Mevalonosomes: specific vacuoles containing the mevalonate pathway in Plocamium brasiliense cortical cells (Rhodophyta)

This paper has identified, for the first time in a member of the Rhodophyta, a vacuolar organelle containing enzymes that are involved in the mevalonate pathway—an important step in red algal isoprenoid biosynthesis. These organelles were named mevalonosomes (Mev) and were found in the cortical cell...

Full description

Saved in:
Bibliographic Details
Published in:Journal of phycology Vol. 51; no. 2; pp. 225 - 235
Main Authors: Paradas, Wladimir Costa, Crespo, Thalita Mendes, Salgado, Leonardo Tavares, Andrade, Leonardo Rodrigues, Soares, Angélica Ribeiro, Hellio, Claire, Paranhos, Ricardo Rogers, Hill, Lilian Jorge, Souza, Geysa Marinho, Kelecom, Alphonse Germaine Albert Charles, Da Gama, Bernardo Antônio Perez, Pereira, Renato Crespo, Amado‐Filho, Gilberto Menezes, Raven, J
Format: Journal Article
Language:English
Published: United States Phycological Society of America 01-04-2015
Blackwell Publishing Ltd
Wiley
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper has identified, for the first time in a member of the Rhodophyta, a vacuolar organelle containing enzymes that are involved in the mevalonate pathway—an important step in red algal isoprenoid biosynthesis. These organelles were named mevalonosomes (Mev) and were found in the cortical cells (CC) of Plocamium brasiliense, a marine macroalgae that synthesizes several halogenated monoterpenes. P. brasiliense specimens were submitted to a cytochemical analysis of the activity of the 3‐hydroxy‐3‐methylglutaryl‐CoA synthase (HMGS). Using transmission electron microscopy (TEM), we confirmed the presence of HMGS activity within the Mev. Because HMGS is necessary for the biosynthesis of halogenated monoterpenes, we isolated a hexanic fraction (HF) rich in halogenated monoterpenes from P. brasiliense that contained a pentachlorinated monoterpene as a major metabolite. Because terpenes are often related to chemical defense, the antifouling (AF) activity of pentachlorinated monoterpene was tested. We found that the settlement of the mussel Perna perna was reduced by HF treatment (2.25 times less than control; 40% and 90% of fouled surface, respectively; P = 0.001; F₉,₉ = 1.13). The HF (at 10 μg · mL⁻¹) also inhibited three species of fouling microalgae (Chlorarachnion reptans, Cylindrotheca cloisterium, and Exanthemachrysis gayraliae), while at a higher concentration (50 μg · mL⁻¹), it inhibited the bacteria Halomonas marina, Polaribacter irgensii, Pseudoalteromonas elyakovii, Shewanella putrefaciens, and Vibrio aestuarianus. The AF activity of P. brasiliense halogenated monoterpenes and the localization of HMGS activity inside Mev suggest that this cellular structure found in CC may play a role in thallus protection against biofouling.
AbstractList This paper has identified, for the first time in a member of the Rhodophyta, a vacuolar organelle containing enzymes that are involved in the mevalonate pathway-an important step in red algal isoprenoid biosynthesis. These organelles were named mevalonosomes (Mev) and were found in the cortical cells (CC) of Plocamium brasiliense, a marine macroalgae that synthesizes several halogenated monoterpenes. P. brasiliense specimens were submitted to a cytochemical analysis of the activity of the 3-hydroxy-3-methylglutaryl-CoA synthase (HMGS). Using transmission electron microscopy (TEM), we confirmed the presence of HMGS activity within the Mev. Because HMGS is necessary for the biosynthesis of halogenated monoterpenes, we isolated a hexanic fraction (HF) rich in halogenated monoterpenes from P. brasiliense that contained a pentachlorinated monoterpene as a major metabolite. Because terpenes are often related to chemical defense, the antifouling (AF) activity of pentachlorinated monoterpene was tested. We found that the settlement of the mussel Perna perna was reduced by HF treatment (2.25 times less than control; 40% and 90% of fouled surface, respectively; P = 0.001; F-9,F-9 = 1.13). The HF (at 10 mu g . mL(-1)) also inhibited three species of fouling microalgae (Chlorarachnion reptans, Cylindrotheca cloisterium, and Exanthemachrysis gayraliae), while at a higher concentration (50 mu g . mL(-1)), it inhibited the bacteria Halomonas marina, Polaribacter irgensii, Pseudoalteromonas elyakovii, Shewanella putrefaciens, and Vibrio aestuarianus. The AF activity of P. brasiliense halogenated monoterpenes and the localization of HMGS activity inside Mev suggest that this cellular structure found in CC may play a role in thallus protection against biofouling.
This paper has identified, for the first time in a member of the Rhodophyta, a vacuolar organelle containing enzymes that are involved in the mevalonate pathway-an important step in red algal isoprenoid biosynthesis. These organelles were named mevalonosomes (Mev) and were found in the cortical cells (CC) of Plocamium brasiliense, a marine macroalgae that synthesizes several halogenated monoterpenes. P. brasiliense specimens were submitted to a cytochemical analysis of the activity of the 3-hydroxy-3-methylglutaryl-CoA synthase (HMGS). Using transmission electron microscopy (TEM), we confirmed the presence of HMGS activity within the Mev. Because HMGS is necessary for the biosynthesis of halogenated monoterpenes, we isolated a hexanic fraction (HF) rich in halogenated monoterpenes from P. brasiliense that contained a pentachlorinated monoterpene as a major metabolite. Because terpenes are often related to chemical defense, the antifouling (AF) activity of pentachlorinated monoterpene was tested. We found that the settlement of the mussel Perna perna was reduced by HF treatment (2.25 times less than control; 40% and 90% of fouled surface, respectively; P = 0.001; F9,9 = 1.13). The HF (at 10 μg · mL(-1) ) also inhibited three species of fouling microalgae (Chlorarachnion reptans, Cylindrotheca cloisterium, and Exanthemachrysis gayraliae), while at a higher concentration (50 μg · mL(-1) ), it inhibited the bacteria Halomonas marina, Polaribacter irgensii, Pseudoalteromonas elyakovii, Shewanella putrefaciens, and Vibrio aestuarianus. The AF activity of P. brasiliense halogenated monoterpenes and the localization of HMGS activity inside Mev suggest that this cellular structure found in CC may play a role in thallus protection against biofouling.
This paper has identified, for the first time in a member of the Rhodophyta, a vacuolar organelle containing enzymes that are involved in the mevalonate pathway—an important step in red algal isoprenoid biosynthesis. These organelles were named mevalonosomes (Mev) and were found in the cortical cells ( CC ) of Plocamium brasiliense , a marine macroalgae that synthesizes several halogenated monoterpenes. P. brasiliense specimens were submitted to a cytochemical analysis of the activity of the 3‐hydroxy‐3‐methylglutaryl‐CoA synthase ( HMGS ). Using transmission electron microscopy ( TEM ), we confirmed the presence of HMGS activity within the Mev. Because HMGS is necessary for the biosynthesis of halogenated monoterpenes, we isolated a hexanic fraction ( HF ) rich in halogenated monoterpenes from P. brasiliense that contained a pentachlorinated monoterpene as a major metabolite. Because terpenes are often related to chemical defense, the antifouling ( AF ) activity of pentachlorinated monoterpene was tested. We found that the settlement of the mussel Perna perna was reduced by HF treatment (2.25 times less than control; 40% and 90% of fouled surface, respectively; P  = 0.001; F 9,9  = 1.13). The HF (at 10 μg · mL −1 ) also inhibited three species of fouling microalgae ( Chlorarachnion reptans , Cylindrotheca cloisterium , and Exanthemachrysis gayraliae ), while at a higher concentration (50 μg · mL −1 ), it inhibited the bacteria Halomonas marina , Polaribacter irgensii , Pseudoalteromonas elyakovii , Shewanella putrefaciens , and Vibrio aestuarianus . The AF activity of P. brasiliense halogenated monoterpenes and the localization of HMGS activity inside Mev suggest that this cellular structure found in CC may play a role in thallus protection against biofouling.
This paper has identified, for the first time in a member of the Rhodophyta, a vacuolar organelle containing enzymes that are involved in the mevalonate pathway—an important step in red algal isoprenoid biosynthesis. These organelles were named mevalonosomes (Mev) and were found in the cortical cells (CC) of Plocamium brasiliense, a marine macroalgae that synthesizes several halogenated monoterpenes. P. brasiliense specimens were submitted to a cytochemical analysis of the activity of the 3‐hydroxy‐3‐methylglutaryl‐CoA synthase (HMGS). Using transmission electron microscopy (TEM), we confirmed the presence of HMGS activity within the Mev. Because HMGS is necessary for the biosynthesis of halogenated monoterpenes, we isolated a hexanic fraction (HF) rich in halogenated monoterpenes from P. brasiliense that contained a pentachlorinated monoterpene as a major metabolite. Because terpenes are often related to chemical defense, the antifouling (AF) activity of pentachlorinated monoterpene was tested. We found that the settlement of the mussel Perna perna was reduced by HF treatment (2.25 times less than control; 40% and 90% of fouled surface, respectively; P = 0.001; F₉,₉ = 1.13). The HF (at 10 μg · mL⁻¹) also inhibited three species of fouling microalgae (Chlorarachnion reptans, Cylindrotheca cloisterium, and Exanthemachrysis gayraliae), while at a higher concentration (50 μg · mL⁻¹), it inhibited the bacteria Halomonas marina, Polaribacter irgensii, Pseudoalteromonas elyakovii, Shewanella putrefaciens, and Vibrio aestuarianus. The AF activity of P. brasiliense halogenated monoterpenes and the localization of HMGS activity inside Mev suggest that this cellular structure found in CC may play a role in thallus protection against biofouling.
This paper has identified, for the first time in a member of the Rhodophyta, a vacuolar organelle containing enzymes that are involved in the mevalonate pathway—an important step in red algal isoprenoid biosynthesis. These organelles were named mevalonosomes (Mev) and were found in the cortical cells (CC) of Plocamium brasiliense, a marine macroalgae that synthesizes several halogenated monoterpenes. P. brasiliense specimens were submitted to a cytochemical analysis of the activity of the 3‐hydroxy‐3‐methylglutaryl‐CoA synthase (HMGS). Using transmission electron microscopy (TEM), we confirmed the presence of HMGS activity within the Mev. Because HMGS is necessary for the biosynthesis of halogenated monoterpenes, we isolated a hexanic fraction (HF) rich in halogenated monoterpenes from P. brasiliense that contained a pentachlorinated monoterpene as a major metabolite. Because terpenes are often related to chemical defense, the antifouling (AF) activity of pentachlorinated monoterpene was tested. We found that the settlement of the mussel Perna perna was reduced by HF treatment (2.25 times less than control; 40% and 90% of fouled surface, respectively; P = 0.001; F9,9 = 1.13). The HF (at 10 μg · mL−1) also inhibited three species of fouling microalgae (Chlorarachnion reptans, Cylindrotheca cloisterium, and Exanthemachrysis gayraliae), while at a higher concentration (50 μg · mL−1), it inhibited the bacteria Halomonas marina, Polaribacter irgensii, Pseudoalteromonas elyakovii, Shewanella putrefaciens, and Vibrio aestuarianus. The AF activity of P. brasiliense halogenated monoterpenes and the localization of HMGS activity inside Mev suggest that this cellular structure found in CC may play a role in thallus protection against biofouling.
Author Salgado, Leonardo Tavares
Soares, Angélica Ribeiro
Hellio, Claire
Hill, Lilian Jorge
Da Gama, Bernardo Antônio Perez
Pereira, Renato Crespo
Paradas, Wladimir Costa
Andrade, Leonardo Rodrigues
Paranhos, Ricardo Rogers
Kelecom, Alphonse Germaine Albert Charles
Amado‐Filho, Gilberto Menezes
Crespo, Thalita Mendes
Raven, J
Souza, Geysa Marinho
Author_xml – sequence: 1
  fullname: Paradas, Wladimir Costa
– sequence: 2
  fullname: Crespo, Thalita Mendes
– sequence: 3
  fullname: Salgado, Leonardo Tavares
– sequence: 4
  fullname: Andrade, Leonardo Rodrigues
– sequence: 5
  fullname: Soares, Angélica Ribeiro
– sequence: 6
  fullname: Hellio, Claire
– sequence: 7
  fullname: Paranhos, Ricardo Rogers
– sequence: 8
  fullname: Hill, Lilian Jorge
– sequence: 9
  fullname: Souza, Geysa Marinho
– sequence: 10
  fullname: Kelecom, Alphonse Germaine Albert Charles
– sequence: 11
  fullname: Da Gama, Bernardo Antônio Perez
– sequence: 12
  fullname: Pereira, Renato Crespo
– sequence: 13
  fullname: Amado‐Filho, Gilberto Menezes
– sequence: 14
  fullname: Raven, J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26986518$$D View this record in MEDLINE/PubMed
https://hal.science/hal-02559407$$DView record in HAL
BookMark eNp1ks1u1DAURi1URKeFBS8AXraLtLZjxwm7qqI_dIAKqCq6sRznpnFx4hAnM-TtmyHtsMIbW9b5jq78eQ_tNL4BhN5SckSndfzQjkeUMUleoAUVLIvSlModtCCEsShOeLKL9kJ4IITIRNBXaJclWTqd0gVaf4aVdr7xwdcQPuDQgrGlNXilzeAdBGx802vb2OYe9xXgeuZ1D7jVfbXWI7YNvnbe6NoONc47Hayz0ASYol1vjXbYgHMBH3yrfOHbauz14Wv0stQuwJunfR_dnH38cXoRLb-eX56eLCPDM0oiCSUtDDeaSsMTwQF4ogseQ57ytMyJoTnPc05LnpU0JSURaZFwVpKkAGlyEe-jw9lbaafazta6G5XXVl2cLNXmjjAhMk7kik7swcy2nf89QOhVbcNmdN2AH4KiUvLpdWnM_mlN50PooNy6KVGbTtTUifrbycS-e9IOeQ3FlnwuYQKOZ2BtHYz_N6lP1z-fldGcsKGHP9uE7n6pRMZSqNsv5-r27kqckas7xSf-_cyX2it939mgbr4zQsX0Q0jMUxo_AoUQsdE
CitedBy_id crossref_primary_10_1093_pcp_pcw039
crossref_primary_10_1016_j_algal_2016_02_033
crossref_primary_10_1016_j_seares_2017_03_002
crossref_primary_10_1111_jpy_12287
crossref_primary_10_3390_cells12182259
crossref_primary_10_3390_md15090265
crossref_primary_10_5252_cryptogamie_algologie2021v42a14
crossref_primary_10_4490_algae_2015_30_4_291
crossref_primary_10_1016_j_plipres_2024_101287
Cites_doi 10.1016/j.phytochem.2011.02.003
10.1083/jcb.34.2.627
10.1016/j.plantsci.2011.07.018
10.1080/0028825X.2003.9512854
10.1590/S1519-69842002000100005
10.1007/s00425-005-1497-5
10.1016/j.cub.2010.02.052
10.1128/AEM.01185-08
10.1016/j.mycres.2009.01.013
10.1016/S0021-9258(18)54203-4
10.1533/9781845696313.3.572
10.2307/2656705
10.1007/BF00365975
10.1515/znc-1990-9-1005
10.1016/S0031-9422(00)82537-6
10.1111/j.1529-8817.1980.tb03016.x
10.1007/s10811‐014‐0319‐1
10.1007/978-3-540-74181-7_2
10.1016/0040-4020(75)87060-8
10.1016/j.fgb.2010.05.006
10.1007/s00425-004-1336-0
10.1590/bjb.2014.0080
10.1007/s10811‐014‐0266‐x
10.1590/S0102-695X2012005000065
10.1016/j.jsb.2008.01.015
10.1039/C0NP00034E
10.1016/S0014-5793(97)01002-8
10.1016/j.mycres.2007.06.015
10.3354/meps306087
10.1515/BOT.2008.026
10.1016/j.phytochem.2009.02.010
10.1021/np010473z
10.1016/S0031-9422(99)00284-8
10.1093/jxb/erl134
10.1007/s10811-008-9382-9
10.2307/2444311
10.1046/j.1365-313X.2000.00751.x
10.1007/s10811-010-9511-0
10.1016/j.jembe.2004.07.016
10.2216/i0031-8884-41-2-125.1
10.1146/annurev.arplant.59.032607.092730
10.1016/j.marpolbul.2012.06.028
10.3354/meps07577
10.1515/BOT.2008.027
10.1007/s002270050514
10.1007/s002030100324
10.1111/j.1529-8817.1979.tb02961.x
10.1016/j.porgcoat.2013.12.004
10.1111/j.1529-8817.2008.00507.x
10.1080/08927010290017680
10.1080/0892701031000089534
10.1016/S0141-1136(01)00092-7
10.1371/journal.pone.0063929
10.1515/znc-2002-1-227
10.1007/s10811-008-9374-9
10.1038/nature02398
10.1080/08927010903515122
10.1104/pp.82.2.523
10.1073/pnas.91.3.927
10.1016/j.pbi.2005.03.009
10.1139/m62-029
10.1007/s11101-004-4155-9
10.1104/pp.104.050245
10.1016/j.febslet.2010.05.045
10.1073/pnas.0907416106
10.1021/np980408y
10.1016/j.plipres.2011.12.001
ContentType Journal Article
Copyright 2015 Phycological Society of America
2015 Phycological Society of America.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2015 Phycological Society of America
– notice: 2015 Phycological Society of America.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID FBQ
BSCLL
NPM
AAYXX
CITATION
7X8
1XC
DOI 10.1111/jpy.12270
DatabaseName AGRIS
Istex
PubMed
CrossRef
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Botany
Environmental Sciences
EISSN 1529-8817
Editor Raven, J.
Editor_xml – sequence: 1
  givenname: J.
  surname: Raven
  fullname: Raven, J.
– sequence: 14
  givenname: J.
  surname: Raven
  fullname: Raven, J.
EndPage 235
ExternalDocumentID oai_HAL_hal_02559407v1
10_1111_jpy_12270
26986518
JPY12270
ark_67375_WNG_WZK5F0KZ_4
US201500203481
Genre article
Journal Article
GrantInformation_xml – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
– fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
GroupedDBID -DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29L
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABHUG
ABJNI
ABPPZ
ABPTK
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACNCT
ACPOU
ACPRK
ACSCC
ACSMX
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AETEA
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHEFC
AI.
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBC
EBD
EBS
EDH
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FBQ
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
H~9
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
NHB
O66
O9-
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
S10
SAMSI
SUPJJ
TN5
TUS
TWZ
UB1
UKR
UPT
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XJT
XOL
YBU
YQT
YR2
ZCG
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AHBTC
AITYG
BSCLL
HGLYW
OIG
NPM
AAMNL
AAYXX
CITATION
7X8
1XC
ID FETCH-LOGICAL-c4910-7ef1dc4ca17c4654ee46ad43eb848fb0c1b4bb41f49f180f058d642f06de7cb53
IEDL.DBID 33P
ISSN 0022-3646
IngestDate Tue Oct 15 15:43:28 EDT 2024
Sat Aug 17 04:15:19 EDT 2024
Thu Nov 21 21:03:19 EST 2024
Sat Sep 28 08:06:18 EDT 2024
Sat Aug 24 00:56:44 EDT 2024
Wed Oct 30 09:50:13 EDT 2024
Wed Dec 27 19:17:29 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords chemical defense
halogenated monoterpenes
osmiophilic bodies
Plocamium brasiliense
antifouling activity
mevalonosome
cortical cell cytochemistry
3-hydroxy-3-methylglutaryl-CoA synthase
mevalonate pathway
ACL
Language English
License 2015 Phycological Society of America.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4910-7ef1dc4ca17c4654ee46ad43eb848fb0c1b4bb41f49f180f058d642f06de7cb53
Notes http://dx.doi.org/10.1111/jpy.12270
ark:/67375/WNG-WZK5F0KZ-4
istex:BC1193BC9B9039029237C5150B436B305A655AD9
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
ArticleID:JPY12270
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2988-5183
PMID 26986518
PQID 1774529132
PQPubID 23479
PageCount 11
ParticipantIDs hal_primary_oai_HAL_hal_02559407v1
proquest_miscellaneous_1774529132
crossref_primary_10_1111_jpy_12270
pubmed_primary_26986518
wiley_primary_10_1111_jpy_12270_JPY12270
istex_primary_ark_67375_WNG_WZK5F0KZ_4
fao_agris_US201500203481
PublicationCentury 2000
PublicationDate April 2015
PublicationDateYYYYMMDD 2015-04-01
PublicationDate_xml – month: 04
  year: 2015
  text: April 2015
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of phycology
PublicationTitleAlternate J. Phycol
PublicationYear 2015
Publisher Phycological Society of America
Blackwell Publishing Ltd
Wiley
Publisher_xml – name: Phycological Society of America
– name: Blackwell Publishing Ltd
– name: Wiley
References Salgado, L. T., Viana, N. B., Andrade, L. R., Leal, R. N., Da Gama, B. A. P., Attias, M., Pereira, R. C. & Amado Filho, G. M. 2008. Intra-cellular storage, transport and exocytosis of halogenated compounds in marine red alga Laurencia obtusa. J. Struct. Biol. 162:345-55.
Hong, S. Y. & Linz, J. E. 2009. Functional expression and sub-cellular localization of the early aflatoxin pathway enzyme Nor-1 in Aspergillus parasiticus. Mycol. Res. 113:591-601.
Maurey, K., Wolf, F. & Golbeck, J. 1986. 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in Ochromonas malhamensis. Plant Physiol. 82:523-7.
Da Gama, B. A. P., Pereira, R. C., Soares, A. R., Teixeira, V. L. & Valentin, Y. Y. 2003. Is the mussel test a good indicator of antifouling activity? A comparison between laboratory and field assays. Biofouling 19:161-9.
Diaz-Marrero, A. R., Rovirosa, J., Darias, J., San-Martin, A. & Cueto, M. 2002. Plocamenols A-C, novel linear polyhalohydroxylated monoterpenes from Plocamium cartilagineum. J. Nat. Prod. 5:585-8.
Fusetani, N. 2011. Antifouling marine natural products. Nat. Prod. Rep. 28:400-10.
Hoppert, M., Gentzsch, C. & Schorgendorfer, K. 2001. Structure and localization of cyclosporin synthetase, the key enzyme of cyclosporin biosynthesis in Tolypocladium inflatum. Arch. Microbiol. 176:285-93.
Bianco, E. M., Rogers, R., Teixeira, V. L. & Pereira, R. C. 2009. Antifoulant diterpenes produced by the brown seaweed Canistrocarpus cervicornis. J. Appl. Phycol. 21:341-6.
Lendenfeld, T., Ghali, D., Wolchek, M., Kubicek-Pranz, E. M. & Kubicek, C. P. 1993. Subcellular compartmentation of penicillin biosynthesis in Penicillium chrysogenum-the amino acids are derived from the vacuole. J. Biol. Chem. 268:665-71.
Kutchan, T. M. 2005. A role for intra- and intercellular translocation in natural product biosynthesis. Curr. Opin. Plant Biol. 8:292-300.
Hemmerlin, A., Harwood, J. L. & Bach, T. J. 2012. A raison d'être for two distinct pathways in the early steps of plant isoprenoid biosynthesis? Prog. Lip. Res. 51:95-148.
Lunn, J. E. 2007. Compartmentation in plant metabolism. J. Exp. Bot. 58:35-47.
Alex, D., Bach, T. J. & Chye, M. L. 2000. Expression of Brassica juncea 3-hydroxy-3-methylglutaryl CoA synthase is developmentally regulated and stress-responsive. Plant J. 22:415-26.
Guillard, R. R. L. & Ryther, J. H. 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8:229-39.
Moro, I., Dalla Vecchia, F., La Rocca, N., Rascio, N. & Andreoli, C. 2003. Ultrastructural and cytochemical study of Plocamium cartilagineum (Plocamiales, Rhodophyta) from Ross sea (Antarctica). New Zeal. J. Bot. 41:359-71.
Schoenwaelder, M. E. A. 2002. The occurrence and cellular significance of physodes in brown algae. Phycologia 41:125-39.
Dworjanyn, S. A., De Nys, R. & Steinberg, P. D. 1999. Localization and surface quantification of secondary metabolites in the red alga Delisea pulchra. Mar. Biol. 133:727-36.
Maréchal, J. P., Culioli, G., Hellio, C., Thomas-Guyonc, H., Callow, M. E., Clare, A. S. & Ortalo-Magne, A. 2004. Seasonal variation in antifouling activity of crude extracts of the brown alga Bifurcaria bifurcata (Cystoseiraceae) against cyprids of Balanus amphitrite and the marine bacteria Cobetia marina and Pseudoalteromonas haloplanktis. J. Exp. Mar. Biol. 313:47-62.
Pereira, R. C., Pinheiro, M. D., Teixeira, V. L. & Da Gama, B. A. P. 2002. Feeding preferences of the endemic gastropod Astrea latispina in relation to chemical defenses of Brazilian tropical macroalgae. Braz. J. Biol. 62:33-40.
Fonseca, R. R., Ortiz-Ramírez, F. A., Cavalcanti, D. N., Ramos, C. J. B., Teixeira, V. L. & Filho, A. P. S. S. 2012. Allelopathic potential of extracts from the marine macroalga Plocamium brasiliense and their effects on pasture weed Brazilian. Braz. J. Pharmacog. 22:850-3.
Paradas, W. C., Salgado, L. T., Sudatti, D. B., Crapez, M. A., Fujii, M. T., Coutinho, R., Pereira, R. C. & Amado-Filho, G. M. 2010. Induction of halogenated vesicle transport in cells of the red seaweed Laurencia obtusa. Biofouling 26:277-86.
Plouguerné, E., Hellio, C., Cesconetto, C., Thabard, M., Mason, K., Véron, B., Pereira, R. C. & Da Gama, B. A. P. 2010. Antifouling activity as a function of population variation in Sargassum vulgare from the littoral of Rio de Janeiro. J. Appl. Phycol. 22:717-24.
Plouguerné, E., Hellio, C., Deslandes, E., Véron, B. & Stiger-Pouvreau, V. 2008. Anti-microfouling activities of extracts of two invasive algae: Grateloupia turuturu and Sargassum muticum. Bot. Mar. 51:202-8.
Afolayan, A. F., Mann, M. G., Lategan, C. A., Smith, P. J., Bolton, J. J. & Beukes, D. R. 2009. Antiplasmodial halogenated monoterpenes from the marine red alga Plocamium cornutum. Phytochemistry 70:597-600.
Wink, M. 1993. The plant vacuole: a multifunctional compartment. J. Exp. Bot. 44:231-46.
Bazes, A., Silkina, A., Douzenel, P., Faÿ, F., Kervarec, N., Morin, D., Berge, J. P. & Bourgougnon, N. 2009. Investigation of the antifouling constituents from the brown alga Sargassum muticum (Yendo) Fensholt. J. Appl. Phycol. 21:395-403.
Pereira, R. C. & Vasconcelos, M. A. 2014. Chemical defense in the red seaweed Plocamium brasiliense: spatial variability and differential action on herbivores. Braz. J. Biol. 74:545-52.
König, G. M., Wright, A. D. & De Nys, R. 1999a. Halogenated monoterpenes from Plocamium costatum and their biological activity. J. Nat. Prod. 62:383-5.
Lohr, M., Schwender, J. & Polle, J. E. W. 2012. Isoprenoid biosynthesis in eukaryotic phototrophs: a spotlight on algae. Plant Sci. 185-186:9-22.
Roze, L. V., Chanda, A. & Linz, J. E. 2011. Compartmentalization and molecular traffic in secondary metabolism: a new understanding of established cellular processes. Fungal Genet. Biol. 48:35-48.
Ferreira, W. J., Amaro, R., Cavalcanti, D. N., Rezende, C. M., Giongo, V. A., Barbosa, J. E., Paixão, I. C. N. P. & Teixeira, V. L. 2010. Anti-herpetic activities of chemical components from the Brazilian red alga Plocamium brasiliense. Nat. Prod. Commun. 5:1167-70.
Barrow, K. D. & Temple, C. A. 1985. Biosynthesis of halogenated monoterpenes in Plocamium cartilagineum. Phytochemistry 24:1697-704.
Pinto, A. M. V. P., Leite, J. P. G., Ramos, C. J. B., Fonseca, R. R., Teixeira, V. L. & Paixão, I. C. N. P. 2014. Anti-herpes virus bovine type 5 activities of extracts obtained from Plocamium brasiliense. J. Appl. Phycol. 26:2021-2027. doi:10.1007/s10811-014-0319-1.
Matsuzaki, M., Misumi, O., Shin-I, T., Maruyama, S., Takahara, M., Miyagishima, S. Y., Mori, T. et al. 2004. Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10 D. Nature 428:653-7.
Kladi, M., Vagias, C. & Roussis, V. 2004. Volatile halogenated metabolites from marine red algae Rhodophyceae. Phytochem. Rev. 3:337-66.
Saikia, S., Nicholson, M. J., Young, C., Parker, E. J. & Scott, B. 2008. The genetic basis for indole-diterpene chemical diversity in filamentous fungi. Mycol. Res. 112:184-99.
Da Gama, B. A. P., Pereira, R. C., Carvalho, A. G. V., Coutinho, R. & Yoneshigue Valentin, Y. 2002. The effects of seaweed secondary metabolites on biofouling. Biofouling 18:13-20.
Schwender, J., Zeidler, J., Groner, R., Müller, C., Focke, M., Braun, S., Lichtenthaler, F. W. & Lichtenthaler, H. K. 1997. Incorporation of 1-deoxy-d-xylulose into isoprene and phytol by higher plants and algae. FEBS Lett. 414:129-34.
Da Gama, B. A. P., Carvalho, A. G. V., Weidner, K., Soares, A. R., Coutinho, R., Fleury, B. G., Teixeira, V. L. & Pereira, R. C. 2008. Antifouling activity of natural products from brazilian macroalgae. Bot. Mar. 51:191-201.
Tsoukatou, M., Hellio, C., Vagias, C., Harvala, C. & Roussis, V. 2002. Chemical defense and antifouling activity of three Mediterranean sponges of the genus Ircinia. Z. Naturforsch. 57C:161-71.
Ziegler, J. & Facchini, P. J. 2008. Alkaloid biosynthesis: metabolism and trafficking. Ann. Rev. Plant Biol. 59:735-69.
Grotewold, E. 2004. The challenges of moving chemicals within and out of cells: insight into the transport of plant natural products. Planta 219:906-9.
Hong, S. Y. & Linz, J. E. 2008. Functional expression and sub-cellular localization of the aflatoxin pathway enzyme Ver-1 fused to enhanced green fluorescent protein. Appl. Environ. Microbiol. 74:6385-96.
König, G. M., Wright, A. D. & Linden, A. 1999b. Plocamium hamatum and its monoterpenes: chemical and biological and investigations of the tropical marine red alga. Phytochemistry 52:1047-53.
Nylund, G. M., Cervin, G., Persson, F., Hermansson, M., Steinberg, P. D. & Pavia, H. 2008. Seaweed defence against bacteria: a polybrominated 2-heptanone from the red alga Bonnemaisonia hamifera inhibits bacterial colonisation at natural surface concentrations. Mar. Ecol. Prog. Ser. 369:39-50.
Korn, E. D. 1967. A chromatographic and spectrophotometric study of products of the reaction of osmium tetroxide with unsaturated lipids. J. Cell Biol. 34:627-39.
Chanda, A., Roze, L. V., Kang, S., Artymovich, K. A., Hicks, G. R., Raikhel, N. V., Calvo, A. M. & Linz, J. E. 2009. A key role for vesicles in fungal secondary metabolism. Proc. Natl. Acad. Sci. USA 106:19533-8.
Skubatz, H. & Kunkel, D. D. 1999. Further studies of the glandular tissue of the Sauromatum guttatum (Araceae) appendix. Am. J. Bot. 86:841-85.
Nagegowda, D. A. 2010. Plant volatile terpenoid metabolism: biosynthetic genes, transcriptional regulation and subcellular compartmentation. FEBS Lett. 584:2965-73.
Leivar, P., González, V. M., Castel, S., Trelease, R. N., López-Iglesias, C., Arró, M., Boronat, A., Campos, N., Ferrer, A. & Fernàndez-Busquets, X. 2005. Subcellular localization of Arabidopsis 3-hydroxy-3-methylglutarylcoenzyme A reductase. Plant Physiol. 137:57-69.
Bressy, C., Hellio, C., Nguyena, N., Tanguya, B., Maréchal, J. P. & Margaillana, A. 2014. Optimized silyl ester diblock methacrylic copolymers: a new class of binders for chemically active antifouling coatings. Progr. Org. Coat. 77:665-73.
Young, D. N., Howard, B. M. & Fenical, W. 1980. Subcellu
45c
2002; 18
1987; 9
2005; 137
2014; 26
2004; 3
2010; 584
2009; 113
1999; 86
2003; 19
2008; 74
2012; 185–186
2013; 8
1985; 24
2012; 51
2001; 176
2010; 22
2010; 20
1986; 82
2010; 26
2002; 41
2000
2005; 221
2011; 72
1999; 133
2014; 9
2011; 28
2004; 219
2008; 112
2010; 5
2012; 22
2003; 41
2001; 52
2012; 64
1997; 414
2009; 21
1979; 15
1962; 8
2002; 5
1993; 44
2000; 22
1998
2009
2008
2008; 59
1996
1975; 31
2008; 369
1993; 268
2004; 428
2008; 51
2007; 58
2008; 162
2002; 57C
2004; 11
1980; 16
2004; 313
2006; 306
1984; 71
2009; 70
1967; 34
2002; 62
2005; 8
1999a; 62
2008; 44
2014
2011; 48
2014; 74
1994; 91
2014; 77
2009; 106
1999b; 52
Hauser M. T. (e_1_2_7_29_1); 45
e_1_2_7_3_1
Tsoukatou M. (e_1_2_7_73_1) 2002; 57
e_1_2_7_9_1
Bozzola J. J. (e_1_2_7_11_1) 1998
e_1_2_7_7_1
Maschek J. A. (e_1_2_7_46_1) 2008
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Lendenfeld T. (e_1_2_7_42_1) 1993; 268
e_1_2_7_50_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
Da Gama B. A. P. (e_1_2_7_20_1) 2014
e_1_2_7_6_1
Somerville C. (e_1_2_7_71_1) 2000
e_1_2_7_8_1
Fonseca R. R. (e_1_2_7_25_1) 2012; 22
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
Croteau R. (e_1_2_7_15_1) 2000
e_1_2_7_10_1
e_1_2_7_67_1
Ank G. (e_1_2_7_5_1) 2014; 9
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
Ferreira W. J. (e_1_2_7_24_1) 2010; 5
Amsterdam D. (e_1_2_7_4_1) 1996
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_36_1
e_1_2_7_59_1
Wink M. (e_1_2_7_74_1) 1993; 44
e_1_2_7_38_1
Hellio C. (e_1_2_7_31_1) 2009
References_xml – volume: 51
  start-page: 202
  year: 2008
  end-page: 8
  article-title: Anti‐microfouling activities of extracts of two invasive algae: and
  publication-title: Bot. Mar.
– volume: 113
  start-page: 591
  year: 2009
  end-page: 601
  article-title: Functional expression and sub‐cellular localization of the early aflatoxin pathway enzyme Nor‐1 in
  publication-title: Mycol. Res.
– start-page: 25
  year: 2008
  end-page: 49
– start-page: 572
  year: 2009
  end-page: 622
– volume: 24
  start-page: 1697
  year: 1985
  end-page: 704
  article-title: Biosynthesis of halogenated monoterpenes in
  publication-title: Phytochemistry
– volume: 41
  start-page: 125
  year: 2002
  end-page: 39
  article-title: The occurrence and cellular significance of physodes in brown algae
  publication-title: Phycologia
– volume: 133
  start-page: 727
  year: 1999
  end-page: 36
  article-title: Localization and surface quantification of secondary metabolites in the red alga
  publication-title: Mar. Biol.
– volume: 5
  start-page: 1167
  year: 2010
  end-page: 70
  article-title: Anti‐herpetic activities of chemical components from the Brazilian red alga
  publication-title: Nat. Prod. Commun.
– start-page: 413
  year: 2014
  end-page: 40
– volume: 22
  start-page: 850
  year: 2012
  end-page: 3
  article-title: Allelopathic potential of extracts from the marine macroalga and their effects on pasture weed Brazilian
  publication-title: Braz. J. Pharmacog.
– start-page: 73
  year: 1996
  end-page: 5
– volume: 82
  start-page: 523
  year: 1986
  end-page: 7
  article-title: 3‐hydroxy‐3‐methylglutaryl coenzyme A reductase activity in
  publication-title: Plant Physiol.
– volume: 162
  start-page: 345
  year: 2008
  end-page: 55
  article-title: Intra‐cellular storage, transport and exocytosis of halogenated compounds in marine red alga
  publication-title: J. Struct. Biol.
– volume: 313
  start-page: 47
  year: 2004
  end-page: 62
  article-title: Seasonal variation in antifouling activity of crude extracts of the brown alga (Cystoseiraceae) against cyprids of and the marine bacteria and
  publication-title: J. Exp. Mar. Biol.
– volume: 44
  start-page: 584
  year: 2008
  end-page: 91
  article-title: Transport and defensive role of elatol at the surface of the red seaweed (Ceramiales, Rhodophyta)
  publication-title: J. Phycol.
– volume: 22
  start-page: 717
  year: 2010
  end-page: 24
  article-title: Antifouling activity as a function of population variation in from the littoral of Rio de Janeiro
  publication-title: J. Appl. Phycol.
– volume: 28
  start-page: 400
  year: 2011
  end-page: 10
  article-title: Antifouling marine natural products
  publication-title: Nat. Prod. Rep.
– volume: 8
  start-page: 229
  year: 1962
  end-page: 39
  article-title: Studies of marine planktonic diatoms. I. Hustedt, and (Cleve) Gran
  publication-title: Can. J. Microbiol.
– start-page: 457
  year: 2000
  end-page: 527
– volume: 74
  start-page: 6385
  year: 2008
  end-page: 96
  article-title: Functional expression and sub‐cellular localization of the aflatoxin pathway enzyme Ver‐1 fused to enhanced green fluorescent protein
  publication-title: Appl. Environ. Microbiol.
– volume: 62
  start-page: 383
  year: 1999a
  end-page: 5
  article-title: Halogenated monoterpenes from and their biological activity
  publication-title: J. Nat. Prod.
– volume: 21
  start-page: 395
  year: 2009
  end-page: 403
  article-title: Investigation of the antifouling constituents from the brown alga (Yendo) Fensholt
  publication-title: J. Appl. Phycol.
– volume: 268
  start-page: 665
  year: 1993
  end-page: 71
  article-title: Subcellular compartmentation of penicillin biosynthesis in —the amino acids are derived from the vacuole
  publication-title: J. Biol. Chem.
– volume: 369
  start-page: 39
  year: 2008
  end-page: 50
  article-title: Seaweed defence against bacteria: a polybrominated 2‐heptanone from the red alga inhibits bacterial colonisation at natural surface concentrations
  publication-title: Mar. Ecol. Prog. Ser.
– volume: 11
  start-page: 36
  year: 2004
  end-page: 42
  article-title: Image processing with imageJ
– start-page: 25
  year: 2008
  end-page: 56
– volume: 21
  start-page: 341
  year: 2009
  end-page: 6
  article-title: Antifoulant diterpenes produced by the brown seaweed
  publication-title: J. Appl. Phycol.
– volume: 3
  start-page: 337
  year: 2004
  end-page: 66
  article-title: Volatile halogenated metabolites from marine red algae Rhodophyceae
  publication-title: Phytochem. Rev.
– volume: 176
  start-page: 285
  year: 2001
  end-page: 93
  article-title: Structure and localization of cyclosporin synthetase, the key enzyme of cyclosporin biosynthesis in
  publication-title: Arch. Microbiol.
– volume: 34
  start-page: 627
  year: 1967
  end-page: 39
  article-title: A chromatographic and spectrophotometric study of products of the reaction of osmium tetroxide with unsaturated lipids
  publication-title: J. Cell Biol.
– start-page: 1251
  year: 2000
  end-page: 318
– volume: 44
  start-page: 231
  year: 1993
  end-page: 46
  article-title: The plant vacuole: a multifunctional compartment
  publication-title: J. Exp. Bot.
– volume: 72
  start-page: 769
  year: 2011
  end-page: 72
  article-title: Identification and in vitro anti‐esophageal cancer activity of a series of halogenated monoterpenes isolated from the South African seaweeds and
– volume: 9
  start-page: 1332
  year: 1987
  end-page: 8
  article-title: Initiation of terpenoid synthesis in osmophores of (Orchidaceae): a cytochemical study
  publication-title: Am. J. Bot.
– volume: 31
  start-page: 1963
  year: 1975
  end-page: 7
  article-title: Polyhalogenated monoterpenes from the red alga
  publication-title: Tetrahedron
– volume: 48
  start-page: 35
  year: 2011
  end-page: 48
  article-title: Compartmentalization and molecular traffic in secondary metabolism: a new understanding of established cellular processes
  publication-title: Fungal Genet. Biol.
– volume: 16
  start-page: 182
  year: 1980
  end-page: 92
  article-title: Subcellular localization of brominated secondary metabolites in the red alga
  publication-title: J. Phycol.
– volume: 26
  start-page: 277
  year: 2010
  end-page: 86
  article-title: Induction of halogenated vesicle transport in cells of the red seaweed
  publication-title: Biofouling
– volume: 8
  start-page: e63929
  year: 2013
  article-title: Traffic of secondary metabolites to cell surface in the red alga depends on a two‐step transport by the cytoskeleton
  publication-title: PLoS ONE
– volume: 18
  start-page: 13
  year: 2002
  end-page: 20
  article-title: The effects of seaweed secondary metabolites on biofouling
  publication-title: Biofouling
– volume: 45c
  start-page: 949
  end-page: 957
  publication-title: Zeits. Für Natur
– volume: 77
  start-page: 665
  year: 2014
  end-page: 73
  article-title: Optimized silyl ester diblock methacrylic copolymers: a new class of binders for chemically active antifouling coatings
  publication-title: Progr. Org. Coat.
– volume: 5
  start-page: 585
  year: 2002
  end-page: 8
  article-title: Plocamenols A‐C, novel linear polyhalohydroxylated monoterpenes from
  publication-title: J. Nat. Prod.
– volume: 71
  start-page: 18
  year: 1984
  end-page: 24
  article-title: Das toxische Kompartiment der Pflanzenzelle
– volume: 70
  start-page: 597
  year: 2009
  end-page: 600
  article-title: Antiplasmodial halogenated monoterpenes from the marine red alga
  publication-title: Phytochemistry
– volume: 584
  start-page: 2965
  year: 2010
  end-page: 73
  article-title: Plant volatile terpenoid metabolism: biosynthetic genes, transcriptional regulation and subcellular compartmentation
  publication-title: FEBS Lett.
– volume: 64
  start-page: 2039
  year: 2012
  end-page: 46
  article-title: Comparative efficiency of macroalgal extracts and booster biocides as antifouling agents to control growth of three diatom species
  publication-title: Mar. Pollut. Bull.
– volume: 15
  start-page: 49
  year: 1979
  end-page: 57
  article-title: Fine structure and histochemistry of vesicle cells of the red alga (Ceramiaceae)
  publication-title: J. Phycol.
– volume: 306
  start-page: 87
  year: 2006
  end-page: 101
  article-title: Chemical defence against bacteria in the red alga : linking structure with function
  publication-title: Mar. Ecol. Prog. Ser.
– volume: 41
  start-page: 359
  year: 2003
  end-page: 71
  article-title: Ultrastructural and cytochemical study of (Plocamiales, Rhodophyta) from Ross sea (Antarctica)
  publication-title: New Zeal. J. Bot.
– volume: 106
  start-page: 19533
  year: 2009
  end-page: 8
  article-title: A key role for vesicles in fungal secondary metabolism
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 185–186
  start-page: 9
  year: 2012
  end-page: 22
  article-title: Isoprenoid biosynthesis in eukaryotic phototrophs: a spotlight on algae
  publication-title: Plant Sci.
– start-page: 16
  year: 1998
  end-page: 46
– volume: 86
  start-page: 841
  year: 1999
  end-page: 85
  article-title: Further studies of the glandular tissue of the (Araceae) appendix
  publication-title: Am. J. Bot.
– volume: 428
  start-page: 653
  year: 2004
  end-page: 7
  article-title: Genome sequence of the ultrasmall unicellular red alga 10 D
  publication-title: Nature
– volume: 52
  start-page: 1047
  year: 1999b
  end-page: 53
  article-title: and its monoterpenes: chemical and biological and investigations of the tropical marine red alga
  publication-title: Phytochemistry
– volume: 8
  start-page: 292
  year: 2005
  end-page: 300
  article-title: A role for intra‐ and intercellular translocation in natural product biosynthesis
  publication-title: Curr. Opin. Plant Biol.
– volume: 221
  start-page: 844
  year: 2005
  end-page: 56
  article-title: HMG‐CoA synthase: localization of mRNA and protein
  publication-title: Planta
– volume: 414
  start-page: 129
  year: 1997
  end-page: 34
  article-title: Incorporation of 1‐deoxy‐ ‐xylulose into isoprene and phytol by higher plants and algae
  publication-title: FEBS Lett.
– volume: 9
  start-page: 1
  year: 2014
  end-page: 7
  article-title: Within‐thallus variation on polyphenol contents and physodes amount in
  publication-title: Pan Am. J. Aquat. Sci.
– volume: 137
  start-page: 57
  year: 2005
  end-page: 69
  article-title: Subcellular localization of 3‐hydroxy‐3‐methylglutarylcoenzyme A reductase
  publication-title: Plant Physiol.
– volume: 74
  start-page: 545
  year: 2014
  end-page: 52
  article-title: Chemical defense in the red seaweed : spatial variability and differential action on herbivores
  publication-title: Braz. J. Biol.
– volume: 51
  start-page: 191
  year: 2008
  end-page: 201
  article-title: Antifouling activity of natural products from brazilian macroalgae
  publication-title: Bot. Mar.
– volume: 59
  start-page: 735
  year: 2008
  end-page: 69
  article-title: Alkaloid biosynthesis: metabolism and trafficking
  publication-title: Ann. Rev. Plant Biol.
– volume: 26
  start-page: 2047
  year: 2014
  end-page: 2054
  article-title: Inhibitory effect of the red seaweed against the toxic effects of snake venom
  publication-title: J. Appl. Phycol.
– volume: 219
  start-page: 906
  year: 2004
  end-page: 9
  article-title: The challenges of moving chemicals within and out of cells: insight into the transport of plant natural products
  publication-title: Planta
– volume: 91
  start-page: 927
  year: 1994
  end-page: 31
  article-title: contains two differentially expressed 3‐hydroxy‐3methylglutaryl‐CoA reductase genes, which encode microsomal forms of the enzyme
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 51
  start-page: 95
  year: 2012
  end-page: 148
  article-title: A raison d'être for two distinct pathways in the early steps of plant isoprenoid biosynthesis?
  publication-title: Prog. Lip. Res.
– volume: 52
  start-page: 231
  year: 2001
  end-page: 47
  article-title: Inhibition of marine bacteria by extracts of macroalgae: potential use for environmentally friendly antifouling paints
  publication-title: Mar. Environ. Res.
– volume: 57C
  start-page: 161
  year: 2002
  end-page: 71
  article-title: Chemical defense and antifouling activity of three Mediterranean sponges of the genus
  publication-title: Z. Naturforsch.
– volume: 58
  start-page: 35
  year: 2007
  end-page: 47
  article-title: Compartmentation in plant metabolism
  publication-title: J. Exp. Bot.
– volume: 22
  start-page: 415
  year: 2000
  end-page: 26
  article-title: Expression of 3‐hydroxy‐3‐methylglutaryl CoA synthase is developmentally regulated and stress‐responsive
  publication-title: Plant J.
– volume: 19
  start-page: 161
  year: 2003
  end-page: 9
  article-title: Is the mussel test a good indicator of antifouling activity? A comparison between laboratory and field assays
  publication-title: Biofouling
– volume: 112
  start-page: 184
  year: 2008
  end-page: 99
  article-title: The genetic basis for indole‐diterpene chemical diversity in filamentous fungi
  publication-title: Mycol. Res.
– volume: 26
  start-page: 2021
  year: 2014
  end-page: 2027
  article-title: Anti‐herpes virus bovine type 5 activities of extracts obtained from
  publication-title: J. Appl. Phycol.
– volume: 20
  start-page: 392
  year: 2010
  end-page: 7
  article-title: Plant volatiles
  publication-title: Curr. Biol.
– volume: 62
  start-page: 33
  year: 2002
  end-page: 40
  article-title: Feeding preferences of the endemic gastropod in relation to chemical defenses of Brazilian tropical macroalgae
  publication-title: Braz. J. Biol.
– ident: e_1_2_7_6_1
  doi: 10.1016/j.phytochem.2011.02.003
– ident: e_1_2_7_39_1
  doi: 10.1083/jcb.34.2.627
– ident: e_1_2_7_43_1
  doi: 10.1016/j.plantsci.2011.07.018
– ident: e_1_2_7_50_1
  doi: 10.1080/0028825X.2003.9512854
– ident: e_1_2_7_58_1
  doi: 10.1590/S1519-69842002000100005
– ident: e_1_2_7_53_1
  doi: 10.1007/s00425-005-1497-5
– ident: e_1_2_7_7_1
  doi: 10.1016/j.cub.2010.02.052
– volume: 5
  start-page: 1167
  year: 2010
  ident: e_1_2_7_24_1
  article-title: Anti‐herpetic activities of chemical components from the Brazilian red alga Plocamium brasiliense
  publication-title: Nat. Prod. Commun.
  contributor:
    fullname: Ferreira W. J.
– ident: e_1_2_7_33_1
  doi: 10.1128/AEM.01185-08
– ident: e_1_2_7_34_1
  doi: 10.1016/j.mycres.2009.01.013
– volume: 268
  start-page: 665
  year: 1993
  ident: e_1_2_7_42_1
  article-title: Subcellular compartmentation of penicillin biosynthesis in Penicillium chrysogenum—the amino acids are derived from the vacuole
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)54203-4
  contributor:
    fullname: Lendenfeld T.
– start-page: 572
  volume-title: Advances in Marine Antifouling Coatings and Technologies
  year: 2009
  ident: e_1_2_7_31_1
  doi: 10.1533/9781845696313.3.572
  contributor:
    fullname: Hellio C.
– ident: e_1_2_7_70_1
  doi: 10.2307/2656705
– ident: e_1_2_7_47_1
  doi: 10.1007/BF00365975
– volume: 45
  start-page: 949
  ident: e_1_2_7_29_1
  publication-title: Zeits. Für Natur
  doi: 10.1515/znc-1990-9-1005
  contributor:
    fullname: Hauser M. T.
– ident: e_1_2_7_8_1
  doi: 10.1016/S0031-9422(00)82537-6
– ident: e_1_2_7_75_1
  doi: 10.1111/j.1529-8817.1980.tb03016.x
– ident: e_1_2_7_60_1
  doi: 10.1007/s10811‐014‐0319‐1
– ident: e_1_2_7_57_1
  doi: 10.1007/978-3-540-74181-7_2
– ident: e_1_2_7_51_1
  doi: 10.1016/0040-4020(75)87060-8
– start-page: 413
  volume-title: Advances in Botanical Research
  year: 2014
  ident: e_1_2_7_20_1
  contributor:
    fullname: Da Gama B. A. P.
– ident: e_1_2_7_64_1
  doi: 10.1016/j.fgb.2010.05.006
– start-page: 457
  volume-title: Biochemistry & Molecular Biology of Plants
  year: 2000
  ident: e_1_2_7_71_1
  contributor:
    fullname: Somerville C.
– start-page: 1251
  volume-title: Biochemistry & Molecular Biology of Plants
  year: 2000
  ident: e_1_2_7_15_1
  contributor:
    fullname: Croteau R.
– ident: e_1_2_7_27_1
  doi: 10.1007/s00425-004-1336-0
– ident: e_1_2_7_59_1
  doi: 10.1590/bjb.2014.0080
– ident: e_1_2_7_14_1
  doi: 10.1007/s10811‐014‐0266‐x
– volume: 22
  start-page: 850
  year: 2012
  ident: e_1_2_7_25_1
  article-title: Allelopathic potential of extracts from the marine macroalga Plocamium brasiliense and their effects on pasture weed Brazilian
  publication-title: Braz. J. Pharmacog.
  doi: 10.1590/S0102-695X2012005000065
  contributor:
    fullname: Fonseca R. R.
– ident: e_1_2_7_66_1
  doi: 10.1016/j.jsb.2008.01.015
– ident: e_1_2_7_26_1
  doi: 10.1039/C0NP00034E
– ident: e_1_2_7_68_1
  doi: 10.1016/S0014-5793(97)01002-8
– ident: e_1_2_7_65_1
  doi: 10.1016/j.mycres.2007.06.015
– ident: e_1_2_7_56_1
  doi: 10.3354/meps306087
– ident: e_1_2_7_62_1
  doi: 10.1515/BOT.2008.026
– ident: e_1_2_7_2_1
  doi: 10.1016/j.phytochem.2009.02.010
– volume: 9
  start-page: 1
  year: 2014
  ident: e_1_2_7_5_1
  article-title: Within‐thallus variation on polyphenol contents and physodes amount in Stypopodium zonale
  publication-title: Pan Am. J. Aquat. Sci.
  contributor:
    fullname: Ank G.
– ident: e_1_2_7_21_1
  doi: 10.1021/np010473z
– ident: e_1_2_7_38_1
  doi: 10.1016/S0031-9422(99)00284-8
– ident: e_1_2_7_44_1
  doi: 10.1093/jxb/erl134
– ident: e_1_2_7_9_1
  doi: 10.1007/s10811-008-9382-9
– ident: e_1_2_7_16_1
  doi: 10.2307/2444311
– ident: e_1_2_7_3_1
  doi: 10.1046/j.1365-313X.2000.00751.x
– ident: e_1_2_7_61_1
  doi: 10.1007/s10811-010-9511-0
– ident: e_1_2_7_45_1
  doi: 10.1016/j.jembe.2004.07.016
– ident: e_1_2_7_67_1
  doi: 10.2216/i0031-8884-41-2-125.1
– ident: e_1_2_7_77_1
  doi: 10.1146/annurev.arplant.59.032607.092730
– ident: e_1_2_7_69_1
  doi: 10.1016/j.marpolbul.2012.06.028
– ident: e_1_2_7_54_1
  doi: 10.3354/meps07577
– ident: e_1_2_7_17_1
  doi: 10.1515/BOT.2008.027
– ident: e_1_2_7_22_1
  doi: 10.1007/s002270050514
– ident: e_1_2_7_35_1
  doi: 10.1007/s002030100324
– ident: e_1_2_7_76_1
  doi: 10.1111/j.1529-8817.1979.tb02961.x
– ident: e_1_2_7_12_1
  doi: 10.1016/j.porgcoat.2013.12.004
– ident: e_1_2_7_72_1
  doi: 10.1111/j.1529-8817.2008.00507.x
– ident: e_1_2_7_18_1
  doi: 10.1080/08927010290017680
– ident: e_1_2_7_1_1
– start-page: 25
  volume-title: Algal Chemical Ecology
  year: 2008
  ident: e_1_2_7_46_1
  contributor:
    fullname: Maschek J. A.
– ident: e_1_2_7_19_1
  doi: 10.1080/0892701031000089534
– ident: e_1_2_7_30_1
  doi: 10.1016/S0141-1136(01)00092-7
– ident: e_1_2_7_63_1
  doi: 10.1371/journal.pone.0063929
– volume: 57
  start-page: 161
  year: 2002
  ident: e_1_2_7_73_1
  article-title: Chemical defense and antifouling activity of three Mediterranean sponges of the genus Ircinia
  publication-title: Z. Naturforsch.
  doi: 10.1515/znc-2002-1-227
  contributor:
    fullname: Tsoukatou M.
– ident: e_1_2_7_10_1
  doi: 10.1007/s10811-008-9374-9
– ident: e_1_2_7_48_1
  doi: 10.1038/nature02398
– ident: e_1_2_7_55_1
  doi: 10.1080/08927010903515122
– ident: e_1_2_7_49_1
  doi: 10.1104/pp.82.2.523
– ident: e_1_2_7_23_1
  doi: 10.1073/pnas.91.3.927
– ident: e_1_2_7_40_1
  doi: 10.1016/j.pbi.2005.03.009
– start-page: 16
  volume-title: Electron Microscopy Principles and Techniques for Biologists
  year: 1998
  ident: e_1_2_7_11_1
  contributor:
    fullname: Bozzola J. J.
– ident: e_1_2_7_28_1
  doi: 10.1139/m62-029
– volume: 44
  start-page: 231
  year: 1993
  ident: e_1_2_7_74_1
  article-title: The plant vacuole: a multifunctional compartment
  publication-title: J. Exp. Bot.
  contributor:
    fullname: Wink M.
– ident: e_1_2_7_36_1
  doi: 10.1007/s11101-004-4155-9
– ident: e_1_2_7_41_1
  doi: 10.1104/pp.104.050245
– ident: e_1_2_7_52_1
  doi: 10.1016/j.febslet.2010.05.045
– ident: e_1_2_7_13_1
  doi: 10.1073/pnas.0907416106
– ident: e_1_2_7_37_1
  doi: 10.1021/np980408y
– start-page: 73
  volume-title: Antibiotics in Laboratory Medicine
  year: 1996
  ident: e_1_2_7_4_1
  contributor:
    fullname: Amsterdam D.
– ident: e_1_2_7_32_1
  doi: 10.1016/j.plipres.2011.12.001
SSID ssj0007651
Score 2.215786
Snippet This paper has identified, for the first time in a member of the Rhodophyta, a vacuolar organelle containing enzymes that are involved in the mevalonate...
SourceID hal
proquest
crossref
pubmed
wiley
istex
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 225
SubjectTerms 3-hydroxy-3-methylglutaryl-CoA synthase
antifouling activity
bacteria
Biodiversity and Ecology
biofouling
biosynthesis
chemical defense
cortical cell cytochemistry
Cylindrotheca
Environmental Sciences
halogenated monoterpenes
Halomonas marina
hydroxymethylglutaryl-CoA synthase
macroalgae
metabolites
mevalonate pathway
mevalonosome
microalgae
monoterpenoids
mussels
osmiophilic bodies
Perna perna
Plocamium
Plocamium brasiliense
Polaribacter irgensii
Pseudoalteromonas elyakovii
Shewanella putrefaciens
thallus
transmission electron microscopy
vacuoles
Vibrio aestuarianus
Title Mevalonosomes: specific vacuoles containing the mevalonate pathway in Plocamium brasiliense cortical cells (Rhodophyta)
URI https://api.istex.fr/ark:/67375/WNG-WZK5F0KZ-4/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjpy.12270
https://www.ncbi.nlm.nih.gov/pubmed/26986518
https://search.proquest.com/docview/1774529132
https://hal.science/hal-02559407
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZo4cCFNzS8ZBBC5RAUJ3bswKlAlxWFakWpCr1YtmPTFdpktWla9t8zk-xGVAIJiUtkReMo9szY39jjz4Q8K4qA85iPOStDzNOQxoZxF4tCGJHyYLMCDyePD-T-V_VuF2lyXq_PwvT8EMOCG3pGN16jgxvb_O7k8-VLlqYS43WIErrjG9lkGIVlLtjAFJ7zfMUq1GXxrGtemIs2gqnheYL5kJexi3_-CXRexLDdJDS6_l-_f4NcW2FPutMby01yyVe3yJU3NeDD5W1y_gmZv-uqbuqZb15RPIOJeUT0zLgWaZ8oprX3F0pQgI101ssDWKV4r_G5WdJpRSc4O86m7YzC3zVTgLhV46Hqols0p7hR0NDtzycQDoOGT82LO-RwtPvl7TheXcsQOw7gIpY-sNJxZ5h0yMbmPc9NyTNvFVfBJo5Zbi1ngReBqSQkQpUQ5YQkL710VmR3yWZVV36LUJ_loUhtkBKgQqmC4kIZI3LvgpPS5hF5ulaQnvfsG3qIWuZQxg6MyBaoTpvvMCrqw4MU13Bwf5UrBvVBn0NVpNIe73zU-K6LpSCaPQOh5526BzGz-IHpblLoo_33-uh4T4ySvWPNI_JkbQ8anBA7zFS-bhvNAESLtIDIPiL3ekMZvpbmhQJbVBHZ7uzh7w3RHybfusL9fxd9QK5ig_tcoodk83TR-kdkoynbx50__AIYMgpN
link.rule.ids 230,315,782,786,887,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYhsRe-GYLnwYhtD0ExYkdO4iXASuFdlXFNg32YjmJzSrUpGqWjf733CVtxCSQkHiJrMiOYt-d_bvz-WdCXiaJw3XM-pzlzuehC33DeOaLRBgRcpdGCR5O7h_K0Vf1YR9pct6uzsK0_BBdwA0to5mv0cAxIP27lc8Wr1kYSnDYN3gMiogHOKJxNw_LWLCOKzzm8ZJXqMnjWTW9shqtOVPC8wwzIjdwkH_-CXZeRbHNMtS79X8duE1uLuEn3Wv15Q65Zou75Pq7EiDi4h65PEDy77Ioq3JqqzcUj2FiKhG9MFmNzE8UM9vbOyUoIEc6besDXqV4tfGlWdBJQce4QE4n9ZTC71UTQLlFZaHpvImbU9wrqOjOlzPwiEHI52b3Pjnu7R-97_vLmxn8jAO-8KV1LM94ZpjMkJDNWh6bnEc2VVy5NMhYytOUM8cTx1TgAqFycHRcEOdWZqmIHpD1oizsNqE2il0Spk5KQAu5cooLZYyIbeYyKdPYIy9WEtKzloBDd47LDMo4gB7ZBtlp8x0mRn18GGIYB7dYuWLQHgTaNUU27f7eUOO7xp0Ch_YCKr1q5N1VM_MfmPEmhT4ZfdQnpwPRCwanmnvk-UohNNghDpgpbFlXmgGOFmECzr1HtlpN6b4WxokCZVQe2WkU4u8d0Z_H35rCw3-v-ozc6B8dDPXw02jwiGxi59vUosdk_Xxe2ydkrcrrp41x_ALhjQ51
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYhtBe-GYrnwYhNB6C4sSOHXgabKXQUVWMabAXy3FsVqEmVbNs9L_nLmkjJoGExEtkReco9t3Zv7PPPxPyPE09zmMu4Cz3AY98FBjGbSBSYUTEfRaneDh5cChHX9XePtLkvFmdhWn5IboFN_SMZrxGB5_l_ncnny1esSiSEK9vcIDhSJwfx-NuGJaJYB1VeMKTJa1Qk8azqnppMlrzpoTnKSZEbmAf__wT6rwMYptZqH_jv_7_Jrm-BJ90t7WWW-SKK26Tq29LAIiLO-TiE1J_l0VZlVNXvaZ4CBMTiei5sTXyPlHMa29vlKCAG-m0lQe0SvFi4wuzoJOCjnF6nE7qKYW_qyaAcYvKQdV5s2pOcaegojufTyEeBhWfmZd3yVF__8u7QbC8lyGwHNBFIJ1nueXWMGmRjs05npicxy5TXPkstCzjWcaZ56lnKvShUDmEOT5McidtJuJ7ZL0oC7dNqIsTn0aZlxKwQq684kIZIxJnvZUyS3rk2UpBetbSb-gubJlBGTuwR7ZBddp8h2FRHx1GuIiDG6xcMagP-uyqIpf2YPdA47smmIJw9hyEXjTq7sTM_Afmu0mhj0fv9fHJUPTD4YnmPfJ0ZQ8avBA7zBSurCvNAEWLKIXQvke2WkPpvhYlqQJbVD2y09jD3xuiP46_NYX7_y76hFwb7_X1wYfR8AHZxLa3eUUPyfrZvHaPyFqV148b1_gFiyQNGw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mevalonosomes%3A+specific+vacuoles+containing+the+mevalonate+pathway+in+Plocamium+brasiliense+cortical+cells+%28Rhodophyta%29&rft.jtitle=Journal+of+phycology&rft.au=Paradas%2C+Wladimir+Costa&rft.au=Crespo%2C+Thalita+Mendes&rft.au=Salgado%2C+Leonardo+Tavares&rft.au=Andrade%2C+Leonardo+Rodrigues&rft.date=2015-04-01&rft.issn=0022-3646&rft.eissn=1529-8817&rft.volume=51&rft.issue=2&rft.spage=225&rft.epage=235&rft_id=info:doi/10.1111%2Fjpy.12270&rft.externalDBID=10.1111%252Fjpy.12270&rft.externalDocID=JPY12270
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3646&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3646&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3646&client=summon