of heterozygosity that precedes tumorigenesis in mammalian cells. Background: Unrepaired DNA double-stranded breaks (DSBs) can result in the whole or partial loss of chromosomes. Previously, we showed that the ends of broken chromosomes remain associated. Here, we have examined the machinery that holds broken chromosome ends together, and we have explored the behavior of broken chromosomes as they pass through mitosis. Results: Using GFP-localized arrays flanking an HO endonuclease site, we examined the association of broken chromosome ends in yeast cells that are checkpoint-arrested in metaphase. This association is partially dependent upon Rad50 and Rad52. After 6–8 hr, cells adapted to the checkpoint and resumed mitosis, segregating the broken chromosome. When this occurred, we found that the acentric fragments cosegregated into either the mother or daughter cell 95% of the time. Similarly, pedigree analysis showed that postmitotic repair of a broken chromosome (rejoining the centric and acentric fragments) occurred in either the mother or daughter cell, but rarely both, consistent with a model in which both acentric sister chromatid fragments are passaged into the same nucleus. Conclusions: These data suggest two related phenomena: an intrachromosomal association that holds the halves of a single broken sister chromatid together in metaphase and an interchromosomal force that tethers broken sister chromatids to each other and promotes their missegregation. Strikingly, the interchromosomal association of DNA breaks also promotes the missegregation of centromeric chromosomal fragments, albeit to a lesser extent than acentric fragments. The DNA break-induced missegregation of acentric and centric chromosome fragments provides a novel mechanism for the loss of heterozygosity that precedes tumorigenesis in mammalian cells. |
Author | Vaze, Moreshwar B. Kaye, Julia A. Haber, James E. Melo, Justine A. Cheung, Stephanie K. Toczyski, David P. |
Author_xml | – sequence: 1 givenname: Julia A. surname: Kaye fullname: Kaye, Julia A. organization: Cancer Research Institute, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94115 USA – sequence: 2 givenname: Justine A. surname: Melo fullname: Melo, Justine A. organization: Cancer Research Institute, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94115 USA – sequence: 3 givenname: Stephanie K. surname: Cheung fullname: Cheung, Stephanie K. organization: Cancer Research Institute, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94115 USA – sequence: 4 givenname: Moreshwar B. surname: Vaze fullname: Vaze, Moreshwar B. organization: Brandeis University, Waltham, MA 02454 USA – sequence: 5 givenname: James E. surname: Haber fullname: Haber, James E. organization: Brandeis University, Waltham, MA 02454 USA – sequence: 6 givenname: David P. surname: Toczyski fullname: Toczyski, David P. email: toczyski@cc.ucsf.edu organization: Cancer Research Institute, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94115 USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15589151$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkMtu2zAQRYkiReO4_YBuAq2ykzMjUXwgq8RJEwNGG6DtmqDokUPXEh1SLuC_rwQb6C5ZDe7g3Ls4F-ysCx0x9hVhhoDiejNz-3pWAPAhz6DCD2yCSuocOK_O2AS0gFyrojhnFyltALBQWnxi51hVSmOFE_Z8__02u4tk_6TsOYY29JQ9Uhda77JFl3pb-63vD1l9yBbtjla-W4_cjmI2fxn5FFrKftI60tr2PnSf2cfGbhN9Od0p-_3t4df8KV_-eFzMb5e54xr7nFxJKyU5FBYkFLwpRcMLLSsqSgG8lMgbKmsrhXYORFVrBbZulBUkHDpXTtnVcXcXw-ueUm9anxxtt7ajsE9GSBQKK3gXRKlKBMkHEI-giyGlSI3ZRd_aeDAIZvRtNmbwbUbf42vwPXQuT-P7uqXV_8ZJ8ADcHAEaXPz1FE1ynjo3mIzkerMK_o35f5YLkWY |
CitedBy_id | crossref_primary_10_1534_genetics_114_166140 crossref_primary_10_1016_j_dnarep_2016_03_013 crossref_primary_10_1139_O07_069 crossref_primary_10_1093_nar_gkz1203 crossref_primary_10_1007_s00294_006_0072_3 crossref_primary_10_1093_nar_gky086 crossref_primary_10_3390_cells11203224 crossref_primary_10_1007_s10440_022_00501_1 crossref_primary_10_1016_j_molcel_2008_05_028 crossref_primary_10_1016_j_tig_2010_11_001 crossref_primary_10_3390_ijms25052936 crossref_primary_10_1074_jbc_M505277200 crossref_primary_10_1002_bies_201700229 crossref_primary_10_1093_nar_gkr340 crossref_primary_10_1038_nrm1599 crossref_primary_10_1016_j_cell_2006_04_042 crossref_primary_10_1016_j_cell_2009_12_043 crossref_primary_10_1016_j_ceb_2018_03_007 crossref_primary_10_1530_ERC_17_0187 crossref_primary_10_1128_MCB_01740_06 crossref_primary_10_1016_j_dnarep_2009_07_006 crossref_primary_10_1101_gad_318485_118 crossref_primary_10_1111_j_1365_2958_2011_07532_x crossref_primary_10_1371_journal_pone_0004075 crossref_primary_10_1038_emboj_2008_11 crossref_primary_10_1016_j_cell_2009_02_016 crossref_primary_10_1091_mbc_E15_01_0026 crossref_primary_10_1038_nrg2593 crossref_primary_10_1007_s00294_018_0861_5 crossref_primary_10_1093_nar_gkad062 crossref_primary_10_3892_ol_2018_9545 crossref_primary_10_1016_j_gde_2012_11_015 crossref_primary_10_1101_gad_1782209 crossref_primary_10_1186_1476_4598_13_249 crossref_primary_10_1016_j_csbj_2020_05_013 crossref_primary_10_1016_j_molcel_2007_01_028 crossref_primary_10_1038_nsmb_2225 crossref_primary_10_1111_j_1365_2958_2006_05186_x crossref_primary_10_1038_ncb2941 crossref_primary_10_3390_genes9120589 crossref_primary_10_1146_annurev_genet_40_051206_105231 crossref_primary_10_1371_journal_pgen_1000973 crossref_primary_10_2139_ssrn_3352501 crossref_primary_10_1083_jcb_201504059 crossref_primary_10_1098_rsos_210460 crossref_primary_10_1534_genetics_112_138818 crossref_primary_10_1534_genetics_108_093625 crossref_primary_10_1038_s41380_021_01142_w crossref_primary_10_1016_j_dnarep_2020_102869 crossref_primary_10_1128_MCB_00135_07 crossref_primary_10_1093_mutage_gem011 crossref_primary_10_1038_sj_onc_1210873 crossref_primary_10_1073_pnas_0810317106 crossref_primary_10_1083_jcb_202401085 crossref_primary_10_1007_s10577_020_09636_z crossref_primary_10_3389_fcell_2021_669041 crossref_primary_10_1371_journal_pbio_1002387 crossref_primary_10_1038_s41586_023_06216_z crossref_primary_10_1016_j_molcel_2016_10_032 crossref_primary_10_1080_19491034_2017_1419847 crossref_primary_10_1016_j_celrep_2019_07_018 crossref_primary_10_1128_MCB_25_13_5738_5751_2005 crossref_primary_10_1038_s41556_019_0388_0 crossref_primary_10_15252_embj_2020104847 crossref_primary_10_1016_j_celrep_2018_10_030 crossref_primary_10_1016_j_tcb_2019_01_005 crossref_primary_10_1073_pnas_0607343103 crossref_primary_10_1016_j_dnarep_2005_06_006 crossref_primary_10_1534_genetics_111_137851 crossref_primary_10_1084_jem_20082271 crossref_primary_10_1093_genetics_iyac171 crossref_primary_10_1038_ncb1591 crossref_primary_10_1371_journal_pgen_1005976 crossref_primary_10_3390_cancers14205110 crossref_primary_10_1007_s00294_019_00933_7 crossref_primary_10_1101_gad_1751209 crossref_primary_10_1371_journal_pgen_1004928 crossref_primary_10_1534_genetics_118_301031 crossref_primary_10_1007_s10577_008_9016_8 crossref_primary_10_1371_journal_pgen_1003420 crossref_primary_10_2139_ssrn_4139796 crossref_primary_10_1038_nn_3553 crossref_primary_10_1016_j_dnarep_2014_07_004 crossref_primary_10_1146_annurev_genet_120215_035043 crossref_primary_10_1016_j_molcel_2023_11_002 crossref_primary_10_1038_embor_2013_142 crossref_primary_10_1016_j_jep_2019_112004 crossref_primary_10_1016_j_mrfmmm_2008_09_009 crossref_primary_10_1007_s11434_007_0382_y crossref_primary_10_1016_j_mrfmmm_2017_03_003 crossref_primary_10_1016_j_dnarep_2020_102939 crossref_primary_10_1371_journal_pone_0064660 crossref_primary_10_1038_ncb0405_329 crossref_primary_10_1128_MCB_01717_07 crossref_primary_10_1128_MCB_01269_10 crossref_primary_10_1016_j_dnarep_2007_09_006 crossref_primary_10_1534_genetics_110_120683 crossref_primary_10_1007_s00018_010_0493_5 crossref_primary_10_1038_ncb2745 crossref_primary_10_1101_gad_280685_116 crossref_primary_10_1371_journal_pbio_1002213 crossref_primary_10_3390_ijms22010169 crossref_primary_10_1002_gcc_20473 crossref_primary_10_1007_s00018_009_0068_5 crossref_primary_10_1371_journal_pgen_0020098 crossref_primary_10_1074_jbc_M112_384750 crossref_primary_10_3389_fmolb_2019_00043 crossref_primary_10_1016_j_dnarep_2010_02_013 crossref_primary_10_1091_mbc_e16_12_0846 crossref_primary_10_3724_SP_J_1008_2010_00349 crossref_primary_10_1016_j_tcb_2013_05_006 crossref_primary_10_1016_j_pbiomolbio_2016_08_001 crossref_primary_10_1534_genetics_106_057836 crossref_primary_10_1074_jbc_M508339200 crossref_primary_10_1002_yea_1497 crossref_primary_10_1038_nature07054 crossref_primary_10_1093_nar_gkad1246 crossref_primary_10_1371_journal_pone_0058015 crossref_primary_10_1002_yea_3433 crossref_primary_10_1091_mbc_e17_05_0317 crossref_primary_10_1093_femsyr_fou004 crossref_primary_10_1016_j_dnarep_2010_09_015 |
Cites_doi | 10.1126/science.277.5325.574 10.1093/emboj/cdf299 10.1002/1098-2280(2000)36:2<105::AID-EM4>3.0.CO;2-X 10.1038/12687 10.1146/annurev.genet.36.060402.113540 10.1093/genetics/161.2.493 10.1016/S1097-2765(03)00242-9 10.1038/19560 10.1038/35020592 10.1093/genetics/23.6.596 10.1038/ncb997 10.1016/0092-8674(93)90493-A 10.1016/0022-2836(88)90136-2 10.1093/genetics/147.2.371 10.1128/MCB.23.23.8820-8828.2003 10.1101/gad.7.12a.2345 10.1093/emboj/17.2.609 10.1016/S1097-2765(02)00593-2 10.1016/S0092-8674(00)80932-0 10.1128/MCB.12.3.1292 10.1101/gad.970702 10.1016/S0092-8674(00)80375-X 10.1002/j.1460-2075.1993.tb05846.x 10.1371/journal.pbio.0020021 10.4161/cc.2.5.483 10.1128/MCB.21.5.1710-1718.2001 10.1126/science.3317838 10.1093/carcin/23.5.687 10.1083/jcb.132.6.1093 10.1101/gad.970602 10.1101/gad.12.14.2208 10.1016/S0027-5107(00)00041-5 10.1073/pnas.93.14.7131 10.1016/S1097-2765(01)00388-4 10.1093/nar/gkf574 10.1016/S0960-9822(00)00300-6 10.1101/gad.903501 10.1016/0092-8674(83)90553-6 10.1126/science.1063827 10.1073/pnas.25.8.405 10.1128/MMBR.66.4.630-670.2002 10.1126/science.1074757 10.1016/S1097-2765(03)00269-7 10.1128/MCB.15.11.6128 10.1128/MCB.8.9.3918 |
ContentType | Journal Article |
Copyright | 2004 Elsevier Ltd |
Copyright_xml | – notice: 2004 Elsevier Ltd |
DBID | 6I. AAFTH CGR CUY CVF ECM EIF NPM AAYXX CITATION 7TM 8FD FR3 P64 RC3 7X8 |
DOI | 10.1016/j.cub.2004.10.051 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Genetics Abstracts Engineering Research Database Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Genetics Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1879-0445 |
EndPage | 2106 |
ExternalDocumentID | 10_1016_j_cub_2004_10_051 15589151 S0960982204008553 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, U.S. Gov't, P.H.S Comparative Study Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: GM61766 – fundername: NIGMS NIH HHS grantid: GM59691 – fundername: NIGMS NIH HHS grantid: GM20056 |
GroupedDBID | --- --K -DZ -~X 0R~ 1RT 1~5 2WC 4.4 457 4G. 53G 5GY 62- 6I. 6J9 7-5 AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKRW AALRI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGHFR AGHSJ AGKMS AGUBO AHHHB AHPSJ AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FIRID HZ~ IHE IXB J1W JIG LX5 M3Z M41 NCXOZ O-L O9- OK1 OZT P2P RCE RIG ROL RPZ SCP SDG SES SSZ TR2 WQ6 XIH ZA5 0SF AAMRU ADVLN AKAPO AKRWK CGR CUY CVF ECM EIF NPM 29F 5VS AAQFI AAQXK AAYXX ADMUD ASPBG AVWKF CAG CITATION COF FEDTE FGOYB G-2 HVGLF R2- SEW UHS XPP Y6R ZGI 7TM 8FD FR3 P64 RC3 7X8 |
ID | FETCH-LOGICAL-c491t-ec3ed87402a07024f36f42975e236043714fe3ba769cc065b980abf8a6e6c1cc3 |
ISSN | 0960-9822 |
IngestDate | Fri Oct 25 08:14:34 EDT 2024 Fri Oct 25 23:31:17 EDT 2024 Thu Sep 26 17:16:20 EDT 2024 Sat Sep 28 07:45:24 EDT 2024 Fri Feb 23 02:27:25 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c491t-ec3ed87402a07024f36f42975e236043714fe3ba769cc065b980abf8a6e6c1cc3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://dx.doi.org/10.1016/j.cub.2004.10.051 |
PMID | 15589151 |
PQID | 17831074 |
PQPubID | 23462 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_67168150 proquest_miscellaneous_17831074 crossref_primary_10_1016_j_cub_2004_10_051 pubmed_primary_15589151 elsevier_sciencedirect_doi_10_1016_j_cub_2004_10_051 |
PublicationCentury | 2000 |
PublicationDate | 2004-12-14 |
PublicationDateYYYYMMDD | 2004-12-14 |
PublicationDate_xml | – month: 12 year: 2004 text: 2004-12-14 day: 14 |
PublicationDecade | 2000 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Current biology |
PublicationTitleAlternate | Curr Biol |
PublicationYear | 2004 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | DeFazio, Stansel, Griffith, Chu (BIB32) 2002; 21 Su, Walker, Stumpff (BIB43) 2000; 10 Kramer, Haber (BIB12) 1993; 7 Sugawara, Wang, Haber (BIB4) 2003; 12 Chen, Trujillo, Ramos, Sung, Tomkinson (BIB35) 2001; 8 Koshland, Hartwell (BIB41) 1987; 238 Fishman-Lobell, Rudin, Haber (BIB19) 1992; 12 Murray, Szostak (BIB21) 1983; 34 Nasmyth (BIB37) 2002; 297 Wang, Haber (BIB6) 2004; 2 Kondo, Wakayama, Naiki, Matsumoto, Sugimoto (BIB17) 2001; 294 Surana, Amon, Dowzer, McGrew, Byers, Nasmyth (BIB20) 1993; 12 Garvik, Carson, Hartwell (BIB22) 1995; 15 Yazdi, Wang, Zhao, Patel, Lee, Qin (BIB38) 2002; 16 Wolner, van Komen, Sung, Peterson (BIB5) 2003; 12 Rudin, Haber (BIB23) 1988; 8 Kim, Xu, Kastan (BIB39) 2002; 16 Jackson (BIB2) 2002; 23 Straight, Marshall, Sedat, Murray (BIB18) 1997; 277 Toczyski, Galgoczy, Hartwell (BIB11) 1997; 90 McClintock (BIB27) 1939; 25 Sandell, Zakian (BIB10) 1993; 75 Lisby, De Mayolo, Mortensen, Rothstein (BIB16) 2003; 2 Moore, Martin, Paquin (BIB29) 2000; 36 Khodjakov, Cole, Bajer, Rieder (BIB40) 1996; 132 de Jager, Wyman, van Gent, Kanaar (BIB33) 2002; 30 Van Dyck, Stasiak, Stasiak, West (BIB34) 1999; 398 Lisby, Mortensen, Rothstein (BIB36) 2003; 5 van Steensel, Smogorzewska, de Lange (BIB42) 1998; 92 Gasior, Wong, Kora, Shinohara, Bishop (BIB7) 1998; 12 Malkova, Ivanov, Haber (BIB13) 1996; 93 Morrow, Connelly, Hieter (BIB26) 1997; 147 Melo, Cohen, Toczyski (BIB15) 2001; 15 Nyberg, Michelson, Putnam, Weinert (BIB9) 2002; 36 Ma, Kim, Haber, Lee (BIB8) 2003; 23 Galgoczy, Toczyski (BIB14) 2001; 21 Craven, Greenwell, Dominska, Petes (BIB28) 2002; 161 Symington (BIB3) 2002; 66 Ramsden, Gellert (BIB31) 1998; 17 Lewis, Resnick (BIB1) 2000; 451 Carlson (BIB44) 1938; 23 Vaze, Pellicioli, Lee, Ira, Liberi, Arbel-Eden, Foiani, Haber (BIB25) 2002; 10 Chen, Kolodner (BIB30) 1999; 23 Ray, Siddiqi, Kolodkin, Stahl (BIB24) 1988; 201 Artandi, Chang, Lee, Alson, Gottlieb, Chin, DePinho (BIB45) 2000; 406 15589147 - Curr Biol. 2004 Dec 14;14(23):R994-6 Fishman-Lobell (10.1016/j.cub.2004.10.051_BIB19) 1992; 12 Nasmyth (10.1016/j.cub.2004.10.051_BIB37) 2002; 297 Straight (10.1016/j.cub.2004.10.051_BIB18) 1997; 277 McClintock (10.1016/j.cub.2004.10.051_BIB27) 1939; 25 Wolner (10.1016/j.cub.2004.10.051_BIB5) 2003; 12 Malkova (10.1016/j.cub.2004.10.051_BIB13) 1996; 93 Murray (10.1016/j.cub.2004.10.051_BIB21) 1983; 34 Khodjakov (10.1016/j.cub.2004.10.051_BIB40) 1996; 132 Wang (10.1016/j.cub.2004.10.051_BIB6) 2004; 2 Kim (10.1016/j.cub.2004.10.051_BIB39) 2002; 16 Toczyski (10.1016/j.cub.2004.10.051_BIB11) 1997; 90 Rudin (10.1016/j.cub.2004.10.051_BIB23) 1988; 8 Morrow (10.1016/j.cub.2004.10.051_BIB26) 1997; 147 Kramer (10.1016/j.cub.2004.10.051_BIB12) 1993; 7 Garvik (10.1016/j.cub.2004.10.051_BIB22) 1995; 15 Lisby (10.1016/j.cub.2004.10.051_BIB16) 2003; 2 Craven (10.1016/j.cub.2004.10.051_BIB28) 2002; 161 Koshland (10.1016/j.cub.2004.10.051_BIB41) 1987; 238 Yazdi (10.1016/j.cub.2004.10.051_BIB38) 2002; 16 Chen (10.1016/j.cub.2004.10.051_BIB30) 1999; 23 Moore (10.1016/j.cub.2004.10.051_BIB29) 2000; 36 Ray (10.1016/j.cub.2004.10.051_BIB24) 1988; 201 de Jager (10.1016/j.cub.2004.10.051_BIB33) 2002; 30 Carlson (10.1016/j.cub.2004.10.051_BIB44) 1938; 23 Surana (10.1016/j.cub.2004.10.051_BIB20) 1993; 12 Van Dyck (10.1016/j.cub.2004.10.051_BIB34) 1999; 398 Sandell (10.1016/j.cub.2004.10.051_BIB10) 1993; 75 Vaze (10.1016/j.cub.2004.10.051_BIB25) 2002; 10 Su (10.1016/j.cub.2004.10.051_BIB43) 2000; 10 Gasior (10.1016/j.cub.2004.10.051_BIB7) 1998; 12 Kondo (10.1016/j.cub.2004.10.051_BIB17) 2001; 294 Sugawara (10.1016/j.cub.2004.10.051_BIB4) 2003; 12 Lisby (10.1016/j.cub.2004.10.051_BIB36) 2003; 5 Melo (10.1016/j.cub.2004.10.051_BIB15) 2001; 15 Symington (10.1016/j.cub.2004.10.051_BIB3) 2002; 66 van Steensel (10.1016/j.cub.2004.10.051_BIB42) 1998; 92 Lewis (10.1016/j.cub.2004.10.051_BIB1) 2000; 451 Jackson (10.1016/j.cub.2004.10.051_BIB2) 2002; 23 Artandi (10.1016/j.cub.2004.10.051_BIB45) 2000; 406 Ma (10.1016/j.cub.2004.10.051_BIB8) 2003; 23 Nyberg (10.1016/j.cub.2004.10.051_BIB9) 2002; 36 Galgoczy (10.1016/j.cub.2004.10.051_BIB14) 2001; 21 DeFazio (10.1016/j.cub.2004.10.051_BIB32) 2002; 21 Chen (10.1016/j.cub.2004.10.051_BIB35) 2001; 8 Ramsden (10.1016/j.cub.2004.10.051_BIB31) 1998; 17 |
References_xml | – volume: 201 start-page: 247 year: 1988 end-page: 260 ident: BIB24 article-title: Intra-chromosomal gene conversion induced by a DNA double-strand break in publication-title: J. Mol. Biol contributor: fullname: Stahl – volume: 161 start-page: 493 year: 2002 end-page: 507 ident: BIB28 article-title: Regulation of genome stability by TEL1 and MEC1, yeast homologs of the mammalian ATM and ATR genes publication-title: Genetics contributor: fullname: Petes – volume: 398 start-page: 728 year: 1999 end-page: 731 ident: BIB34 article-title: Binding of double-strand breaks in DNA by human Rad52 protein publication-title: Nature contributor: fullname: West – volume: 147 start-page: 371 year: 1997 end-page: 382 ident: BIB26 article-title: Break copy duplication publication-title: Genetics contributor: fullname: Hieter – volume: 297 start-page: 559 year: 2002 end-page: 565 ident: BIB37 article-title: Segregating sister genomes publication-title: Science contributor: fullname: Nasmyth – volume: 23 start-page: 596 year: 1938 end-page: 609 ident: BIB44 article-title: Some effects of X-radiation on the neuroblast chromosomes of the grasshopper, Chortophaga viridifasciata publication-title: Genetics contributor: fullname: Carlson – volume: 23 start-page: 8820 year: 2003 end-page: 8828 ident: BIB8 article-title: Yeast Mre11 and Rad1 proteins define a Ku-independent mechanism to repair double-strand breaks lacking overlapping end sequences publication-title: Mol. Cell. Biol contributor: fullname: Lee – volume: 21 start-page: 1710 year: 2001 end-page: 1718 ident: BIB14 article-title: Checkpoint adaptation precedes spontaneous and damage-induced genomic instability in yeast publication-title: Mol. Cell. Biol contributor: fullname: Toczyski – volume: 23 start-page: 81 year: 1999 end-page: 85 ident: BIB30 article-title: Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants publication-title: Nat. Genet contributor: fullname: Kolodner – volume: 16 start-page: 571 year: 2002 end-page: 582 ident: BIB38 article-title: SMC1 is a downstream effector in the ATM/NBS1 branch of the human S-phase checkpoint publication-title: Genes Dev contributor: fullname: Qin – volume: 132 start-page: 1093 year: 1996 end-page: 1104 ident: BIB40 article-title: The force for poleward chromosome motion in Haemanthus cells acts along the length of the chromosome during metaphase but only at the kinetochore during anaphase publication-title: J. Cell Biol contributor: fullname: Rieder – volume: 93 start-page: 7131 year: 1996 end-page: 7136 ident: BIB13 article-title: Double-strand break repair in the absence of RAD51 in yeast publication-title: Proc. Natl. Acad. Sci. USA contributor: fullname: Haber – volume: 10 start-page: 119 year: 2000 end-page: 126 ident: BIB43 article-title: Activating the DNA damage checkpoint in a developmental context publication-title: Curr. Biol contributor: fullname: Stumpff – volume: 2 start-page: E21 year: 2004 ident: BIB6 article-title: Role of Saccharomyces Single-Stranded DNA-Binding Protein RPA in the Strand Invasion Step of Double-Strand Break Repair publication-title: PLoS Biol contributor: fullname: Haber – volume: 90 start-page: 1097 year: 1997 end-page: 1106 ident: BIB11 article-title: CDC5 and CKII control adaptation to the yeast DNA damage checkpoint publication-title: Cell contributor: fullname: Hartwell – volume: 17 start-page: 609 year: 1998 end-page: 614 ident: BIB31 article-title: Ku protein stimulates DNA end joining by mammalian DNA ligases publication-title: EMBO J contributor: fullname: Gellert – volume: 294 start-page: 867 year: 2001 end-page: 870 ident: BIB17 article-title: Recruitment of mec1 and ddc1 checkpoint proteins to double-strand breaks through distinct mechanisms publication-title: Science contributor: fullname: Sugimoto – volume: 36 start-page: 617 year: 2002 end-page: 656 ident: BIB9 article-title: Toward maintaining the genome publication-title: Annu. Rev. Genet contributor: fullname: Weinert – volume: 15 start-page: 6128 year: 1995 end-page: 6138 ident: BIB22 article-title: Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint publication-title: Mol. Cell. Biol contributor: fullname: Hartwell – volume: 12 start-page: 221 year: 2003 end-page: 232 ident: BIB5 article-title: Recruitment of the recombinational repair machinery to a DNA double-strand break in yeast publication-title: Mol. Cell contributor: fullname: Peterson – volume: 12 start-page: 1292 year: 1992 end-page: 1303 ident: BIB19 article-title: Two alternative pathways of double-strand break repair that are kinetically separable and independently modulated publication-title: Mol. Cell. Biol contributor: fullname: Haber – volume: 12 start-page: 1969 year: 1993 end-page: 1978 ident: BIB20 article-title: Destruction of the CDC28/CLB mitotic kinase is not required for the metaphase to anaphase transition in budding yeast publication-title: EMBO J contributor: fullname: Nasmyth – volume: 12 start-page: 209 year: 2003 end-page: 219 ident: BIB4 article-title: In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination publication-title: Mol. Cell contributor: fullname: Haber – volume: 238 start-page: 1713 year: 1987 end-page: 1716 ident: BIB41 article-title: The structure of sister minichromosome DNA before anaphase in Saccharomyces cerevisiae publication-title: Science contributor: fullname: Hartwell – volume: 16 start-page: 560 year: 2002 end-page: 570 ident: BIB39 article-title: Involvement of the cohesin protein, Smc1, in Atm-dependent and independent responses to DNA damage publication-title: Genes Dev contributor: fullname: Kastan – volume: 25 start-page: 405 year: 1939 end-page: 416 ident: BIB27 article-title: The behavior in successive nuclear divisions of a chromosome broken at meiosis publication-title: Proc. Natl. Acad. Sci. USA contributor: fullname: McClintock – volume: 2 start-page: 479 year: 2003 end-page: 483 ident: BIB16 article-title: Cell cycle-regulated centers of DNA double-strand break repair publication-title: Cell Cycle contributor: fullname: Rothstein – volume: 8 start-page: 1105 year: 2001 end-page: 1115 ident: BIB35 article-title: Promotion of Dnl4-catalyzed DNA end-joining by the Rad50/Mre11/Xrs2 and Hdf1/Hdf2 complexes publication-title: Mol. Cell contributor: fullname: Tomkinson – volume: 15 start-page: 2809 year: 2001 end-page: 2821 ident: BIB15 article-title: Two checkpoint complexes are independently recruited to sites of DNA damage in vivo publication-title: Genes Dev contributor: fullname: Toczyski – volume: 36 start-page: 105 year: 2000 end-page: 112 ident: BIB29 article-title: Telomere sequences at the novel joints of four independent amplifications in Saccharomyces cerevisiae publication-title: Environ. Mol. Mutagen contributor: fullname: Paquin – volume: 8 start-page: 3918 year: 1988 end-page: 3928 ident: BIB23 article-title: Efficient repair of HO-induced chromosomal breaks in publication-title: Mol. Biol. Cell contributor: fullname: Haber – volume: 7 start-page: 2345 year: 1993 end-page: 2356 ident: BIB12 article-title: New telomeres in yeast are initiated with a highly selected subset of TG1–3 repeats publication-title: Genes Dev contributor: fullname: Haber – volume: 12 start-page: 2208 year: 1998 end-page: 2221 ident: BIB7 article-title: Rad52 associates with RPA and functions with rad55 and rad57 to assemble meiotic recombination complexes publication-title: Genes Dev contributor: fullname: Bishop – volume: 75 start-page: 729 year: 1993 end-page: 739 ident: BIB10 article-title: Loss of a yeast telomere publication-title: Cell contributor: fullname: Zakian – volume: 66 start-page: 630 year: 2002 end-page: 670 ident: BIB3 article-title: Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair publication-title: Microbiol. Mol. Biol. Rev contributor: fullname: Symington – volume: 277 start-page: 574 year: 1997 end-page: 578 ident: BIB18 article-title: Mitosis in living budding yeast publication-title: Science contributor: fullname: Murray – volume: 30 start-page: 4425 year: 2002 end-page: 4431 ident: BIB33 article-title: DNA end-binding specificity of human Rad50/Mre11 is influenced by ATP publication-title: Nucleic Acids Res contributor: fullname: Kanaar – volume: 92 start-page: 401 year: 1998 end-page: 413 ident: BIB42 article-title: TRF2 protects human telomeres from end-to-end fusions publication-title: Cell contributor: fullname: de Lange – volume: 10 start-page: 373 year: 2002 end-page: 385 ident: BIB25 article-title: Recovery from checkpoint-mediated arrest after repair of a double-strand break requires Srs2 helicase publication-title: Mol. Cell contributor: fullname: Haber – volume: 23 start-page: 687 year: 2002 end-page: 696 ident: BIB2 article-title: Sensing and repairing DNA double-strand breaks publication-title: Carcinogenesis contributor: fullname: Jackson – volume: 5 start-page: 572 year: 2003 end-page: 577 ident: BIB36 article-title: Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre publication-title: Nat. Cell Biol contributor: fullname: Rothstein – volume: 406 start-page: 641 year: 2000 end-page: 645 ident: BIB45 article-title: Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice publication-title: Nature contributor: fullname: DePinho – volume: 21 start-page: 3192 year: 2002 end-page: 3200 ident: BIB32 article-title: Synapsis of DNA ends by DNA-dependent protein kinase publication-title: EMBO J contributor: fullname: Chu – volume: 451 start-page: 71 year: 2000 end-page: 89 ident: BIB1 article-title: Tying up loose ends publication-title: Mutat. Res contributor: fullname: Resnick – volume: 34 start-page: 961 year: 1983 end-page: 970 ident: BIB21 article-title: Pedigree analysis of plasmid segregation in yeast publication-title: Cell contributor: fullname: Szostak – volume: 277 start-page: 574 year: 1997 ident: 10.1016/j.cub.2004.10.051_BIB18 article-title: Mitosis in living budding yeast publication-title: Science doi: 10.1126/science.277.5325.574 contributor: fullname: Straight – volume: 21 start-page: 3192 year: 2002 ident: 10.1016/j.cub.2004.10.051_BIB32 article-title: Synapsis of DNA ends by DNA-dependent protein kinase publication-title: EMBO J doi: 10.1093/emboj/cdf299 contributor: fullname: DeFazio – volume: 36 start-page: 105 year: 2000 ident: 10.1016/j.cub.2004.10.051_BIB29 article-title: Telomere sequences at the novel joints of four independent amplifications in Saccharomyces cerevisiae publication-title: Environ. Mol. Mutagen doi: 10.1002/1098-2280(2000)36:2<105::AID-EM4>3.0.CO;2-X contributor: fullname: Moore – volume: 23 start-page: 81 year: 1999 ident: 10.1016/j.cub.2004.10.051_BIB30 article-title: Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants publication-title: Nat. Genet doi: 10.1038/12687 contributor: fullname: Chen – volume: 36 start-page: 617 year: 2002 ident: 10.1016/j.cub.2004.10.051_BIB9 article-title: Toward maintaining the genome publication-title: Annu. Rev. Genet doi: 10.1146/annurev.genet.36.060402.113540 contributor: fullname: Nyberg – volume: 161 start-page: 493 year: 2002 ident: 10.1016/j.cub.2004.10.051_BIB28 article-title: Regulation of genome stability by TEL1 and MEC1, yeast homologs of the mammalian ATM and ATR genes publication-title: Genetics doi: 10.1093/genetics/161.2.493 contributor: fullname: Craven – volume: 12 start-page: 221 year: 2003 ident: 10.1016/j.cub.2004.10.051_BIB5 article-title: Recruitment of the recombinational repair machinery to a DNA double-strand break in yeast publication-title: Mol. Cell doi: 10.1016/S1097-2765(03)00242-9 contributor: fullname: Wolner – volume: 398 start-page: 728 year: 1999 ident: 10.1016/j.cub.2004.10.051_BIB34 article-title: Binding of double-strand breaks in DNA by human Rad52 protein publication-title: Nature doi: 10.1038/19560 contributor: fullname: Van Dyck – volume: 406 start-page: 641 year: 2000 ident: 10.1016/j.cub.2004.10.051_BIB45 article-title: Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice publication-title: Nature doi: 10.1038/35020592 contributor: fullname: Artandi – volume: 23 start-page: 596 year: 1938 ident: 10.1016/j.cub.2004.10.051_BIB44 article-title: Some effects of X-radiation on the neuroblast chromosomes of the grasshopper, Chortophaga viridifasciata publication-title: Genetics doi: 10.1093/genetics/23.6.596 contributor: fullname: Carlson – volume: 5 start-page: 572 year: 2003 ident: 10.1016/j.cub.2004.10.051_BIB36 article-title: Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre publication-title: Nat. Cell Biol doi: 10.1038/ncb997 contributor: fullname: Lisby – volume: 75 start-page: 729 year: 1993 ident: 10.1016/j.cub.2004.10.051_BIB10 article-title: Loss of a yeast telomere publication-title: Cell doi: 10.1016/0092-8674(93)90493-A contributor: fullname: Sandell – volume: 201 start-page: 247 year: 1988 ident: 10.1016/j.cub.2004.10.051_BIB24 article-title: Intra-chromosomal gene conversion induced by a DNA double-strand break in Saccharomyces cerevisiae publication-title: J. Mol. Biol doi: 10.1016/0022-2836(88)90136-2 contributor: fullname: Ray – volume: 147 start-page: 371 year: 1997 ident: 10.1016/j.cub.2004.10.051_BIB26 article-title: Break copy duplication publication-title: Genetics doi: 10.1093/genetics/147.2.371 contributor: fullname: Morrow – volume: 23 start-page: 8820 year: 2003 ident: 10.1016/j.cub.2004.10.051_BIB8 article-title: Yeast Mre11 and Rad1 proteins define a Ku-independent mechanism to repair double-strand breaks lacking overlapping end sequences publication-title: Mol. Cell. Biol doi: 10.1128/MCB.23.23.8820-8828.2003 contributor: fullname: Ma – volume: 7 start-page: 2345 year: 1993 ident: 10.1016/j.cub.2004.10.051_BIB12 article-title: New telomeres in yeast are initiated with a highly selected subset of TG1–3 repeats publication-title: Genes Dev doi: 10.1101/gad.7.12a.2345 contributor: fullname: Kramer – volume: 17 start-page: 609 year: 1998 ident: 10.1016/j.cub.2004.10.051_BIB31 article-title: Ku protein stimulates DNA end joining by mammalian DNA ligases publication-title: EMBO J doi: 10.1093/emboj/17.2.609 contributor: fullname: Ramsden – volume: 10 start-page: 373 year: 2002 ident: 10.1016/j.cub.2004.10.051_BIB25 article-title: Recovery from checkpoint-mediated arrest after repair of a double-strand break requires Srs2 helicase publication-title: Mol. Cell doi: 10.1016/S1097-2765(02)00593-2 contributor: fullname: Vaze – volume: 92 start-page: 401 year: 1998 ident: 10.1016/j.cub.2004.10.051_BIB42 article-title: TRF2 protects human telomeres from end-to-end fusions publication-title: Cell doi: 10.1016/S0092-8674(00)80932-0 contributor: fullname: van Steensel – volume: 12 start-page: 1292 year: 1992 ident: 10.1016/j.cub.2004.10.051_BIB19 article-title: Two alternative pathways of double-strand break repair that are kinetically separable and independently modulated publication-title: Mol. Cell. Biol doi: 10.1128/MCB.12.3.1292 contributor: fullname: Fishman-Lobell – volume: 16 start-page: 571 year: 2002 ident: 10.1016/j.cub.2004.10.051_BIB38 article-title: SMC1 is a downstream effector in the ATM/NBS1 branch of the human S-phase checkpoint publication-title: Genes Dev doi: 10.1101/gad.970702 contributor: fullname: Yazdi – volume: 90 start-page: 1097 year: 1997 ident: 10.1016/j.cub.2004.10.051_BIB11 article-title: CDC5 and CKII control adaptation to the yeast DNA damage checkpoint publication-title: Cell doi: 10.1016/S0092-8674(00)80375-X contributor: fullname: Toczyski – volume: 12 start-page: 1969 year: 1993 ident: 10.1016/j.cub.2004.10.051_BIB20 article-title: Destruction of the CDC28/CLB mitotic kinase is not required for the metaphase to anaphase transition in budding yeast publication-title: EMBO J doi: 10.1002/j.1460-2075.1993.tb05846.x contributor: fullname: Surana – volume: 2 start-page: E21 year: 2004 ident: 10.1016/j.cub.2004.10.051_BIB6 article-title: Role of Saccharomyces Single-Stranded DNA-Binding Protein RPA in the Strand Invasion Step of Double-Strand Break Repair publication-title: PLoS Biol doi: 10.1371/journal.pbio.0020021 contributor: fullname: Wang – volume: 2 start-page: 479 year: 2003 ident: 10.1016/j.cub.2004.10.051_BIB16 article-title: Cell cycle-regulated centers of DNA double-strand break repair publication-title: Cell Cycle doi: 10.4161/cc.2.5.483 contributor: fullname: Lisby – volume: 21 start-page: 1710 year: 2001 ident: 10.1016/j.cub.2004.10.051_BIB14 article-title: Checkpoint adaptation precedes spontaneous and damage-induced genomic instability in yeast publication-title: Mol. Cell. Biol doi: 10.1128/MCB.21.5.1710-1718.2001 contributor: fullname: Galgoczy – volume: 238 start-page: 1713 year: 1987 ident: 10.1016/j.cub.2004.10.051_BIB41 article-title: The structure of sister minichromosome DNA before anaphase in Saccharomyces cerevisiae publication-title: Science doi: 10.1126/science.3317838 contributor: fullname: Koshland – volume: 23 start-page: 687 year: 2002 ident: 10.1016/j.cub.2004.10.051_BIB2 article-title: Sensing and repairing DNA double-strand breaks publication-title: Carcinogenesis doi: 10.1093/carcin/23.5.687 contributor: fullname: Jackson – volume: 132 start-page: 1093 year: 1996 ident: 10.1016/j.cub.2004.10.051_BIB40 article-title: The force for poleward chromosome motion in Haemanthus cells acts along the length of the chromosome during metaphase but only at the kinetochore during anaphase publication-title: J. Cell Biol doi: 10.1083/jcb.132.6.1093 contributor: fullname: Khodjakov – volume: 16 start-page: 560 year: 2002 ident: 10.1016/j.cub.2004.10.051_BIB39 article-title: Involvement of the cohesin protein, Smc1, in Atm-dependent and independent responses to DNA damage publication-title: Genes Dev doi: 10.1101/gad.970602 contributor: fullname: Kim – volume: 12 start-page: 2208 year: 1998 ident: 10.1016/j.cub.2004.10.051_BIB7 article-title: Rad52 associates with RPA and functions with rad55 and rad57 to assemble meiotic recombination complexes publication-title: Genes Dev doi: 10.1101/gad.12.14.2208 contributor: fullname: Gasior – volume: 451 start-page: 71 year: 2000 ident: 10.1016/j.cub.2004.10.051_BIB1 article-title: Tying up loose ends publication-title: Mutat. Res doi: 10.1016/S0027-5107(00)00041-5 contributor: fullname: Lewis – volume: 93 start-page: 7131 year: 1996 ident: 10.1016/j.cub.2004.10.051_BIB13 article-title: Double-strand break repair in the absence of RAD51 in yeast publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.93.14.7131 contributor: fullname: Malkova – volume: 8 start-page: 1105 year: 2001 ident: 10.1016/j.cub.2004.10.051_BIB35 article-title: Promotion of Dnl4-catalyzed DNA end-joining by the Rad50/Mre11/Xrs2 and Hdf1/Hdf2 complexes publication-title: Mol. Cell doi: 10.1016/S1097-2765(01)00388-4 contributor: fullname: Chen – volume: 30 start-page: 4425 year: 2002 ident: 10.1016/j.cub.2004.10.051_BIB33 article-title: DNA end-binding specificity of human Rad50/Mre11 is influenced by ATP publication-title: Nucleic Acids Res doi: 10.1093/nar/gkf574 contributor: fullname: de Jager – volume: 10 start-page: 119 year: 2000 ident: 10.1016/j.cub.2004.10.051_BIB43 article-title: Activating the DNA damage checkpoint in a developmental context publication-title: Curr. Biol doi: 10.1016/S0960-9822(00)00300-6 contributor: fullname: Su – volume: 15 start-page: 2809 year: 2001 ident: 10.1016/j.cub.2004.10.051_BIB15 article-title: Two checkpoint complexes are independently recruited to sites of DNA damage in vivo publication-title: Genes Dev doi: 10.1101/gad.903501 contributor: fullname: Melo – volume: 34 start-page: 961 year: 1983 ident: 10.1016/j.cub.2004.10.051_BIB21 article-title: Pedigree analysis of plasmid segregation in yeast publication-title: Cell doi: 10.1016/0092-8674(83)90553-6 contributor: fullname: Murray – volume: 294 start-page: 867 year: 2001 ident: 10.1016/j.cub.2004.10.051_BIB17 article-title: Recruitment of mec1 and ddc1 checkpoint proteins to double-strand breaks through distinct mechanisms publication-title: Science doi: 10.1126/science.1063827 contributor: fullname: Kondo – volume: 25 start-page: 405 year: 1939 ident: 10.1016/j.cub.2004.10.051_BIB27 article-title: The behavior in successive nuclear divisions of a chromosome broken at meiosis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.25.8.405 contributor: fullname: McClintock – volume: 66 start-page: 630 year: 2002 ident: 10.1016/j.cub.2004.10.051_BIB3 article-title: Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair publication-title: Microbiol. Mol. Biol. Rev doi: 10.1128/MMBR.66.4.630-670.2002 contributor: fullname: Symington – volume: 297 start-page: 559 year: 2002 ident: 10.1016/j.cub.2004.10.051_BIB37 article-title: Segregating sister genomes publication-title: Science doi: 10.1126/science.1074757 contributor: fullname: Nasmyth – volume: 12 start-page: 209 year: 2003 ident: 10.1016/j.cub.2004.10.051_BIB4 article-title: In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination publication-title: Mol. Cell doi: 10.1016/S1097-2765(03)00269-7 contributor: fullname: Sugawara – volume: 15 start-page: 6128 year: 1995 ident: 10.1016/j.cub.2004.10.051_BIB22 article-title: Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint publication-title: Mol. Cell. Biol doi: 10.1128/MCB.15.11.6128 contributor: fullname: Garvik – volume: 8 start-page: 3918 year: 1988 ident: 10.1016/j.cub.2004.10.051_BIB23 article-title: Efficient repair of HO-induced chromosomal breaks in Saccharomyces cerevisiae by recombination between flanking homologous sequences publication-title: Mol. Biol. Cell doi: 10.1128/MCB.8.9.3918 contributor: fullname: Rudin |
SSID | ssj0012896 |
Score | 2.2467353 |
Snippet | Background: Unrepaired DNA double-stranded breaks (DSBs) can result in the whole or partial loss of chromosomes. Previously, we showed that the ends of broken... Unrepaired DNA double-stranded breaks (DSBs) can result in the whole or partial loss of chromosomes. Previously, we showed that the ends of broken chromosomes... BACKGROUNDUnrepaired DNA double-stranded breaks (DSBs) can result in the whole or partial loss of chromosomes. Previously, we showed that the ends of broken... |
SourceID | proquest crossref pubmed elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2096 |
SubjectTerms | Chromosome Breakage - physiology Chromosome Segregation - physiology DNA Repair - physiology DNA Repair Enzymes - metabolism DNA Repair Enzymes - physiology DNA-Binding Proteins - physiology Genomic Instability - physiology Green Fluorescent Proteins Microscopy, Fluorescence Mitosis - genetics Mitosis - physiology Plasmids - genetics Rad52 DNA Repair and Recombination Protein Spindle Apparatus - physiology Yeasts |
Title | DNA Breaks Promote Genomic Instability by Impeding Proper Chromosome Segregation |
URI | https://dx.doi.org/10.1016/j.cub.2004.10.051 https://www.ncbi.nlm.nih.gov/pubmed/15589151 https://search.proquest.com/docview/17831074 https://search.proquest.com/docview/67168150 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdpx2AvY99L96WHPa04RJYsy4-hzWgplEK7sTcjy-eVjCUjbhjpX787yR_JWMY22IsJshMrutPpPn_H2FudVuPMORNZIcpIJYWMjIM0ckaWMbhKaiBD8eQyPf9kjqdqOhi0vQD7sf9KaRxDWlPl7F9Qu_tRHMDPSHO8ItXx-kd0Pz6fIMHAfqmpCAAJ4aGlqfbYJwYEWO41aZ2nqDH7kpYLcsgvCWcAn68XXwElCJrhn3uizbYhShvkpk5Y2zW0tdb2cDLqiAhNXIc6hqEy2985uoZGyPgsMypzPzzr7n60t8FfvlhCff3dUjnMlnfCYyCK3jvZlc1sZXWS2RQRcGA4hILkNSlFaQK2ZCea1QYLxnJT0I4zvXFoo-Gqf3kgBN_EbORWhXcGjCiVr4G43cbZvvTgezgpEmsmSeQeuxOj9PJ2-ulZF5pCC9UHwNv_0IbKfdLgT6_ZpezsMma8UnP1gN1vrBE-CWz0kA1g_ojdDf1J14_ZBTITD8zEG2biDTPxDWbixZq3zMQDM_GemfgGMz1hH95Pr45OoqYFR-RUJm4icBJK6toYWzwbYoV7t1JUjA2x1ASLJVQFsrCpxg2P2myRmbEtKmM1aCeck0_Z_nwxh-eMZ8YUZVKNy1KgzqvjLBYOjXXpUCVNMoiH7F27Vvm3gLSStymIsxwXljqmKhrChR0y1a5m3qiKQQXMkfC_-9qbduVzFKMUG7NzWKzqXKTUcS9Vu5_QOFmD5tOQPQsk62eZUGvORBz826ResHv9znnJ9m-WK3jF9upy9dpz3g9VvqXB |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DNA+Breaks+Promote+Genomic+Instability+by+Impeding+Proper+Chromosome+Segregation&rft.jtitle=Current+biology&rft.au=Kaye%2C+Julia+A.&rft.au=Melo%2C+Justine+A.&rft.au=Cheung%2C+Stephanie+K.&rft.au=Vaze%2C+Moreshwar+B.&rft.date=2004-12-14&rft.pub=Elsevier+Inc&rft.issn=0960-9822&rft.eissn=1879-0445&rft.volume=14&rft.issue=23&rft.spage=2096&rft.epage=2106&rft_id=info:doi/10.1016%2Fj.cub.2004.10.051&rft.externalDocID=S0960982204008553 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-9822&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-9822&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-9822&client=summon |