Three-Dimensional Smart Catalyst Electrode for Oxygen Evolution Reaction
A multifunctional catalyst electrode mimicking external stimuli–responsive property has been prepared by the in situ growth of nitrogen (N)‐doped NiFe double layered hydroxide (N–NiFe LDH) nanolayers on a 3D nickel foam substrate framework. The electrode demonstrates superior performance toward cata...
Saved in:
Published in: | Advanced energy materials Vol. 5; no. 18; pp. np - n/a |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Weinheim
Blackwell Publishing Ltd
01-09-2015
Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | A multifunctional catalyst electrode mimicking external stimuli–responsive property has been prepared by the in situ growth of nitrogen (N)‐doped NiFe double layered hydroxide (N–NiFe LDH) nanolayers on a 3D nickel foam substrate framework. The electrode demonstrates superior performance toward catalyzing oxygen evolution reaction (OER), affording a low overpotential of 0.23 V at the current density of 10 mA cm−2, high Faradaic efficiency of ≈98%, and stable operation for >60 h. Meanwhile, the electrode can dynamically change its color from gray silver to dark black with the OER happening, and the coloration/bleaching processes persist for at least 5000 cycles, rendering it a useful tool to monitor the catalytic process. Mechanism study reveals that the excellent structural properties of electrode such as 3D conductive framework, ultra thickness of N–NiFe LDH nanolayer (≈0.8 nm), and high N‐doping content (≈17.8%) make significant contribution to achieving enhanced catalytic performance, while N–NiFe LDH nanolayer on electrode is the main contributor to the stimuli‐responsive property with the reversible extraction/insertion of electrons from/into N–NiFe LDH leading to the coloration/bleaching processes. Potential application of this electrode has been further demonstrated by integrating it into a Zn–air battery device to identify the charging process during electrochemical cycling.
A 3D catalyst electrode mimicking external stimuli–responsive functionality is fabricated. It exhibits superior performance toward catalyzing oxygen evolution reaction (OER) and dynamically changes its color with the OER, providing an opportunity to quickly monitor the catalytic reaction. |
---|---|
AbstractList | A multifunctional catalyst electrode mimicking external stimuli–responsive property has been prepared by the in situ growth of nitrogen (N)‐doped NiFe double layered hydroxide (N–NiFe LDH) nanolayers on a 3D nickel foam substrate framework. The electrode demonstrates superior performance toward catalyzing oxygen evolution reaction (OER), affording a low overpotential of 0.23 V at the current density of 10 mA cm−2, high Faradaic efficiency of ≈98%, and stable operation for >60 h. Meanwhile, the electrode can dynamically change its color from gray silver to dark black with the OER happening, and the coloration/bleaching processes persist for at least 5000 cycles, rendering it a useful tool to monitor the catalytic process. Mechanism study reveals that the excellent structural properties of electrode such as 3D conductive framework, ultra thickness of N–NiFe LDH nanolayer (≈0.8 nm), and high N‐doping content (≈17.8%) make significant contribution to achieving enhanced catalytic performance, while N–NiFe LDH nanolayer on electrode is the main contributor to the stimuli‐responsive property with the reversible extraction/insertion of electrons from/into N–NiFe LDH leading to the coloration/bleaching processes. Potential application of this electrode has been further demonstrated by integrating it into a Zn–air battery device to identify the charging process during electrochemical cycling.
A 3D catalyst electrode mimicking external stimuli–responsive functionality is fabricated. It exhibits superior performance toward catalyzing oxygen evolution reaction (OER) and dynamically changes its color with the OER, providing an opportunity to quickly monitor the catalytic reaction. A multifunctional catalyst electrode mimicking external stimuli-responsive property has been prepared by the in situ growth of nitrogen (N)-doped NiFe double layered hydroxide (N-NiFe LDH) nanolayers on a 3D nickel foam substrate framework. The electrode demonstrates superior performance toward catalyzing oxygen evolution reaction (OER), affording a low overpotential of 0.23 V at the current density of 10 mA cm super(-2), high Faradaic efficiency of approximately 98%, and stable operation for >60 h. Meanwhile, the electrode can dynamically change its color from gray silver to dark black with the OER happening, and the coloration/bleaching processes persist for at least 5000 cycles, rendering it a useful tool to monitor the catalytic process. Mechanism study reveals that the excellent structural properties of electrode such as 3D conductive framework, ultra thickness of N-NiFe LDH nanolayer ( approximately 0.8 nm), and high N-doping content ( approximately 17.8%) make significant contribution to achieving enhanced catalytic performance, while N-NiFe LDH nanolayer on electrode is the main contributor to the stimuli-responsive property with the reversible extraction/insertion of electrons from/into N-NiFe LDH leading to the coloration/bleaching processes. Potential application of this electrode has been further demonstrated by integrating it into a Zn-air battery device to identify the charging process during electrochemical cycling. A 3D catalyst electrode mimicking external stimuli-responsive functionality is fabricated. It exhibits superior performance toward catalyzing oxygen evolution reaction (OER) and dynamically changes its color with the OER, providing an opportunity to quickly monitor the catalytic reaction. A multifunctional catalyst electrode mimicking external stimuli-responsive property has been prepared by the in situ growth of nitrogen (N)-doped NiFe double layered hydroxide (N-NiFe LDH) nanolayers on a 3D nickel foam substrate framework. The electrode demonstrates superior performance toward catalyzing oxygen evolution reaction (OER), affording a low overpotential of 0.23 V at the current density of 10 mA cm-2, high Faradaic efficiency of [asymptotically =]98%, and stable operation for >60 h. Meanwhile, the electrode can dynamically change its color from gray silver to dark black with the OER happening, and the coloration/bleaching processes persist for at least 5000 cycles, rendering it a useful tool to monitor the catalytic process. Mechanism study reveals that the excellent structural properties of electrode such as 3D conductive framework, ultra thickness of N-NiFe LDH nanolayer ([asymptotically =]0.8 nm), and high N-doping content ([asymptotically =]17.8%) make significant contribution to achieving enhanced catalytic performance, while N-NiFe LDH nanolayer on electrode is the main contributor to the stimuli-responsive property with the reversible extraction/insertion of electrons from/into N-NiFe LDH leading to the coloration/bleaching processes. Potential application of this electrode has been further demonstrated by integrating it into a Zn-air battery device to identify the charging process during electrochemical cycling. A multifunctional catalyst electrode mimicking external stimuli–responsive property has been prepared by the in situ growth of nitrogen (N)‐doped NiFe double layered hydroxide (N–NiFe LDH) nanolayers on a 3D nickel foam substrate framework. The electrode demonstrates superior performance toward catalyzing oxygen evolution reaction (OER), affording a low overpotential of 0.23 V at the current density of 10 mA cm −2 , high Faradaic efficiency of ≈98%, and stable operation for >60 h. Meanwhile, the electrode can dynamically change its color from gray silver to dark black with the OER happening, and the coloration/bleaching processes persist for at least 5000 cycles, rendering it a useful tool to monitor the catalytic process. Mechanism study reveals that the excellent structural properties of electrode such as 3D conductive framework, ultra thickness of N–NiFe LDH nanolayer (≈0.8 nm), and high N‐doping content (≈17.8%) make significant contribution to achieving enhanced catalytic performance, while N–NiFe LDH nanolayer on electrode is the main contributor to the stimuli‐responsive property with the reversible extraction/insertion of electrons from/into N–NiFe LDH leading to the coloration/bleaching processes. Potential application of this electrode has been further demonstrated by integrating it into a Zn–air battery device to identify the charging process during electrochemical cycling. |
Author | Zheng, Rongkun Tang, Youhong Qiao, Shi-Zhang Chen, Sheng Duan, Jingjing Bian, Pengju |
Author_xml | – sequence: 1 givenname: Sheng surname: Chen fullname: Chen, Sheng organization: School of Chemical Engineering, The University of Adelaide, SA, 5005, Adelaide, Australia – sequence: 2 givenname: Jingjing surname: Duan fullname: Duan, Jingjing organization: School of Chemical Engineering, The University of Adelaide, SA, 5005, Adelaide, Australia – sequence: 3 givenname: Pengju surname: Bian fullname: Bian, Pengju organization: School of Physics, The University of Sydney, 2006, New South Wales, Australia – sequence: 4 givenname: Youhong surname: Tang fullname: Tang, Youhong organization: Centre for Nanoscale Science and Technology and Centre for Maritime Engineering, Control and Imaging, Flinders University, 5042, Adelaide, Australia – sequence: 5 givenname: Rongkun surname: Zheng fullname: Zheng, Rongkun organization: School of Physics, The University of Sydney, 2006, New South Wales, Australia – sequence: 6 givenname: Shi-Zhang surname: Qiao fullname: Qiao, Shi-Zhang email: s.qiao@adelaide.edu.au organization: School of Chemical Engineering, The University of Adelaide, SA, 5005, Adelaide, Australia |
BookMark | eNqFkM9PwjAUxxuDiYhcPS_x4mXYH1u7HgkimCBEnfHYlPGmw7Fquyn893bBEOPFXt5L3ufTl_c9RZ3KVIDQOcEDgjG90lBtBhSTGGPJ-BHqEk6ikCcR7hx6Rk9Q37k19i-SBDPWRdP01QKE18UGKleYSpfB40bbOhjpWpc7VwfjErLamhUEubHBYrt7gSoYf5qyqT0fPIDO2uYMHee6dND_qT30dDNOR9NwtpjcjoazMPMreShJEulcE0rYii0jTnJKicyZFonMpEiwlJiCpIIKP-E5Y0u25Hm0IjKWTADrocv9v-_WfDTgarUpXAZlqSswjVNECMw4Z_66Hrr4g65NY_2JLUUEjalIqKcGeyqzxjkLuXq3hY9gpwhWbbaqzVYdsvWC3AtfRQm7f2g1HM_vfrvh3i1cDduDq-2b4oKJWD3PJyrFKU0mWKh79g1GmYus |
CitedBy_id | crossref_primary_10_1039_D2CY00472K crossref_primary_10_1002_adma_201600054 crossref_primary_10_1021_acsaem_9b01217 crossref_primary_10_1021_acsami_6b07986 crossref_primary_10_1039_C6CC01450J crossref_primary_10_1002_smll_202100203 crossref_primary_10_1016_j_electacta_2020_137080 crossref_primary_10_1039_C8NR03299H crossref_primary_10_1016_j_electacta_2022_141582 crossref_primary_10_1149_1945_7111_ac70fe crossref_primary_10_1016_j_jiec_2022_12_030 crossref_primary_10_1016_j_ijhydene_2019_06_109 crossref_primary_10_1016_j_electacta_2019_03_192 crossref_primary_10_1557_jmr_2017_404 crossref_primary_10_1021_acsaem_8b01923 crossref_primary_10_1016_j_apcatb_2021_120246 crossref_primary_10_1016_j_apsusc_2016_11_102 crossref_primary_10_1002_smll_201702109 crossref_primary_10_1016_j_ijhydene_2021_08_235 crossref_primary_10_1002_smll_201701931 crossref_primary_10_1002_aenm_201901573 crossref_primary_10_1007_s10904_019_01349_z crossref_primary_10_1039_C6NR02395A crossref_primary_10_1016_j_apcatb_2020_118600 crossref_primary_10_1021_acsami_6b03392 crossref_primary_10_1016_j_nanoen_2017_03_032 crossref_primary_10_1039_C7SE00413C crossref_primary_10_1039_C6CC04387A crossref_primary_10_1016_j_electacta_2021_139802 crossref_primary_10_1021_acs_chemmater_6b01522 crossref_primary_10_1021_acscatal_5b02302 crossref_primary_10_1016_j_ijhydene_2021_12_245 crossref_primary_10_1039_C6TA03820D crossref_primary_10_1007_s12274_017_1886_7 crossref_primary_10_1016_j_apsusc_2019_01_243 crossref_primary_10_3390_catal13010198 crossref_primary_10_1038_s41467_020_19329_0 crossref_primary_10_1021_acsnano_5b05728 crossref_primary_10_1039_C7RA04280A crossref_primary_10_1002_cssc_202101844 crossref_primary_10_1021_acsami_6b11821 crossref_primary_10_1021_acsnano_7b00417 crossref_primary_10_1021_acssuschemeng_8b03804 crossref_primary_10_1021_acsami_8b15699 crossref_primary_10_1016_j_matlet_2020_128494 crossref_primary_10_1016_j_cej_2017_12_064 crossref_primary_10_1039_D2TA01929A crossref_primary_10_1002_adfm_201701833 crossref_primary_10_1002_smll_201600977 crossref_primary_10_1039_C7NJ04941B crossref_primary_10_1016_j_cej_2021_131966 crossref_primary_10_1021_acsnano_6b04252 crossref_primary_10_1002_adma_201601406 crossref_primary_10_1016_j_electacta_2017_11_098 crossref_primary_10_1016_j_mtener_2017_05_002 crossref_primary_10_1016_S1872_2067_18_63150_X crossref_primary_10_1002_aenm_201802939 crossref_primary_10_1039_C8TA03099E crossref_primary_10_1016_j_ijhydene_2024_05_104 crossref_primary_10_1002_ange_201511447 crossref_primary_10_1149_2_0361805jes crossref_primary_10_1021_acscatal_7b01800 crossref_primary_10_1002_smll_201701875 crossref_primary_10_1039_D2QI01688E crossref_primary_10_1002_adma_201800757 crossref_primary_10_1007_s12274_015_0950_4 crossref_primary_10_1016_j_apcatb_2018_04_009 crossref_primary_10_1021_acsami_8b13542 crossref_primary_10_1002_smll_201901545 crossref_primary_10_1002_aenm_201700826 crossref_primary_10_1021_acsami_9b01431 crossref_primary_10_1039_C7TA08826D crossref_primary_10_1039_D0EE01609H crossref_primary_10_1002_adma_201601019 crossref_primary_10_1016_j_colsurfa_2020_125992 crossref_primary_10_1021_acsaem_9b00199 crossref_primary_10_1039_C7QI00167C crossref_primary_10_1039_D1MA00539A crossref_primary_10_1002_advs_201700691 crossref_primary_10_1002_adfm_201700451 crossref_primary_10_1016_j_jpowsour_2020_229309 crossref_primary_10_1149_1945_7111_abb7df crossref_primary_10_1002_aenm_202003412 crossref_primary_10_1016_j_jpowsour_2018_10_075 crossref_primary_10_1021_acsaem_8b00990 crossref_primary_10_1016_j_matlet_2017_07_127 crossref_primary_10_1002_anie_201511447 crossref_primary_10_1002_aenm_201700779 crossref_primary_10_1007_s40243_022_00214_3 crossref_primary_10_1002_aenm_201702838 crossref_primary_10_1016_j_jcis_2022_02_037 crossref_primary_10_1039_C7NR03661B crossref_primary_10_1002_admi_201700272 crossref_primary_10_1039_C6TA02216B crossref_primary_10_1002_adfm_201503666 crossref_primary_10_1002_adma_202109407 crossref_primary_10_1002_cctc_201901493 crossref_primary_10_1021_acsami_6b12100 crossref_primary_10_1002_advs_202000184 crossref_primary_10_1002_aenm_201700381 crossref_primary_10_1039_C8CS00009C crossref_primary_10_1016_j_jelechem_2022_116929 crossref_primary_10_1002_ppsc_201600004 crossref_primary_10_1002_smll_202003916 crossref_primary_10_1002_aenm_201601172 crossref_primary_10_1021_acsaem_0c02476 crossref_primary_10_1002_celc_202101140 crossref_primary_10_1021_acscatal_0c02745 crossref_primary_10_1002_cctc_201800312 crossref_primary_10_1021_acscatal_9b03544 crossref_primary_10_1080_24701556_2020_1813765 crossref_primary_10_1016_j_nanoen_2017_12_016 crossref_primary_10_1021_acssuschemeng_8b06386 crossref_primary_10_1016_j_carbon_2016_08_020 crossref_primary_10_1016_j_ijhydene_2018_10_015 crossref_primary_10_1021_acsami_0c22336 crossref_primary_10_1039_C9TA01027K crossref_primary_10_1016_j_seppur_2024_127920 crossref_primary_10_1016_j_mssp_2023_107408 crossref_primary_10_1002_adfm_201702513 crossref_primary_10_1021_acscatal_6b00553 crossref_primary_10_1002_chem_201802092 crossref_primary_10_1002_smll_201703843 crossref_primary_10_1016_j_nanoen_2017_04_011 crossref_primary_10_1039_C7TA02539D crossref_primary_10_1002_smsc_202200030 crossref_primary_10_1016_j_jallcom_2022_166128 crossref_primary_10_1016_j_ijhydene_2021_11_160 crossref_primary_10_1039_D0RA02985H crossref_primary_10_1002_smll_202202336 crossref_primary_10_1021_acs_nanolett_7b04502 crossref_primary_10_1002_celc_201600352 crossref_primary_10_1016_j_ijhydene_2020_07_017 crossref_primary_10_1002_smll_202104354 crossref_primary_10_1002_celc_201900880 crossref_primary_10_1016_j_carbon_2018_12_053 crossref_primary_10_1002_advs_201800406 crossref_primary_10_1016_j_catcom_2022_106425 crossref_primary_10_1039_C5CC08845C crossref_primary_10_1002_smtd_202301645 crossref_primary_10_1002_adma_201700192 crossref_primary_10_1021_acsami_7b07984 crossref_primary_10_1039_C5CC06892D crossref_primary_10_34133_2022_9842610 crossref_primary_10_1016_j_jpowsour_2019_227375 crossref_primary_10_1039_C9NR09192K crossref_primary_10_1039_C7QI00435D crossref_primary_10_1039_C6TA10094E crossref_primary_10_1021_acscatal_6b03497 crossref_primary_10_1021_acs_nanolett_8b04466 crossref_primary_10_1039_D1SE00558H crossref_primary_10_1002_adma_201604685 crossref_primary_10_1039_D0SE00899K crossref_primary_10_1002_adma_201908488 crossref_primary_10_1016_j_apsusc_2016_12_243 crossref_primary_10_1016_j_ijhydene_2017_11_012 crossref_primary_10_1016_j_jallcom_2017_09_118 crossref_primary_10_1002_adfm_201704083 crossref_primary_10_1016_j_nanoen_2018_02_032 crossref_primary_10_1002_aenm_201901997 crossref_primary_10_1021_acscatal_5b02571 crossref_primary_10_1002_aenm_201801372 crossref_primary_10_1007_s10853_017_1855_2 crossref_primary_10_1016_j_ijhydene_2017_09_117 crossref_primary_10_1039_D1RA07973E crossref_primary_10_1002_aenm_201703189 crossref_primary_10_1002_aenm_201703341 crossref_primary_10_1002_adfm_201700795 crossref_primary_10_1016_j_jallcom_2017_06_299 |
Cites_doi | 10.1038/ncomms4949 10.1002/adma.201305608 10.1039/C4CC01625D 10.1002/anie.201311223 10.1039/C4CS00015C 10.1002/anie.201406174 10.1016/0013-4686(90)85068-X 10.1002/anie.201402822 10.1002/adma.201304986 10.1021/ja405351s 10.1016/j.electacta.2013.10.002 10.1002/anie.201403946 10.1038/451652a 10.1002/anie.201407365 10.1016/j.solmat.2013.11.015 10.1021/ja211526y 10.1021/jz2016507 10.1016/j.solmat.2008.01.009 10.1002/adfm.201402952 10.1002/adma.201305359 10.1038/ncomms2812 10.1002/anie.201306166 10.1039/c3nr00887h 10.1126/sciadv.1400129 10.1146/annurev-matsci-062910-100344 10.1126/science.1168049 10.1021/ja306499n 10.1002/anie.201412389 10.1126/science.1162018 10.1126/science.1211934 10.1126/science.1212858 10.1016/0013-4686(84)85004-5 10.1016/j.electacta.2013.07.221 10.1126/science.1200832 10.1039/C3CS60323G |
ContentType | Journal Article |
Copyright | 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.201500936 |
DatabaseName | Istex CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 3820825761 10_1002_aenm_201500936 AENM201500936 ark_67375_WNG_T0T28G07_Q |
Genre | article |
GrantInformation_xml | – fundername: Australian Research Council (ARC) funderid: DP140104062; DP130104459 |
GroupedDBID | 05W 0R~ 1OC 31~ 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAIHA AANLZ AASGY AAXRX AAZKR ABCUV ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ASPBG AVWKF AZFZN AZVAB BDRZF BFHJK BMXJE BRXPI BSCLL D-A DCZOG EBS EJD FEDTE G-S GODZA HGLYW HVGLF HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c4916-9184afa1213d3b461f2219f3a789c97809902e92727f226f33b3b6f4d195937e3 |
IEDL.DBID | 33P |
ISSN | 1614-6832 |
IngestDate | Fri Aug 16 23:00:44 EDT 2024 Thu Oct 10 22:12:36 EDT 2024 Fri Aug 23 03:37:20 EDT 2024 Sat Aug 24 01:08:18 EDT 2024 Wed Oct 30 09:55:12 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4916-9184afa1213d3b461f2219f3a789c97809902e92727f226f33b3b6f4d195937e3 |
Notes | ark:/67375/WNG-T0T28G07-Q Australian Research Council (ARC) - No. DP140104062; No. DP130104459 istex:18F3EEA5A1ABB289EB8F552E12EA73554D9568B9 ArticleID:AENM201500936 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1717252782 |
PQPubID | 886389 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1770366303 proquest_journals_1717252782 crossref_primary_10_1002_aenm_201500936 wiley_primary_10_1002_aenm_201500936_AENM201500936 istex_primary_ark_67375_WNG_T0T28G07_Q |
PublicationCentury | 2000 |
PublicationDate | 2015-09-01 |
PublicationDateYYYYMMDD | 2015-09-01 |
PublicationDate_xml | – month: 09 year: 2015 text: 2015-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationTitleAlternate | Adv. Energy Mater |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Y. Lee, J. Suntivich, K. J. May, E. E. Perry, Y. Shao-Horn, J. Phys. Chem. Lett. 2012, 3, 399. M. W. Louie, A. T. Bell, J. Am. Chem. Soc. 2013, 135, 12329. J. Qiao, Y. Liu, F. Hong, J. Zhang, Chem. Soc. Rev. 2014, 43, 631. M. J. Ju, I. Y. Jeon, J. C. Kim, K. Lim, H. J. Choi, S. M. Jung, I. T. Choi, Y. K. Eom, Y. J. Kwon, J. Ko, J. J. Lee, H. K. Kim, J. B. Baek, Adv. Mater. 2014, 26, 3055. J. Shui, M. Wang, F. Du, L. Dai, Sci. Adv. 2015, 1, e1400129. S. Chen, J. Duan, M. Jaroniec, S. Z. Qiao, Angew. Chem., Int. Ed. 2013, 52, 13567. X. Long, J. Li, S. Xiao, K. Yan, Z. Wang, H. Chen, S. H. Yang, Angew. Chem., Int. Ed. 2014, 53, 7584. L. Qiu, D. Liu, Y. Wang, C. Cheng, K. Zhou, J. Ding, V.-T. Truong, D. Li, Adv. Mater. 2014, 26, 3333. J.-I. Jung, H. Y. Jeong, J.-S. Lee, M. G. Kim, J. Cho, Angew. Chem., Int. Ed. 2014, 53, 4582. G. F. Cai, J. P. Tu, D. Zhou, J. H. Zhang, X. L. Wang, C. D. Gu, Sol. Energy Mater. Sol. Cells 2014, 122, 51. Y. Wu, M. Chen, Y. Han, H. Luo, X. Su, M. T. Zhang, X. Lin, J. Sun, L. Wang, L. Deng, W. Zhang, R. Cao, Angew. Chem., Int. Ed. 2015, 54, 4870. P. Yang, P. Sun, Z. Chai, L. Huang, X. Cai, S. Tan, J. Song, W. Mai, Angew. Chem., Int. Ed. 2014, 53, 11935. S. Trasatti, Electrochim. Acta 1984, 29, 1503. T. Maiyalagan, K. A. Jarvis, S. Therese, P. J. Ferreira, A. Manthiram, Nat. Commun. 2014, 5, 3949. R. J. Mortimer, Annu. Rev. Mater. Res. 2011, 41, 241. X. H. Xia, J. P. Tu, J. Zhang, X. L. Wang, W. K. Zhang, H. Huang, Sol. Energy Mater. Sol. Cells 2008, 92, 628. T. Y. Ma, S. Dai, M. Jaroniec, S. Z. Qiao, Angew. Chem., Int. Ed. 2014, 53, 7281. M. Armand, J. M. Tarascon, Nature 2008, 451, 652. D. Ma, G. Shi, H. Wang, Q. Zhang, Y. Li, Nanoscale 2013, 5, 4808. A. C. Nwanya, C. J. Jafta, P. M. Ejikeme, P. E. Ugwuoke, M. V. Reddy, R. U. Osuji, K. I. Ozoemena, F. I. Ezema, Electrochim. Acta 2014, 128, 218. M. W. Kanan, D. G. Nocera, Science 2008, 321, 1072. Y. Wang, S. Chen, L. Qiu, K. Wang, H. Wang, G. P. Simon, D. Li, Adv. Funct. Mater. 2015, 25, 126. T. Takashima, K. Hashimoto, R. Nakamura, J. Am. Chem. Soc. 2012, 134, 18153. K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Science 2009, 323, 760. F. Cao, G. X. Pan, X. H. Xia, P. S. Tang, H. F. Chen, Electrochim. Acta 2013, 111, 86. S. Jin, K. J. May, H. A. Gasteiger, J. B. Goodenough, S.-H. Yang, Science 2011, 334, 1383. R. Subbaraman, D. Tripkovic, D. Strmcnik, K. C. Chang, M. Uchimura, A. P. Paulikas, V. Stamenkovic, N. M. Markovic, Science 2011, 334, 1256. M. R. Gao, Y. F. Xu, J. Jiang, Y. R. Zheng, S. H. Yu, J. Am. Chem. Soc. 2012, 134, 2930. K. J. P. Schouten, F. Calle-Vallejo, M. T. M. Koper, Angew. Chem., Int. Ed. 2014, 53, 10858. Y. Li, M. Gong, Y. Liang, J. Feng, J. E. Kim, H. Wang, G. Hong, B. Zhang, H. J. Dai, Nat. Commun. 2013, 4, 1805. Y. Li, H. J. Dai, Chem. Soc. Rev. 2014, 43, 5257. Z. Lu, W. Xu, W. Zhu, Q. Yang, X. Lei, J. Liu, Y. Li, X. Sun, X. Duan, Chem. Commun. 2014, 50, 6479. G. Wu, K. L. More, C. M. Johnston, P. Zelenay, Science 2011, 332, 443. S. Ardizzone, G. Fregonara, S. Trasatti, Electrochim. Acta 1990, 35, 263. S. Chen, J. Duan, M. Jaroniec, S. Z. Qiao, Adv. Mater. 2013, 26, 2925. 2015; 1 2011; 334 2013; 26 2013; 4 1990; 35 2015; 54 2014; 26 1984; 29 2008; 321 2013; 5 2008; 92 2011; 332 2014; 43 2015; 25 2014; 128 2014; 5 2012; 3 2012; 134 2013; 52 2011; 41 2013; 111 2013; 135 2014; 122 2008; 451 2014; 50 2009; 323 2014; 53 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_22_1 e_1_2_5_29_1 e_1_2_5_20_1 e_1_2_5_15_1 e_1_2_5_14_1 e_1_2_5_17_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_18_1 e_1_2_5_30_1 e_1_2_5_31_1 |
References_xml | – volume: 134 start-page: 18153 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 41 start-page: 241 year: 2011 publication-title: Annu. Rev. Mater. Res. – volume: 1 start-page: e1400129 year: 2015 publication-title: Sci. Adv. – volume: 26 start-page: 3055 year: 2014 publication-title: Adv. Mater. – volume: 53 start-page: 10858 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 334 start-page: 1256 year: 2011 publication-title: Science – volume: 52 start-page: 13567 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 53 start-page: 11935 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 43 start-page: 5257 year: 2014 publication-title: Chem. Soc. Rev. – volume: 332 start-page: 443 year: 2011 publication-title: Science – volume: 35 start-page: 263 year: 1990 publication-title: Electrochim. Acta – volume: 135 start-page: 12329 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 7584 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 29 start-page: 1503 year: 1984 publication-title: Electrochim. Acta – volume: 321 start-page: 1072 year: 2008 publication-title: Science – volume: 92 start-page: 628 year: 2008 publication-title: Sol. Energy Mater. Sol. Cells – volume: 3 start-page: 399 year: 2012 publication-title: J. Phys. Chem. Lett. – volume: 54 start-page: 4870 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 43 start-page: 631 year: 2014 publication-title: Chem. Soc. Rev. – volume: 26 start-page: 2925 year: 2013 publication-title: Adv. Mater. – volume: 53 start-page: 4582 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 111 start-page: 86 year: 2013 publication-title: Electrochim. Acta – volume: 122 start-page: 51 year: 2014 publication-title: Sol. Energy Mater. Sol. Cells – volume: 323 start-page: 760 year: 2009 publication-title: Science – volume: 5 start-page: 4808 year: 2013 publication-title: Nanoscale – volume: 134 start-page: 2930 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 7281 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 128 start-page: 218 year: 2014 publication-title: Electrochim. Acta – volume: 50 start-page: 6479 year: 2014 publication-title: Chem. Commun. – volume: 5 start-page: 3949 year: 2014 publication-title: Nat. Commun. – volume: 4 start-page: 1805 year: 2013 publication-title: Nat. Commun. – volume: 25 start-page: 126 year: 2015 publication-title: Adv. Funct. Mater. – volume: 334 start-page: 1383 year: 2011 publication-title: Science – volume: 26 start-page: 3333 year: 2014 publication-title: Adv. Mater. – volume: 451 start-page: 652 year: 2008 publication-title: Nature – ident: e_1_2_5_12_1 doi: 10.1038/ncomms4949 – ident: e_1_2_5_14_1 doi: 10.1002/adma.201305608 – ident: e_1_2_5_23_1 doi: 10.1039/C4CC01625D – ident: e_1_2_5_13_1 doi: 10.1002/anie.201311223 – ident: e_1_2_5_1_1 doi: 10.1039/C4CS00015C – ident: e_1_2_5_6_1 doi: 10.1002/anie.201406174 – ident: e_1_2_5_21_1 doi: 10.1016/0013-4686(90)85068-X – ident: e_1_2_5_33_1 doi: 10.1002/anie.201402822 – ident: e_1_2_5_19_1 doi: 10.1002/adma.201304986 – ident: e_1_2_5_24_1 doi: 10.1021/ja405351s – ident: e_1_2_5_29_1 doi: 10.1016/j.electacta.2013.10.002 – ident: e_1_2_5_25_1 doi: 10.1002/anie.201403946 – ident: e_1_2_5_18_1 doi: 10.1038/451652a – ident: e_1_2_5_26_1 doi: 10.1002/anie.201407365 – ident: e_1_2_5_30_1 doi: 10.1016/j.solmat.2013.11.015 – ident: e_1_2_5_3_1 doi: 10.1021/ja211526y – ident: e_1_2_5_20_1 doi: 10.1021/jz2016507 – ident: e_1_2_5_35_1 doi: 10.1016/j.solmat.2008.01.009 – ident: e_1_2_5_27_1 doi: 10.1002/adfm.201402952 – ident: e_1_2_5_28_1 doi: 10.1002/adma.201305359 – ident: e_1_2_5_2_1 doi: 10.1038/ncomms2812 – ident: e_1_2_5_15_1 doi: 10.1002/anie.201306166 – ident: e_1_2_5_31_1 doi: 10.1039/c3nr00887h – ident: e_1_2_5_9_1 doi: 10.1126/sciadv.1400129 – ident: e_1_2_5_32_1 doi: 10.1146/annurev-matsci-062910-100344 – ident: e_1_2_5_8_1 doi: 10.1126/science.1168049 – ident: e_1_2_5_4_1 doi: 10.1021/ja306499n – ident: e_1_2_5_10_1 doi: 10.1002/anie.201412389 – ident: e_1_2_5_17_1 doi: 10.1126/science.1162018 – ident: e_1_2_5_5_1 doi: 10.1126/science.1211934 – ident: e_1_2_5_16_1 doi: 10.1126/science.1212858 – ident: e_1_2_5_22_1 doi: 10.1016/0013-4686(84)85004-5 – ident: e_1_2_5_34_1 doi: 10.1016/j.electacta.2013.07.221 – ident: e_1_2_5_11_1 doi: 10.1126/science.1200832 – ident: e_1_2_5_7_1 doi: 10.1039/C3CS60323G |
SSID | ssj0000491033 |
Score | 2.572822 |
Snippet | A multifunctional catalyst electrode mimicking external stimuli–responsive property has been prepared by the in situ growth of nitrogen (N)‐doped NiFe double... A multifunctional catalyst electrode mimicking external stimuli-responsive property has been prepared by the in situ growth of nitrogen (N)-doped NiFe double... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Publisher |
StartPage | np |
SubjectTerms | Bleaching Catalysis catalyst electrodes Catalysts Electrodes Evolution heteroatom doping Monitors Nanostructure Oxygen oxygen evolution reaction smart material Three dimensional Two-dimensional nanolayers |
Title | Three-Dimensional Smart Catalyst Electrode for Oxygen Evolution Reaction |
URI | https://api.istex.fr/ark:/67375/WNG-T0T28G07-Q/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201500936 https://www.proquest.com/docview/1717252782 https://search.proquest.com/docview/1770366303 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xXODAjgibjITgFJHYid0eEQQQEmUrgpvlxM4FkSJKUXvjE_hGvoSZpA30hAS3RHYiazY_jz3PALsiDqV1LvMDx2M_Mlb6JkuFr2IbBzk3oukop3t2q1oPjeOEaHLqKv6KH6JOuJFnlPGaHNyk3YNv0lDjCqokR0CDi3Li3CbqJqrhEFd1kgXhbxiU18kjsIl8ieY7Im4M-MH4H8YmpmmScX8Mdf7EruXkczL__2EvwNwQeLLDylIWYcIVSzD7g45wGc7bqFj3-f5xTJT_FV0Hu31C42JHlOUZdF9ZUl2bYx1DtMsu-wM0QJa8DQ2Y3biqUGIF7k6S9tGZP7xrwc9QRhJjXiMyuSGCNyvSSIY5x1iWC6MazYxYinDW4q7JEe5gi8yFSEUq88gSOY1QTqzCVNEp3BqwTIUmsFwKDGCRi00qrTGBws4iyvJIebA_ErR-rig1dEWezDVJR9fS8WCv1EPdzbw80kE0Fev71qluB23eOA2UvvZgc6QoPfTBrg5xpcpjjhDIg526Gb2HtkRM4To96kMEZDhU4QEv1fbLkPRh0rqo39b_8tEGzNBzdVBtE6ZeX3puCya7trddWu8XmSvssQ |
link.rule.ids | 315,783,787,1409,27936,27937,46067,46491 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB7xOEAPLdBWTaHFSAhOEYnt2LvHFQSW1_JK1d4sJ3YuVUPFshXc-hP4jfwSZpLdlD0hVRwTTyJrXv48tj8DbIokVs77Iow8T0JpnQptkYtQJy6JSm5F11NNt3-lBz86eynR5PQmZ2Eafoi24EaRUedrCnAqSO_8Yw21vqKj5IhocFauZmFeKtml2BTivC2zIACOo_pCeYQ2MlTowBPqxojvTP9iamiaJy3fTeHO5-i1Hn72371Cx5fg7Rh7sl7jLMsw46sVePOMkfA9HGVoW__492GPWP8bxg529Qv9i-1Soed-eMvS5uYc5xkCXnZ2d48-yNI_Yx9ml745K_EBvu2n2W4_HF-3EBaoJIVpryNtaYnjzYlcqrjkmM5KYXWnWxBREQ5c3Hc5Ih5sUaUQuchVKR3x0wjtxUeYq64r_wlYoWMbOa4E5jDpE5srZ22kUVjIopQ6gO2Jps3vhlXDNPzJ3JB2TKudALZqQ7Ri9uYn7UXTifk-ODBZlPHOQaTNRQBrE0uZcRgOTYyTVZ5wREEBbLTNGEC0KmIrfz0iGeIgw66KAHhttxe6ZHrp4LR9-vw_H63DQj87PTEnh4PjVVik982-tTWYu70Z-S8wO3Sjr7UrPwGPUfDS |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xkFA5lFcrUl6uhOAUkdiOvXtEbBZo6fJa1N4sJ3YuVQNi2Qpu_AR-I7-EmWQ3sCek9ph4Elnz8uex_RlgWySxct7nYeR5EkrrVGjzTIQ6cUlUcCvanmq6R5e696vVSYkmpznFX_NDNAU3iowqX1OA37hi75U01PqSTpIjoMFJuZqGWYlYnKZfQpw1VRbEv3FU3SePyEaGCv13zNwY8b3JX0yMTLOk5PsJ2PkWvFajT3fh__u9CB9HyJPt166yBFO-XIb5N3yEK_Ctj5b1z49PHeL8r_k62OUf9C52QGWeh8EdS-t7c5xnCHfZ6f0DeiBL_448mF34-qTEJ7jqpv2Do3B02UKYo44UJr2WtIUlhjcnMqnigmMyK4TVrXZONEU4bHHf5oh3sEUVQmQiU4V0xE4jtBefYaa8Lv0qsFzHNnJcCcxg0ic2U87aSKOwkHkhdQC7Y0Wbm5pTw9TsydyQdkyjnQB2Kjs0Yvb2N-1E04n52Ts0_ajPW4eRNucBrI8NZUZBODAxTlV5whEDBfC1acbwoTURW_rrIckQAxl2VQTAK7O90yWzn_Z-NE9f_uWjLZg763TNyXHv-xp8oNf1prV1mLm7HfoNmB644WblyC-5z--B |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three%E2%80%90Dimensional+Smart+Catalyst+Electrode+for+Oxygen+Evolution+Reaction&rft.jtitle=Advanced+energy+materials&rft.au=Chen%2C+Sheng&rft.au=Duan%2C+Jingjing&rft.au=Bian%2C+Pengju&rft.au=Tang%2C+Youhong&rft.date=2015-09-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=5&rft.issue=18&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.201500936&rft.externalDBID=10.1002%252Faenm.201500936&rft.externalDocID=AENM201500936 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |