Three-Dimensional Smart Catalyst Electrode for Oxygen Evolution Reaction

A multifunctional catalyst electrode mimicking external stimuli–responsive property has been prepared by the in situ growth of nitrogen (N)‐doped NiFe double layered hydroxide (N–NiFe LDH) nanolayers on a 3D nickel foam substrate framework. The electrode demonstrates superior performance toward cata...

Full description

Saved in:
Bibliographic Details
Published in:Advanced energy materials Vol. 5; no. 18; pp. np - n/a
Main Authors: Chen, Sheng, Duan, Jingjing, Bian, Pengju, Tang, Youhong, Zheng, Rongkun, Qiao, Shi-Zhang
Format: Journal Article
Language:English
Published: Weinheim Blackwell Publishing Ltd 01-09-2015
Wiley Subscription Services, Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A multifunctional catalyst electrode mimicking external stimuli–responsive property has been prepared by the in situ growth of nitrogen (N)‐doped NiFe double layered hydroxide (N–NiFe LDH) nanolayers on a 3D nickel foam substrate framework. The electrode demonstrates superior performance toward catalyzing oxygen evolution reaction (OER), affording a low overpotential of 0.23 V at the current density of 10 mA cm−2, high Faradaic efficiency of ≈98%, and stable operation for >60 h. Meanwhile, the electrode can dynamically change its color from gray silver to dark black with the OER happening, and the coloration/bleaching processes persist for at least 5000 cycles, rendering it a useful tool to monitor the catalytic process. Mechanism study reveals that the excellent structural properties of electrode such as 3D conductive framework, ultra thickness of N–NiFe LDH nanolayer (≈0.8 nm), and high N‐doping content (≈17.8%) make significant contribution to achieving enhanced catalytic performance, while N–NiFe LDH nanolayer on electrode is the main contributor to the stimuli‐responsive property with the reversible extraction/insertion of electrons from/into N–NiFe LDH leading to the coloration/bleaching processes. Potential application of this electrode has been further demonstrated by integrating it into a Zn–air battery device to identify the charging process during electrochemical cycling. A 3D catalyst electrode mimicking external stimuli–responsive functionality is fabricated. It exhibits superior performance toward catalyzing oxygen evolution reaction (OER) and dynamically changes its color with the OER, providing an opportunity to quickly monitor the catalytic reaction.
AbstractList A multifunctional catalyst electrode mimicking external stimuli–responsive property has been prepared by the in situ growth of nitrogen (N)‐doped NiFe double layered hydroxide (N–NiFe LDH) nanolayers on a 3D nickel foam substrate framework. The electrode demonstrates superior performance toward catalyzing oxygen evolution reaction (OER), affording a low overpotential of 0.23 V at the current density of 10 mA cm−2, high Faradaic efficiency of ≈98%, and stable operation for >60 h. Meanwhile, the electrode can dynamically change its color from gray silver to dark black with the OER happening, and the coloration/bleaching processes persist for at least 5000 cycles, rendering it a useful tool to monitor the catalytic process. Mechanism study reveals that the excellent structural properties of electrode such as 3D conductive framework, ultra thickness of N–NiFe LDH nanolayer (≈0.8 nm), and high N‐doping content (≈17.8%) make significant contribution to achieving enhanced catalytic performance, while N–NiFe LDH nanolayer on electrode is the main contributor to the stimuli‐responsive property with the reversible extraction/insertion of electrons from/into N–NiFe LDH leading to the coloration/bleaching processes. Potential application of this electrode has been further demonstrated by integrating it into a Zn–air battery device to identify the charging process during electrochemical cycling. A 3D catalyst electrode mimicking external stimuli–responsive functionality is fabricated. It exhibits superior performance toward catalyzing oxygen evolution reaction (OER) and dynamically changes its color with the OER, providing an opportunity to quickly monitor the catalytic reaction.
A multifunctional catalyst electrode mimicking external stimuli-responsive property has been prepared by the in situ growth of nitrogen (N)-doped NiFe double layered hydroxide (N-NiFe LDH) nanolayers on a 3D nickel foam substrate framework. The electrode demonstrates superior performance toward catalyzing oxygen evolution reaction (OER), affording a low overpotential of 0.23 V at the current density of 10 mA cm super(-2), high Faradaic efficiency of approximately 98%, and stable operation for >60 h. Meanwhile, the electrode can dynamically change its color from gray silver to dark black with the OER happening, and the coloration/bleaching processes persist for at least 5000 cycles, rendering it a useful tool to monitor the catalytic process. Mechanism study reveals that the excellent structural properties of electrode such as 3D conductive framework, ultra thickness of N-NiFe LDH nanolayer ( approximately 0.8 nm), and high N-doping content ( approximately 17.8%) make significant contribution to achieving enhanced catalytic performance, while N-NiFe LDH nanolayer on electrode is the main contributor to the stimuli-responsive property with the reversible extraction/insertion of electrons from/into N-NiFe LDH leading to the coloration/bleaching processes. Potential application of this electrode has been further demonstrated by integrating it into a Zn-air battery device to identify the charging process during electrochemical cycling. A 3D catalyst electrode mimicking external stimuli-responsive functionality is fabricated. It exhibits superior performance toward catalyzing oxygen evolution reaction (OER) and dynamically changes its color with the OER, providing an opportunity to quickly monitor the catalytic reaction.
A multifunctional catalyst electrode mimicking external stimuli-responsive property has been prepared by the in situ growth of nitrogen (N)-doped NiFe double layered hydroxide (N-NiFe LDH) nanolayers on a 3D nickel foam substrate framework. The electrode demonstrates superior performance toward catalyzing oxygen evolution reaction (OER), affording a low overpotential of 0.23 V at the current density of 10 mA cm-2, high Faradaic efficiency of [asymptotically =]98%, and stable operation for >60 h. Meanwhile, the electrode can dynamically change its color from gray silver to dark black with the OER happening, and the coloration/bleaching processes persist for at least 5000 cycles, rendering it a useful tool to monitor the catalytic process. Mechanism study reveals that the excellent structural properties of electrode such as 3D conductive framework, ultra thickness of N-NiFe LDH nanolayer ([asymptotically =]0.8 nm), and high N-doping content ([asymptotically =]17.8%) make significant contribution to achieving enhanced catalytic performance, while N-NiFe LDH nanolayer on electrode is the main contributor to the stimuli-responsive property with the reversible extraction/insertion of electrons from/into N-NiFe LDH leading to the coloration/bleaching processes. Potential application of this electrode has been further demonstrated by integrating it into a Zn-air battery device to identify the charging process during electrochemical cycling.
A multifunctional catalyst electrode mimicking external stimuli–responsive property has been prepared by the in situ growth of nitrogen (N)‐doped NiFe double layered hydroxide (N–NiFe LDH) nanolayers on a 3D nickel foam substrate framework. The electrode demonstrates superior performance toward catalyzing oxygen evolution reaction (OER), affording a low overpotential of 0.23 V at the current density of 10 mA cm −2 , high Faradaic efficiency of ≈98%, and stable operation for >60 h. Meanwhile, the electrode can dynamically change its color from gray silver to dark black with the OER happening, and the coloration/bleaching processes persist for at least 5000 cycles, rendering it a useful tool to monitor the catalytic process. Mechanism study reveals that the excellent structural properties of electrode such as 3D conductive framework, ultra thickness of N–NiFe LDH nanolayer (≈0.8 nm), and high N‐doping content (≈17.8%) make significant contribution to achieving enhanced catalytic performance, while N–NiFe LDH nanolayer on electrode is the main contributor to the stimuli‐responsive property with the reversible extraction/insertion of electrons from/into N–NiFe LDH leading to the coloration/bleaching processes. Potential application of this electrode has been further demonstrated by integrating it into a Zn–air battery device to identify the charging process during electrochemical cycling.
Author Zheng, Rongkun
Tang, Youhong
Qiao, Shi-Zhang
Chen, Sheng
Duan, Jingjing
Bian, Pengju
Author_xml – sequence: 1
  givenname: Sheng
  surname: Chen
  fullname: Chen, Sheng
  organization: School of Chemical Engineering, The University of Adelaide, SA, 5005, Adelaide, Australia
– sequence: 2
  givenname: Jingjing
  surname: Duan
  fullname: Duan, Jingjing
  organization: School of Chemical Engineering, The University of Adelaide, SA, 5005, Adelaide, Australia
– sequence: 3
  givenname: Pengju
  surname: Bian
  fullname: Bian, Pengju
  organization: School of Physics, The University of Sydney, 2006, New South Wales, Australia
– sequence: 4
  givenname: Youhong
  surname: Tang
  fullname: Tang, Youhong
  organization: Centre for Nanoscale Science and Technology and Centre for Maritime Engineering, Control and Imaging, Flinders University, 5042, Adelaide, Australia
– sequence: 5
  givenname: Rongkun
  surname: Zheng
  fullname: Zheng, Rongkun
  organization: School of Physics, The University of Sydney, 2006, New South Wales, Australia
– sequence: 6
  givenname: Shi-Zhang
  surname: Qiao
  fullname: Qiao, Shi-Zhang
  email: s.qiao@adelaide.edu.au
  organization: School of Chemical Engineering, The University of Adelaide, SA, 5005, Adelaide, Australia
BookMark eNqFkM9PwjAUxxuDiYhcPS_x4mXYH1u7HgkimCBEnfHYlPGmw7Fquyn893bBEOPFXt5L3ufTl_c9RZ3KVIDQOcEDgjG90lBtBhSTGGPJ-BHqEk6ikCcR7hx6Rk9Q37k19i-SBDPWRdP01QKE18UGKleYSpfB40bbOhjpWpc7VwfjErLamhUEubHBYrt7gSoYf5qyqT0fPIDO2uYMHee6dND_qT30dDNOR9NwtpjcjoazMPMreShJEulcE0rYii0jTnJKicyZFonMpEiwlJiCpIIKP-E5Y0u25Hm0IjKWTADrocv9v-_WfDTgarUpXAZlqSswjVNECMw4Z_66Hrr4g65NY_2JLUUEjalIqKcGeyqzxjkLuXq3hY9gpwhWbbaqzVYdsvWC3AtfRQm7f2g1HM_vfrvh3i1cDduDq-2b4oKJWD3PJyrFKU0mWKh79g1GmYus
CitedBy_id crossref_primary_10_1039_D2CY00472K
crossref_primary_10_1002_adma_201600054
crossref_primary_10_1021_acsaem_9b01217
crossref_primary_10_1021_acsami_6b07986
crossref_primary_10_1039_C6CC01450J
crossref_primary_10_1002_smll_202100203
crossref_primary_10_1016_j_electacta_2020_137080
crossref_primary_10_1039_C8NR03299H
crossref_primary_10_1016_j_electacta_2022_141582
crossref_primary_10_1149_1945_7111_ac70fe
crossref_primary_10_1016_j_jiec_2022_12_030
crossref_primary_10_1016_j_ijhydene_2019_06_109
crossref_primary_10_1016_j_electacta_2019_03_192
crossref_primary_10_1557_jmr_2017_404
crossref_primary_10_1021_acsaem_8b01923
crossref_primary_10_1016_j_apcatb_2021_120246
crossref_primary_10_1016_j_apsusc_2016_11_102
crossref_primary_10_1002_smll_201702109
crossref_primary_10_1016_j_ijhydene_2021_08_235
crossref_primary_10_1002_smll_201701931
crossref_primary_10_1002_aenm_201901573
crossref_primary_10_1007_s10904_019_01349_z
crossref_primary_10_1039_C6NR02395A
crossref_primary_10_1016_j_apcatb_2020_118600
crossref_primary_10_1021_acsami_6b03392
crossref_primary_10_1016_j_nanoen_2017_03_032
crossref_primary_10_1039_C7SE00413C
crossref_primary_10_1039_C6CC04387A
crossref_primary_10_1016_j_electacta_2021_139802
crossref_primary_10_1021_acs_chemmater_6b01522
crossref_primary_10_1021_acscatal_5b02302
crossref_primary_10_1016_j_ijhydene_2021_12_245
crossref_primary_10_1039_C6TA03820D
crossref_primary_10_1007_s12274_017_1886_7
crossref_primary_10_1016_j_apsusc_2019_01_243
crossref_primary_10_3390_catal13010198
crossref_primary_10_1038_s41467_020_19329_0
crossref_primary_10_1021_acsnano_5b05728
crossref_primary_10_1039_C7RA04280A
crossref_primary_10_1002_cssc_202101844
crossref_primary_10_1021_acsami_6b11821
crossref_primary_10_1021_acsnano_7b00417
crossref_primary_10_1021_acssuschemeng_8b03804
crossref_primary_10_1021_acsami_8b15699
crossref_primary_10_1016_j_matlet_2020_128494
crossref_primary_10_1016_j_cej_2017_12_064
crossref_primary_10_1039_D2TA01929A
crossref_primary_10_1002_adfm_201701833
crossref_primary_10_1002_smll_201600977
crossref_primary_10_1039_C7NJ04941B
crossref_primary_10_1016_j_cej_2021_131966
crossref_primary_10_1021_acsnano_6b04252
crossref_primary_10_1002_adma_201601406
crossref_primary_10_1016_j_electacta_2017_11_098
crossref_primary_10_1016_j_mtener_2017_05_002
crossref_primary_10_1016_S1872_2067_18_63150_X
crossref_primary_10_1002_aenm_201802939
crossref_primary_10_1039_C8TA03099E
crossref_primary_10_1016_j_ijhydene_2024_05_104
crossref_primary_10_1002_ange_201511447
crossref_primary_10_1149_2_0361805jes
crossref_primary_10_1021_acscatal_7b01800
crossref_primary_10_1002_smll_201701875
crossref_primary_10_1039_D2QI01688E
crossref_primary_10_1002_adma_201800757
crossref_primary_10_1007_s12274_015_0950_4
crossref_primary_10_1016_j_apcatb_2018_04_009
crossref_primary_10_1021_acsami_8b13542
crossref_primary_10_1002_smll_201901545
crossref_primary_10_1002_aenm_201700826
crossref_primary_10_1021_acsami_9b01431
crossref_primary_10_1039_C7TA08826D
crossref_primary_10_1039_D0EE01609H
crossref_primary_10_1002_adma_201601019
crossref_primary_10_1016_j_colsurfa_2020_125992
crossref_primary_10_1021_acsaem_9b00199
crossref_primary_10_1039_C7QI00167C
crossref_primary_10_1039_D1MA00539A
crossref_primary_10_1002_advs_201700691
crossref_primary_10_1002_adfm_201700451
crossref_primary_10_1016_j_jpowsour_2020_229309
crossref_primary_10_1149_1945_7111_abb7df
crossref_primary_10_1002_aenm_202003412
crossref_primary_10_1016_j_jpowsour_2018_10_075
crossref_primary_10_1021_acsaem_8b00990
crossref_primary_10_1016_j_matlet_2017_07_127
crossref_primary_10_1002_anie_201511447
crossref_primary_10_1002_aenm_201700779
crossref_primary_10_1007_s40243_022_00214_3
crossref_primary_10_1002_aenm_201702838
crossref_primary_10_1016_j_jcis_2022_02_037
crossref_primary_10_1039_C7NR03661B
crossref_primary_10_1002_admi_201700272
crossref_primary_10_1039_C6TA02216B
crossref_primary_10_1002_adfm_201503666
crossref_primary_10_1002_adma_202109407
crossref_primary_10_1002_cctc_201901493
crossref_primary_10_1021_acsami_6b12100
crossref_primary_10_1002_advs_202000184
crossref_primary_10_1002_aenm_201700381
crossref_primary_10_1039_C8CS00009C
crossref_primary_10_1016_j_jelechem_2022_116929
crossref_primary_10_1002_ppsc_201600004
crossref_primary_10_1002_smll_202003916
crossref_primary_10_1002_aenm_201601172
crossref_primary_10_1021_acsaem_0c02476
crossref_primary_10_1002_celc_202101140
crossref_primary_10_1021_acscatal_0c02745
crossref_primary_10_1002_cctc_201800312
crossref_primary_10_1021_acscatal_9b03544
crossref_primary_10_1080_24701556_2020_1813765
crossref_primary_10_1016_j_nanoen_2017_12_016
crossref_primary_10_1021_acssuschemeng_8b06386
crossref_primary_10_1016_j_carbon_2016_08_020
crossref_primary_10_1016_j_ijhydene_2018_10_015
crossref_primary_10_1021_acsami_0c22336
crossref_primary_10_1039_C9TA01027K
crossref_primary_10_1016_j_seppur_2024_127920
crossref_primary_10_1016_j_mssp_2023_107408
crossref_primary_10_1002_adfm_201702513
crossref_primary_10_1021_acscatal_6b00553
crossref_primary_10_1002_chem_201802092
crossref_primary_10_1002_smll_201703843
crossref_primary_10_1016_j_nanoen_2017_04_011
crossref_primary_10_1039_C7TA02539D
crossref_primary_10_1002_smsc_202200030
crossref_primary_10_1016_j_jallcom_2022_166128
crossref_primary_10_1016_j_ijhydene_2021_11_160
crossref_primary_10_1039_D0RA02985H
crossref_primary_10_1002_smll_202202336
crossref_primary_10_1021_acs_nanolett_7b04502
crossref_primary_10_1002_celc_201600352
crossref_primary_10_1016_j_ijhydene_2020_07_017
crossref_primary_10_1002_smll_202104354
crossref_primary_10_1002_celc_201900880
crossref_primary_10_1016_j_carbon_2018_12_053
crossref_primary_10_1002_advs_201800406
crossref_primary_10_1016_j_catcom_2022_106425
crossref_primary_10_1039_C5CC08845C
crossref_primary_10_1002_smtd_202301645
crossref_primary_10_1002_adma_201700192
crossref_primary_10_1021_acsami_7b07984
crossref_primary_10_1039_C5CC06892D
crossref_primary_10_34133_2022_9842610
crossref_primary_10_1016_j_jpowsour_2019_227375
crossref_primary_10_1039_C9NR09192K
crossref_primary_10_1039_C7QI00435D
crossref_primary_10_1039_C6TA10094E
crossref_primary_10_1021_acscatal_6b03497
crossref_primary_10_1021_acs_nanolett_8b04466
crossref_primary_10_1039_D1SE00558H
crossref_primary_10_1002_adma_201604685
crossref_primary_10_1039_D0SE00899K
crossref_primary_10_1002_adma_201908488
crossref_primary_10_1016_j_apsusc_2016_12_243
crossref_primary_10_1016_j_ijhydene_2017_11_012
crossref_primary_10_1016_j_jallcom_2017_09_118
crossref_primary_10_1002_adfm_201704083
crossref_primary_10_1016_j_nanoen_2018_02_032
crossref_primary_10_1002_aenm_201901997
crossref_primary_10_1021_acscatal_5b02571
crossref_primary_10_1002_aenm_201801372
crossref_primary_10_1007_s10853_017_1855_2
crossref_primary_10_1016_j_ijhydene_2017_09_117
crossref_primary_10_1039_D1RA07973E
crossref_primary_10_1002_aenm_201703189
crossref_primary_10_1002_aenm_201703341
crossref_primary_10_1002_adfm_201700795
crossref_primary_10_1016_j_jallcom_2017_06_299
Cites_doi 10.1038/ncomms4949
10.1002/adma.201305608
10.1039/C4CC01625D
10.1002/anie.201311223
10.1039/C4CS00015C
10.1002/anie.201406174
10.1016/0013-4686(90)85068-X
10.1002/anie.201402822
10.1002/adma.201304986
10.1021/ja405351s
10.1016/j.electacta.2013.10.002
10.1002/anie.201403946
10.1038/451652a
10.1002/anie.201407365
10.1016/j.solmat.2013.11.015
10.1021/ja211526y
10.1021/jz2016507
10.1016/j.solmat.2008.01.009
10.1002/adfm.201402952
10.1002/adma.201305359
10.1038/ncomms2812
10.1002/anie.201306166
10.1039/c3nr00887h
10.1126/sciadv.1400129
10.1146/annurev-matsci-062910-100344
10.1126/science.1168049
10.1021/ja306499n
10.1002/anie.201412389
10.1126/science.1162018
10.1126/science.1211934
10.1126/science.1212858
10.1016/0013-4686(84)85004-5
10.1016/j.electacta.2013.07.221
10.1126/science.1200832
10.1039/C3CS60323G
ContentType Journal Article
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.201500936
DatabaseName Istex
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Aerospace Database
Aerospace Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 3820825761
10_1002_aenm_201500936
AENM201500936
ark_67375_WNG_T0T28G07_Q
Genre article
GrantInformation_xml – fundername: Australian Research Council (ARC)
  funderid: DP140104062; DP130104459
GroupedDBID 05W
0R~
1OC
31~
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAIHA
AANLZ
AASGY
AAXRX
AAZKR
ABCUV
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
BSCLL
D-A
DCZOG
EBS
EJD
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c4916-9184afa1213d3b461f2219f3a789c97809902e92727f226f33b3b6f4d195937e3
IEDL.DBID 33P
ISSN 1614-6832
IngestDate Fri Aug 16 23:00:44 EDT 2024
Thu Oct 10 22:12:36 EDT 2024
Fri Aug 23 03:37:20 EDT 2024
Sat Aug 24 01:08:18 EDT 2024
Wed Oct 30 09:55:12 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4916-9184afa1213d3b461f2219f3a789c97809902e92727f226f33b3b6f4d195937e3
Notes ark:/67375/WNG-T0T28G07-Q
Australian Research Council (ARC) - No. DP140104062; No. DP130104459
istex:18F3EEA5A1ABB289EB8F552E12EA73554D9568B9
ArticleID:AENM201500936
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1717252782
PQPubID 886389
PageCount 7
ParticipantIDs proquest_miscellaneous_1770366303
proquest_journals_1717252782
crossref_primary_10_1002_aenm_201500936
wiley_primary_10_1002_aenm_201500936_AENM201500936
istex_primary_ark_67375_WNG_T0T28G07_Q
PublicationCentury 2000
PublicationDate 2015-09-01
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationTitleAlternate Adv. Energy Mater
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Y. Lee, J. Suntivich, K. J. May, E. E. Perry, Y. Shao-Horn, J. Phys. Chem. Lett. 2012, 3, 399.
M. W. Louie, A. T. Bell, J. Am. Chem. Soc. 2013, 135, 12329.
J. Qiao, Y. Liu, F. Hong, J. Zhang, Chem. Soc. Rev. 2014, 43, 631.
M. J. Ju, I. Y. Jeon, J. C. Kim, K. Lim, H. J. Choi, S. M. Jung, I. T. Choi, Y. K. Eom, Y. J. Kwon, J. Ko, J. J. Lee, H. K. Kim, J. B. Baek, Adv. Mater. 2014, 26, 3055.
J. Shui, M. Wang, F. Du, L. Dai, Sci. Adv. 2015, 1, e1400129.
S. Chen, J. Duan, M. Jaroniec, S. Z. Qiao, Angew. Chem., Int. Ed. 2013, 52, 13567.
X. Long, J. Li, S. Xiao, K. Yan, Z. Wang, H. Chen, S. H. Yang, Angew. Chem., Int. Ed. 2014, 53, 7584.
L. Qiu, D. Liu, Y. Wang, C. Cheng, K. Zhou, J. Ding, V.-T. Truong, D. Li, Adv. Mater. 2014, 26, 3333.
J.-I. Jung, H. Y. Jeong, J.-S. Lee, M. G. Kim, J. Cho, Angew. Chem., Int. Ed. 2014, 53, 4582.
G. F. Cai, J. P. Tu, D. Zhou, J. H. Zhang, X. L. Wang, C. D. Gu, Sol. Energy Mater. Sol. Cells 2014, 122, 51.
Y. Wu, M. Chen, Y. Han, H. Luo, X. Su, M. T. Zhang, X. Lin, J. Sun, L. Wang, L. Deng, W. Zhang, R. Cao, Angew. Chem., Int. Ed. 2015, 54, 4870.
P. Yang, P. Sun, Z. Chai, L. Huang, X. Cai, S. Tan, J. Song, W. Mai, Angew. Chem., Int. Ed. 2014, 53, 11935.
S. Trasatti, Electrochim. Acta 1984, 29, 1503.
T. Maiyalagan, K. A. Jarvis, S. Therese, P. J. Ferreira, A. Manthiram, Nat. Commun. 2014, 5, 3949.
R. J. Mortimer, Annu. Rev. Mater. Res. 2011, 41, 241.
X. H. Xia, J. P. Tu, J. Zhang, X. L. Wang, W. K. Zhang, H. Huang, Sol. Energy Mater. Sol. Cells 2008, 92, 628.
T. Y. Ma, S. Dai, M. Jaroniec, S. Z. Qiao, Angew. Chem., Int. Ed. 2014, 53, 7281.
M. Armand, J. M. Tarascon, Nature 2008, 451, 652.
D. Ma, G. Shi, H. Wang, Q. Zhang, Y. Li, Nanoscale 2013, 5, 4808.
A. C. Nwanya, C. J. Jafta, P. M. Ejikeme, P. E. Ugwuoke, M. V. Reddy, R. U. Osuji, K. I. Ozoemena, F. I. Ezema, Electrochim. Acta 2014, 128, 218.
M. W. Kanan, D. G. Nocera, Science 2008, 321, 1072.
Y. Wang, S. Chen, L. Qiu, K. Wang, H. Wang, G. P. Simon, D. Li, Adv. Funct. Mater. 2015, 25, 126.
T. Takashima, K. Hashimoto, R. Nakamura, J. Am. Chem. Soc. 2012, 134, 18153.
K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Science 2009, 323, 760.
F. Cao, G. X. Pan, X. H. Xia, P. S. Tang, H. F. Chen, Electrochim. Acta 2013, 111, 86.
S. Jin, K. J. May, H. A. Gasteiger, J. B. Goodenough, S.-H. Yang, Science 2011, 334, 1383.
R. Subbaraman, D. Tripkovic, D. Strmcnik, K. C. Chang, M. Uchimura, A. P. Paulikas, V. Stamenkovic, N. M. Markovic, Science 2011, 334, 1256.
M. R. Gao, Y. F. Xu, J. Jiang, Y. R. Zheng, S. H. Yu, J. Am. Chem. Soc. 2012, 134, 2930.
K. J. P. Schouten, F. Calle-Vallejo, M. T. M. Koper, Angew. Chem., Int. Ed. 2014, 53, 10858.
Y. Li, M. Gong, Y. Liang, J. Feng, J. E. Kim, H. Wang, G. Hong, B. Zhang, H. J. Dai, Nat. Commun. 2013, 4, 1805.
Y. Li, H. J. Dai, Chem. Soc. Rev. 2014, 43, 5257.
Z. Lu, W. Xu, W. Zhu, Q. Yang, X. Lei, J. Liu, Y. Li, X. Sun, X. Duan, Chem. Commun. 2014, 50, 6479.
G. Wu, K. L. More, C. M. Johnston, P. Zelenay, Science 2011, 332, 443.
S. Ardizzone, G. Fregonara, S. Trasatti, Electrochim. Acta 1990, 35, 263.
S. Chen, J. Duan, M. Jaroniec, S. Z. Qiao, Adv. Mater. 2013, 26, 2925.
2015; 1
2011; 334
2013; 26
2013; 4
1990; 35
2015; 54
2014; 26
1984; 29
2008; 321
2013; 5
2008; 92
2011; 332
2014; 43
2015; 25
2014; 128
2014; 5
2012; 3
2012; 134
2013; 52
2011; 41
2013; 111
2013; 135
2014; 122
2008; 451
2014; 50
2009; 323
2014; 53
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_22_1
e_1_2_5_29_1
e_1_2_5_20_1
e_1_2_5_15_1
e_1_2_5_14_1
e_1_2_5_17_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_18_1
e_1_2_5_30_1
e_1_2_5_31_1
References_xml – volume: 134
  start-page: 18153
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 41
  start-page: 241
  year: 2011
  publication-title: Annu. Rev. Mater. Res.
– volume: 1
  start-page: e1400129
  year: 2015
  publication-title: Sci. Adv.
– volume: 26
  start-page: 3055
  year: 2014
  publication-title: Adv. Mater.
– volume: 53
  start-page: 10858
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 334
  start-page: 1256
  year: 2011
  publication-title: Science
– volume: 52
  start-page: 13567
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 53
  start-page: 11935
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 43
  start-page: 5257
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 332
  start-page: 443
  year: 2011
  publication-title: Science
– volume: 35
  start-page: 263
  year: 1990
  publication-title: Electrochim. Acta
– volume: 135
  start-page: 12329
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 7584
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 29
  start-page: 1503
  year: 1984
  publication-title: Electrochim. Acta
– volume: 321
  start-page: 1072
  year: 2008
  publication-title: Science
– volume: 92
  start-page: 628
  year: 2008
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 3
  start-page: 399
  year: 2012
  publication-title: J. Phys. Chem. Lett.
– volume: 54
  start-page: 4870
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 43
  start-page: 631
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 26
  start-page: 2925
  year: 2013
  publication-title: Adv. Mater.
– volume: 53
  start-page: 4582
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 111
  start-page: 86
  year: 2013
  publication-title: Electrochim. Acta
– volume: 122
  start-page: 51
  year: 2014
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 323
  start-page: 760
  year: 2009
  publication-title: Science
– volume: 5
  start-page: 4808
  year: 2013
  publication-title: Nanoscale
– volume: 134
  start-page: 2930
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 7281
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 128
  start-page: 218
  year: 2014
  publication-title: Electrochim. Acta
– volume: 50
  start-page: 6479
  year: 2014
  publication-title: Chem. Commun.
– volume: 5
  start-page: 3949
  year: 2014
  publication-title: Nat. Commun.
– volume: 4
  start-page: 1805
  year: 2013
  publication-title: Nat. Commun.
– volume: 25
  start-page: 126
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 334
  start-page: 1383
  year: 2011
  publication-title: Science
– volume: 26
  start-page: 3333
  year: 2014
  publication-title: Adv. Mater.
– volume: 451
  start-page: 652
  year: 2008
  publication-title: Nature
– ident: e_1_2_5_12_1
  doi: 10.1038/ncomms4949
– ident: e_1_2_5_14_1
  doi: 10.1002/adma.201305608
– ident: e_1_2_5_23_1
  doi: 10.1039/C4CC01625D
– ident: e_1_2_5_13_1
  doi: 10.1002/anie.201311223
– ident: e_1_2_5_1_1
  doi: 10.1039/C4CS00015C
– ident: e_1_2_5_6_1
  doi: 10.1002/anie.201406174
– ident: e_1_2_5_21_1
  doi: 10.1016/0013-4686(90)85068-X
– ident: e_1_2_5_33_1
  doi: 10.1002/anie.201402822
– ident: e_1_2_5_19_1
  doi: 10.1002/adma.201304986
– ident: e_1_2_5_24_1
  doi: 10.1021/ja405351s
– ident: e_1_2_5_29_1
  doi: 10.1016/j.electacta.2013.10.002
– ident: e_1_2_5_25_1
  doi: 10.1002/anie.201403946
– ident: e_1_2_5_18_1
  doi: 10.1038/451652a
– ident: e_1_2_5_26_1
  doi: 10.1002/anie.201407365
– ident: e_1_2_5_30_1
  doi: 10.1016/j.solmat.2013.11.015
– ident: e_1_2_5_3_1
  doi: 10.1021/ja211526y
– ident: e_1_2_5_20_1
  doi: 10.1021/jz2016507
– ident: e_1_2_5_35_1
  doi: 10.1016/j.solmat.2008.01.009
– ident: e_1_2_5_27_1
  doi: 10.1002/adfm.201402952
– ident: e_1_2_5_28_1
  doi: 10.1002/adma.201305359
– ident: e_1_2_5_2_1
  doi: 10.1038/ncomms2812
– ident: e_1_2_5_15_1
  doi: 10.1002/anie.201306166
– ident: e_1_2_5_31_1
  doi: 10.1039/c3nr00887h
– ident: e_1_2_5_9_1
  doi: 10.1126/sciadv.1400129
– ident: e_1_2_5_32_1
  doi: 10.1146/annurev-matsci-062910-100344
– ident: e_1_2_5_8_1
  doi: 10.1126/science.1168049
– ident: e_1_2_5_4_1
  doi: 10.1021/ja306499n
– ident: e_1_2_5_10_1
  doi: 10.1002/anie.201412389
– ident: e_1_2_5_17_1
  doi: 10.1126/science.1162018
– ident: e_1_2_5_5_1
  doi: 10.1126/science.1211934
– ident: e_1_2_5_16_1
  doi: 10.1126/science.1212858
– ident: e_1_2_5_22_1
  doi: 10.1016/0013-4686(84)85004-5
– ident: e_1_2_5_34_1
  doi: 10.1016/j.electacta.2013.07.221
– ident: e_1_2_5_11_1
  doi: 10.1126/science.1200832
– ident: e_1_2_5_7_1
  doi: 10.1039/C3CS60323G
SSID ssj0000491033
Score 2.572822
Snippet A multifunctional catalyst electrode mimicking external stimuli–responsive property has been prepared by the in situ growth of nitrogen (N)‐doped NiFe double...
A multifunctional catalyst electrode mimicking external stimuli-responsive property has been prepared by the in situ growth of nitrogen (N)-doped NiFe double...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage np
SubjectTerms Bleaching
Catalysis
catalyst electrodes
Catalysts
Electrodes
Evolution
heteroatom doping
Monitors
Nanostructure
Oxygen
oxygen evolution reaction
smart material
Three dimensional
Two-dimensional nanolayers
Title Three-Dimensional Smart Catalyst Electrode for Oxygen Evolution Reaction
URI https://api.istex.fr/ark:/67375/WNG-T0T28G07-Q/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201500936
https://www.proquest.com/docview/1717252782
https://search.proquest.com/docview/1770366303
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xXODAjgibjITgFJHYid0eEQQQEmUrgpvlxM4FkSJKUXvjE_hGvoSZpA30hAS3RHYiazY_jz3PALsiDqV1LvMDx2M_Mlb6JkuFr2IbBzk3oukop3t2q1oPjeOEaHLqKv6KH6JOuJFnlPGaHNyk3YNv0lDjCqokR0CDi3Li3CbqJqrhEFd1kgXhbxiU18kjsIl8ieY7Im4M-MH4H8YmpmmScX8Mdf7EruXkczL__2EvwNwQeLLDylIWYcIVSzD7g45wGc7bqFj3-f5xTJT_FV0Hu31C42JHlOUZdF9ZUl2bYx1DtMsu-wM0QJa8DQ2Y3biqUGIF7k6S9tGZP7xrwc9QRhJjXiMyuSGCNyvSSIY5x1iWC6MazYxYinDW4q7JEe5gi8yFSEUq88gSOY1QTqzCVNEp3BqwTIUmsFwKDGCRi00qrTGBws4iyvJIebA_ErR-rig1dEWezDVJR9fS8WCv1EPdzbw80kE0Fev71qluB23eOA2UvvZgc6QoPfTBrg5xpcpjjhDIg526Gb2HtkRM4To96kMEZDhU4QEv1fbLkPRh0rqo39b_8tEGzNBzdVBtE6ZeX3puCya7trddWu8XmSvssQ
link.rule.ids 315,783,787,1409,27936,27937,46067,46491
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB7xOEAPLdBWTaHFSAhOEYnt2LvHFQSW1_JK1d4sJ3YuVUPFshXc-hP4jfwSZpLdlD0hVRwTTyJrXv48tj8DbIokVs77Iow8T0JpnQptkYtQJy6JSm5F11NNt3-lBz86eynR5PQmZ2Eafoi24EaRUedrCnAqSO_8Yw21vqKj5IhocFauZmFeKtml2BTivC2zIACOo_pCeYQ2MlTowBPqxojvTP9iamiaJy3fTeHO5-i1Hn72371Cx5fg7Rh7sl7jLMsw46sVePOMkfA9HGVoW__492GPWP8bxg529Qv9i-1Soed-eMvS5uYc5xkCXnZ2d48-yNI_Yx9ml745K_EBvu2n2W4_HF-3EBaoJIVpryNtaYnjzYlcqrjkmM5KYXWnWxBREQ5c3Hc5Ih5sUaUQuchVKR3x0wjtxUeYq64r_wlYoWMbOa4E5jDpE5srZ22kUVjIopQ6gO2Jps3vhlXDNPzJ3JB2TKudALZqQ7Ri9uYn7UXTifk-ODBZlPHOQaTNRQBrE0uZcRgOTYyTVZ5wREEBbLTNGEC0KmIrfz0iGeIgw66KAHhttxe6ZHrp4LR9-vw_H63DQj87PTEnh4PjVVik982-tTWYu70Z-S8wO3Sjr7UrPwGPUfDS
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xkFA5lFcrUl6uhOAUkdiOvXtEbBZo6fJa1N4sJ3YuVQNi2Qpu_AR-I7-EmWQ3sCek9ph4Elnz8uex_RlgWySxct7nYeR5EkrrVGjzTIQ6cUlUcCvanmq6R5e696vVSYkmpznFX_NDNAU3iowqX1OA37hi75U01PqSTpIjoMFJuZqGWYlYnKZfQpw1VRbEv3FU3SePyEaGCv13zNwY8b3JX0yMTLOk5PsJ2PkWvFajT3fh__u9CB9HyJPt166yBFO-XIb5N3yEK_Ctj5b1z49PHeL8r_k62OUf9C52QGWeh8EdS-t7c5xnCHfZ6f0DeiBL_448mF34-qTEJ7jqpv2Do3B02UKYo44UJr2WtIUlhjcnMqnigmMyK4TVrXZONEU4bHHf5oh3sEUVQmQiU4V0xE4jtBefYaa8Lv0qsFzHNnJcCcxg0ic2U87aSKOwkHkhdQC7Y0Wbm5pTw9TsydyQdkyjnQB2Kjs0Yvb2N-1E04n52Ts0_ajPW4eRNucBrI8NZUZBODAxTlV5whEDBfC1acbwoTURW_rrIckQAxl2VQTAK7O90yWzn_Z-NE9f_uWjLZg763TNyXHv-xp8oNf1prV1mLm7HfoNmB644WblyC-5z--B
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three%E2%80%90Dimensional+Smart+Catalyst+Electrode+for+Oxygen+Evolution+Reaction&rft.jtitle=Advanced+energy+materials&rft.au=Chen%2C+Sheng&rft.au=Duan%2C+Jingjing&rft.au=Bian%2C+Pengju&rft.au=Tang%2C+Youhong&rft.date=2015-09-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=5&rft.issue=18&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.201500936&rft.externalDBID=10.1002%252Faenm.201500936&rft.externalDocID=AENM201500936
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon