Evidence of Müller Glia Conversion Into Retina Ganglion Cells Using Neurogenin2

Degenerative retinopathies are the leading causes of irreversible visual impairment in the elderly, affecting hundreds of millions of patients. Müller glia cells (MGC), the main type of glia found in the vertebrate retina, can resume proliferation in the rodent adult injured retina but contribute we...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in cellular neuroscience Vol. 12; p. 410
Main Authors: Guimarães, Roberta Pereira de Melo, Landeira, Bruna Soares, Coelho, Diego Marques, Golbert, Daiane Cristina Ferreira, Silveira, Mariana S, Linden, Rafael, de Melo Reis, Ricardo A, Costa, Marcos R
Format: Journal Article
Language:English
Published: Switzerland Frontiers Research Foundation 12-11-2018
Frontiers Media S.A
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Degenerative retinopathies are the leading causes of irreversible visual impairment in the elderly, affecting hundreds of millions of patients. Müller glia cells (MGC), the main type of glia found in the vertebrate retina, can resume proliferation in the rodent adult injured retina but contribute weakly to tissue repair when compared to zebrafish retina. However, postnatal and adult mouse MGC can be genetically reprogrammed through the expression of the transcription factor (TF) Achaete-scute homolog 1 (ASCL1) into induced neurons (iNs), displaying key hallmarks of photoreceptors, bipolar and amacrine cells, which may contribute to regenerate the damaged retina. Here, we show that the TF neurogenin 2 (NEUROG2) is also sufficient to lineage-reprogram postnatal mouse MGC into iNs. The efficiency of MGC lineage conversion by NEUROG2 is similar to that observed after expression of ASCL1 and both TFs induce the generation of functionally active iNs. Treatment of MGC cultures with EGF and FGF2 prior to Neurog2 or Ascl1 expression enhances reprogramming efficiencies, what can be at least partially explained by an increase in the frequency of MGCs expressing sex determining region Y (SRY)-box 2 (SOX2). Transduction of either Neurog2 or Ascl1 led to the upregulation of key retina neuronal genes in MGC-derived iNs, but only NEUROG2 induced a consistent increase in the expression of putative retinal ganglion cell (RGC) genes. Moreover, electroporation of Neurog2 in late progenitors from the neonatal rat retina, which are transcriptionally similar to MGCs, also induced a shift in the generation of retinal cell subtypes, favoring neuronal differentiation at the expense of MGCs and resuming the generation of RGCs. Altogether, our data indicate that NEUROG2 induces lineage conversion of postnatal rodent MGCs into RGC-like iNs and resumes the generation of this neuronal type from late progenitors of the retina .
AbstractList Degenerative retinopathies are the leading causes of irreversible visual impairment in the elderly, affecting hundreds of millions of patients. Müller glia cells (MGC), the main type of glia found in the vertebrate retina, can resume proliferation in the rodent adult injured retina but contribute weakly to tissue repair when compared to zebrafish retina. However, postnatal and adult mouse MGC can be genetically reprogrammed through the expression of the transcription factor (TF) Achaete-scute homolog 1 (ASCL1) into induced neurons (iNs), displaying key hallmarks of photoreceptors, bipolar and amacrine cells, which may contribute to regenerate the damaged retina. Here, we show that the TF neurogenin 2 (NEUROG2) is also sufficient to lineage-reprogram postnatal mouse MGC into iNs. The efficiency of MGC lineage conversion by NEUROG2 is similar to that observed after expression of ASCL1 and both TFs induce the generation of functionally active iNs. Treatment of MGC cultures with EGF and FGF2 prior to Neurog2 or Ascl1 expression enhances reprogramming efficiencies, what can be at least partially explained by an increase in the frequency of MGCs expressing sex determining region Y (SRY)-box 2 (SOX2). Transduction of either Neurog2 or Ascl1 led to the upregulation of key retina neuronal genes in MGC-derived iNs, but only NEUROG2 induced a consistent increase in the expression of putative retinal ganglion cell (RGC) genes. Moreover, electroporation of Neurog2 in late progenitors from the neonatal rat retina, which are transcriptionally similar to MGCs, also induced a shift in the generation of retinal cell subtypes, favoring neuronal differentiation at the expense of MGCs and resuming the generation of RGCs. Altogether, our data indicate that NEUROG2 induces lineage conversion of postnatal rodent MGCs into RGC-like iNs and resumes the generation of this neuronal type from late progenitors of the retina .
Degenerative retinopathies are the leading causes of irreversible visual impairment in the elderly, affecting hundreds of millions of patients. Müller glia cells (MGC), the main type of glia found in the vertebrate retina, can resume proliferation in the rodent adult injured retina but contribute weakly to tissue repair when compared to zebrafish retina. However, postnatal and adult mouse MGC can be genetically reprogrammed through the expression of the transcription factor (TF) Achaete-scute homolog 1 (ASCL1) into induced neurons (iNs), displaying key hallmarks of photoreceptors, bipolar and amacrine cells, which may contribute to regenerate the damaged retina. Here, we show that the TF neurogenin 2 (NEUROG2) is also sufficient to lineage-reprogram postnatal mouse MGC into iNs. The efficiency of MGC lineage conversion by NEUROG2 is similar to that observed after expression of ASCL1 and both TFs induce the generation of functionally active iNs. Treatment of MGC cultures with EGF and FGF2 prior to Neurog2 or Ascl1 expression enhances reprogramming efficiencies, what can be at least partially explained by an increase in the frequency of MGCs expressing sex determining region Y (SRY)-box 2 (SOX2). Transduction of either Neurog2 or Ascl1 led to the upregulation of key retina neuronal genes in MGC-derived iNs, but only NEUROG2 induced a consistent increase in the expression of putative retinal ganglion cell (RGC) genes. Moreover, in vivo electroporation of Neurog2 in late progenitors from the neonatal rat retina, which are transcriptionally similar to MGCs, also induced a shift in the generation of retinal cell subtypes, favoring neuronal differentiation at the expense of MGCs and resuming the generation of RGCs. Altogether, our data indicate that NEUROG2 induces lineage conversion of postnatal rodent MGCs into RGC-like iNs in vitro and resumes the generation of this neuronal type from late progenitors of the retina in vivo .
Degenerative retinopathies are the leading causes of irreversible visual impairment in the elderly, affecting hundreds of millions of patients. Müller glia cells (MGC), the main type of glia found in the vertebrate retina, can resume proliferation in the rodent adult injured retina but contribute weakly to tissue repair when compared to zebrafish retina. However, postnatal and adult mouse MGC can be genetically reprogrammed through the expression of the transcription factor (TF) Achaete-scute homolog 1 (ASCL1) into induced neurons (iNs), displaying key hallmarks of photoreceptors, bipolar and amacrine cells, which may contribute to regenerate the damaged retina. Here, we show that the TF neurogenin 2 (NEUROG2) is also sufficient to lineage-reprogram postnatal mouse MGC into iNs. The efficiency of MGC lineage conversion by NEUROG2 is similar to that observed after expression of ASCL1 and both TFs induce the generation of functionally active iNs. Treatment of MGC cultures with EGF and FGF2 prior to Neurog2 or Ascl1 expression enhances reprogramming efficiencies, what can be at least partially explained by an increase in the frequency of MGCs expressing sex determining region Y (SRY)-box 2 (SOX2). Transduction of either Neurog2 or Ascl1 led to the upregulation of key retina neuronal genes in MGC-derived iNs, but only NEUROG2 induced a consistent increase in the expression of putative retinal ganglion cell (RGC) genes. Moreover, in vivo electroporation of Neurog2 in late progenitors from the neonatal rat retina, which are transcriptionally similar to MGCs, also induced a shift in the generation of retinal cell subtypes, favoring neuronal differentiation at the expense of MGCs and resuming the generation of RGCs. Altogether, our data indicate that NEUROG2 induces lineage conversion of postnatal rodent MGCs into RGC-like iNs in vitro and resumes the generation of this neuronal type from late progenitors of the retina in vivo.
Author Landeira, Bruna Soares
Linden, Rafael
Guimarães, Roberta Pereira de Melo
de Melo Reis, Ricardo A
Coelho, Diego Marques
Golbert, Daiane Cristina Ferreira
Silveira, Mariana S
Costa, Marcos R
AuthorAffiliation 2 Lab Neurogenesis, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
1 Brain Institute, Federal University of Rio Grande do Norte , Natal , Brazil
3 Lab Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
4 Bioinformatics Multidisciplinary Environment, IMD, Federal University of Rio Grande do Norte , Rio de Janeiro , Brazil
AuthorAffiliation_xml – name: 4 Bioinformatics Multidisciplinary Environment, IMD, Federal University of Rio Grande do Norte , Rio de Janeiro , Brazil
– name: 2 Lab Neurogenesis, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
– name: 3 Lab Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
– name: 1 Brain Institute, Federal University of Rio Grande do Norte , Natal , Brazil
Author_xml – sequence: 1
  givenname: Roberta Pereira de Melo
  surname: Guimarães
  fullname: Guimarães, Roberta Pereira de Melo
  organization: Lab Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
– sequence: 2
  givenname: Bruna Soares
  surname: Landeira
  fullname: Landeira, Bruna Soares
  organization: Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
– sequence: 3
  givenname: Diego Marques
  surname: Coelho
  fullname: Coelho, Diego Marques
  organization: Bioinformatics Multidisciplinary Environment, IMD, Federal University of Rio Grande do Norte, Rio de Janeiro, Brazil
– sequence: 4
  givenname: Daiane Cristina Ferreira
  surname: Golbert
  fullname: Golbert, Daiane Cristina Ferreira
  organization: Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
– sequence: 5
  givenname: Mariana S
  surname: Silveira
  fullname: Silveira, Mariana S
  organization: Lab Neurogenesis, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
– sequence: 6
  givenname: Rafael
  surname: Linden
  fullname: Linden, Rafael
  organization: Lab Neurogenesis, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
– sequence: 7
  givenname: Ricardo A
  surname: de Melo Reis
  fullname: de Melo Reis, Ricardo A
  organization: Lab Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
– sequence: 8
  givenname: Marcos R
  surname: Costa
  fullname: Costa, Marcos R
  organization: Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30483060$$D View this record in MEDLINE/PubMed
BookMark eNpdkU1vEzEQhleoiH7AnRNaiQuXhLHX9toXJBSVEKl8CNGz5fWOgyPHLvZuJP4bt_6xbpJStZxsjd95NOPnvDqJKWJVvSYwbxqp3rtoMcwpEDkHYASeVWdECDrjBOjJo_tpdV7KBkBQweSL6rQBJhsQcFZ9v9z5HidMnVz95fZvCJjrZfCmXqS4w1x8ivUqDqn-gYOPpl6auA774gJDKPV18XFdf8UxpzVGH-nL6rkzoeCr-_Oiuv50-XPxeXb1bblafLyaWaZgmDnbIpNKdLZtOGfWdI5KB852XDHeKaYMMEUZJZwLcAgt8KaXjkmghImuuahWR26fzEbfZL81-Y9OxutDIeW1NnnwNqDuWcsNM51FcAxQmQ571_O250S1INjE-nBk3YzdFnuLccgmPIE-fYn-l16nnRaUgTgA3t0Dcvo9Yhn01pdJTTAR01g0JY0UTHAFU_Ttf9FNGnOcvkpTKqeF2QSdUnBM2ZxKyegehiGg9-r1Qb3eq9cH9VPLm8dLPDT8c93cATGErDk
CitedBy_id crossref_primary_10_1007_s12264_020_00510_w
crossref_primary_10_4103_1673_5374_300329
crossref_primary_10_7554_eLife_73202
crossref_primary_10_1016_j_stemcr_2021_01_006
crossref_primary_10_3390_ijms21124273
crossref_primary_10_1134_S1062360420040062
crossref_primary_10_4103_1673_5374_386400
crossref_primary_10_1016_j_gde_2020_05_025
crossref_primary_10_1089_cell_2023_0123
crossref_primary_10_1016_j_preteyeres_2022_101065
crossref_primary_10_4103_1673_5374_301034
crossref_primary_10_1126_science_aba7721
crossref_primary_10_1002_ame2_12177
crossref_primary_10_1194_jlr_TR120000618
crossref_primary_10_3389_fcell_2020_581136
crossref_primary_10_1002_stem_3370
crossref_primary_10_1007_s12264_021_00751_3
crossref_primary_10_3389_fnins_2020_569361
crossref_primary_10_1016_j_jneumeth_2021_109096
crossref_primary_10_1177_0192623320976375
crossref_primary_10_3389_fbioe_2021_658498
crossref_primary_10_1038_s41598_023_50222_0
crossref_primary_10_1002_wrna_1652
crossref_primary_10_3389_fncel_2021_602888
crossref_primary_10_4252_wjsc_v11_i7_431
crossref_primary_10_1515_jcim_2021_0114
crossref_primary_10_1186_s12974_024_03134_3
crossref_primary_10_3390_ijms22094616
Cites_doi 10.1126/science.1175509
10.1002/stem.579
10.1186/s40662-017-0071-0
10.1523/JNEUROSCI.1615-07.2007
10.1016/j.brainres.2008.02.035
10.1002/cne.20134
10.1038/nn1192
10.1146/annurev-neuro-071714-034120
10.1038/nmeth.4230
10.1073/pnas.1510595112
10.1007/978-1-4939-7522-8_8
10.1016/j.neuron.2012.06.033
10.1016/j.brainres.2008.03.095
10.1038/srep30552
10.1002/jnr.22629
10.1002/cne.23521
10.1167/iovs.15-18590
10.1002/dvdy.24375
10.1016/j.ydbio.2010.02.002
10.1634/stemcells.2006-0724
10.1016/j.preteyeres.2009.05.002
10.1126/science.1239882
10.1242/dev.064006
10.1016/0896-6273(90)90136-4
10.5966/sctm.2011-0005
10.1002/ar.1092120215
10.1016/j.ydbio.2006.07.029
10.1016/j.stemcr.2017.05.009
10.1155/2017/2817252
10.1016/j.febslet.2013.05.020
10.1038/nature23283
10.1073/pnas.2235688100
10.1038/s41586-018-0425-3
10.1006/meth.2001.1262
10.1038/ncb3108
10.1016/j.cell.2015.05.002
10.1002/jnr.10533
10.1002/stem.1885
10.1073/pnas.0807453105
10.18240/ijo.2016.07.03
10.1016/j.brainres.2018.02.045.
10.1016/B978-0-12-394387-3.00002-1
10.1016/j.gde.2016.05.028
10.1016/j.celrep.2017.01.075
10.1242/dev.091355
10.1167/iovs.10-5208
10.1016/j.mcn.2015.10.004
10.1371/journal.pbio.1000373
10.1073/pnas.0402129101
10.1016/bs.pbr.2016.12.010
10.1073/pnas.0610155104
10.1016/j.stem.2015.05.014
10.1016/S0959-4388(99)80005-1
10.1016/j.celrep.2015.02.025
10.2147/EB.S9078
10.1371/journal.pone.0022817
10.1002/glia.22958
10.1002/glia.22846
10.1167/iovs.07-1619
10.1523/JNEUROSCI.2837-05.2005
10.1007/978-1-61779-848-1_15
10.1016/0014-4835(90)90063-Z
10.1371/journal.pbio.0020247
10.1186/scrt305
ContentType Journal Article
Copyright 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2018 Guimarães, Landeira, Coelho, Golbert, Silveira, Linden, de Melo Reis and Costa. 2018 Guimarães, Landeira, Coelho, Golbert, Silveira, Linden, de Melo Reis and Costa
Copyright_xml – notice: 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2018 Guimarães, Landeira, Coelho, Golbert, Silveira, Linden, de Melo Reis and Costa. 2018 Guimarães, Landeira, Coelho, Golbert, Silveira, Linden, de Melo Reis and Costa
DBID NPM
AAYXX
CITATION
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fncel.2018.00410
DatabaseName PubMed
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
Publicly Available Content Database (Proquest) (PQ_SDU_P3)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1662-5102
EndPage 410
ExternalDocumentID oai_doaj_org_article_d475a4abce0f40e9abedfd57d5197064
10_3389_fncel_2018_00410
30483060
Genre Journal Article
GeographicLocations Brazil
Rio de Janeiro Brazil
GeographicLocations_xml – name: Rio de Janeiro Brazil
– name: Brazil
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
ABUWG
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
C1A
CCPQU
CS3
DIK
DWQXO
E3Z
EMOBN
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
IAO
IEA
IHR
IHW
IPNFZ
ISR
KQ8
LK8
M2P
M48
M7P
M~E
NPM
O5R
O5S
OK1
PGMZT
PIMPY
PQQKQ
PROAC
RIG
RNS
RPM
TR2
AAYXX
CITATION
3V.
7XB
8FK
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c490t-fc7e4896bc73554cabf28f0fcb5945b949a04924215560fe07053d8f4802146b3
IEDL.DBID RPM
ISSN 1662-5102
IngestDate Tue Oct 22 15:16:54 EDT 2024
Tue Sep 17 21:26:22 EDT 2024
Fri Oct 25 23:43:13 EDT 2024
Thu Oct 10 16:49:42 EDT 2024
Thu Sep 26 19:38:23 EDT 2024
Sat Sep 28 08:48:25 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords müller glia cells
retina ganglion cells
retina
lineage-reprogramming
neurogenin2
Ascl1
induced neurons
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-fc7e4896bc73554cabf28f0fcb5945b949a04924215560fe07053d8f4802146b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors have contributed equally to this work
Reviewed by: Antje Grosche, Ludwig-Maximilians-Universität München, Germany; Xiao-Feng Zhao, University of Michigan, United States
Edited by: Sandra Henriques Vaz, Instituto de Medicina Molecular (IMM), Portugal
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6240664/
PMID 30483060
PQID 2282424624
PQPubID 4424410
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_d475a4abce0f40e9abedfd57d5197064
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6240664
proquest_miscellaneous_2138646590
proquest_journals_2282424624
crossref_primary_10_3389_fncel_2018_00410
pubmed_primary_30483060
PublicationCentury 2000
PublicationDate 2018-11-12
PublicationDateYYYYMMDD 2018-11-12
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-12
  day: 12
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in cellular neuroscience
PublicationTitleAlternate Front Cell Neurosci
PublicationYear 2018
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Jadhav (B24) 2009; 28
Chouchane (B12) 2017; 9
Giannelli (B16) 2011; 29
Yao (B63) 2018; 560
Das (B13) 2006; 299
Chamling (B10) 2016; 57
Livak (B33) 2001; 25
Karl (B26) 2008; 105
Amamoto (B2) 2014; 343
Martersteck (B36) 2017; 18
Macosko (B35) 2015; 161
Ooto (B43) 2004; 101
Singhal (B51) 2012; 1
Cepko (B9) 1999; 9
Bhatia (B5) 2011; 52
Blackshaw (B6) 2004; 2
Berninger (B4) 2007; 27
Hicks (B22) 1990; 51
Nelson (B40) 2011; 6
Wong-Riley (B60) 2010; 2
Turner (B56) 1990; 4
Raposo (B47) 2015; 10
Lee (B30) 2012; 116
Heinrich (B21) 2015; 17
Sanes (B50) 2015; 38
Kimura (B28) 2017; 2017
Todd (B54) 2015; 69
Hufnagel (B23) 2010; 340
Lawrence (B29) 2007; 25
de Melo Reis (B14) 2008; 1205
Wilken (B58) 2016; 40
Song (B52) 2004; 7
Masserdotti (B37) 2015; 17
Torper (B55) 2017; 230
Hamon (B18) 2016; 245
Ueki (B57) 2015; 112
Karl (B27) 2012; 884
Chouchane (B11) 2018
Matsuda (B39) 2007; 104
Athanasiou (B3) 2013; 587
Quina (B45) 2005; 25
Liang (B31) 2017; 4
Nickerson (B42) 2011; 89
Matsuda (B38) 2004; 101
Young (B64) 1985; 212
Rodriguez (B48) 2014; 522
Jorstad (B25) 2017; 548
Gill (B17) 2016; 6
Heinrich (B20) 2010; 8
de Melo (B15) 2018; 1715
Abu-Hassan (B1) 2015; 33
Brzezinski (B8) 2011; 138
Wu (B61) 2016; 9
He (B19) 2012; 75
Wohl (B59) 2016; 64
Lin (B32) 2009; 50
Loffler (B34) 2015; 63
Nickerson (B41) 2008; 1230
Rapaport (B46) 2004; 474
Pollak (B44) 2013; 140
Rolf (B49) 2003; 71
Song (B53) 2013; 4
Bonifazi (B7) 2009; 326
Yang (B62) 2017; 14
References_xml – volume: 326
  start-page: 1419
  year: 2009
  ident: B7
  article-title: GABAergic hub neurons orchestrate synchrony in developing hippocampal networks
  publication-title: Science
  doi: 10.1126/science.1175509
  contributor:
    fullname: Bonifazi
– volume: 29
  start-page: 344
  year: 2011
  ident: B16
  article-title: Adult human Muller glia cells are a highly efficient source of rod photoreceptors
  publication-title: Stem Cells
  doi: 10.1002/stem.579
  contributor:
    fullname: Giannelli
– volume: 4
  start-page: 6
  year: 2017
  ident: B31
  article-title: Proposing new indicators for glaucoma healthcare service
  publication-title: Eye Vis.
  doi: 10.1186/s40662-017-0071-0
  contributor:
    fullname: Liang
– volume: 27
  start-page: 8654
  year: 2007
  ident: B4
  article-title: Functional properties of neurons derived from in vitro reprogrammed postnatal astroglia
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.1615-07.2007
  contributor:
    fullname: Berninger
– volume: 1205
  start-page: 1
  year: 2008
  ident: B14
  article-title: Muller glia factors induce survival and neuritogenesis of peripheral and central neurons
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2008.02.035
  contributor:
    fullname: de Melo Reis
– volume: 474
  start-page: 304
  year: 2004
  ident: B46
  article-title: Timing and topography of cell genesis in the rat retina
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.20134
  contributor:
    fullname: Rapaport
– volume: 7
  start-page: 229
  year: 2004
  ident: B52
  article-title: FGF2-induced chromatin remodeling regulates CNTF-mediated gene expression and astrocyte differentiation
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1192
  contributor:
    fullname: Song
– volume: 38
  start-page: 221
  year: 2015
  ident: B50
  article-title: The types of retinal ganglion cells: current status and implications for neuronal classification
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev-neuro-071714-034120
  contributor:
    fullname: Sanes
– volume: 14
  start-page: 349
  year: 2017
  ident: B62
  article-title: In vivo imaging of neural activity
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4230
  contributor:
    fullname: Yang
– volume: 112
  start-page: 13717
  year: 2015
  ident: B57
  article-title: Transgenic expression of the proneural transcription factor Ascl1 in Muller glia stimulates retinal regeneration in young mice
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1510595112
  contributor:
    fullname: Ueki
– volume: 1715
  start-page: 101
  year: 2018
  ident: B15
  article-title: In vivo electroporation of developing mouse retina
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-7522-8_8
  contributor:
    fullname: de Melo
– volume: 75
  start-page: 786
  year: 2012
  ident: B19
  article-title: How variable clones build an invariant retina
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.06.033
  contributor:
    fullname: He
– volume: 1230
  start-page: 1
  year: 2008
  ident: B41
  article-title: Neural progenitor potential in cultured Muller glia: effects of passaging and exogenous growth factor exposure
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2008.03.095
  contributor:
    fullname: Nickerson
– volume: 6
  start-page: 30552
  year: 2016
  ident: B17
  article-title: Enriched retinal ganglion cells derived from human embryonic stem cells
  publication-title: Sci. Rep.
  doi: 10.1038/srep30552
  contributor:
    fullname: Gill
– volume: 89
  start-page: 1018
  year: 2011
  ident: B42
  article-title: Effects of epidermal growth factor and erythropoietin on Muller glial activation and phenotypic plasticity in the adult mammalian retina
  publication-title: J. Neurosci. Res.
  doi: 10.1002/jnr.22629
  contributor:
    fullname: Nickerson
– volume: 522
  start-page: 1411
  year: 2014
  ident: B48
  article-title: The RNA binding protein RBPMS is a selective marker of ganglion cells in the mammalian retina
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.23521
  contributor:
    fullname: Rodriguez
– volume: 57
  year: 2016
  ident: B10
  article-title: The potential of human stem cells for the study and treatment of glaucoma
  publication-title: Invest. Ophthalmol. Vis. Sci
  doi: 10.1167/iovs.15-18590
  contributor:
    fullname: Chamling
– volume: 245
  start-page: 727
  year: 2016
  ident: B18
  article-title: Muller glial cell-dependent regeneration of the neural retina: an overview across vertebrate model systems
  publication-title: Dev. Dyn.
  doi: 10.1002/dvdy.24375
  contributor:
    fullname: Hamon
– volume: 340
  start-page: 490
  year: 2010
  ident: B23
  article-title: Neurog2 controls the leading edge of neurogenesis in the mammalian retina
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2010.02.002
  contributor:
    fullname: Hufnagel
– volume: 25
  start-page: 2033
  year: 2007
  ident: B29
  article-title: MIO-M1 cells and similar muller glial cell lines derived from adult human retina exhibit neural stem cell characteristics
  publication-title: Stem Cells
  doi: 10.1634/stemcells.2006-0724
  contributor:
    fullname: Lawrence
– volume: 28
  start-page: 249
  year: 2009
  ident: B24
  article-title: Development and neurogenic potential of Muller glial cells in the vertebrate retina
  publication-title: Prog. Retin. Eye Res.
  doi: 10.1016/j.preteyeres.2009.05.002
  contributor:
    fullname: Jadhav
– volume: 343
  start-page: 1239882
  year: 2014
  ident: B2
  article-title: Development-inspired reprogramming of the mammalian central nervous system
  publication-title: Science
  doi: 10.1126/science.1239882
  contributor:
    fullname: Amamoto
– volume: 138
  start-page: 3519
  year: 2011
  ident: B8
  article-title: Ascl1 expression defines a subpopulation of lineage-restricted progenitors in the mammalian retina
  publication-title: Development
  doi: 10.1242/dev.064006
  contributor:
    fullname: Brzezinski
– volume: 4
  start-page: 833
  year: 1990
  ident: B56
  article-title: Lineage-independent determination of cell type in the embryonic mouse retina
  publication-title: Neuron
  doi: 10.1016/0896-6273(90)90136-4
  contributor:
    fullname: Turner
– volume: 1
  start-page: 188
  year: 2012
  ident: B51
  article-title: Human Muller glia with stem cell characteristics differentiate into retinal ganglion cell (RGC) precursors in vitro and partially restore RGC function in vivo following transplantation
  publication-title: Stem Cells Transl. Med.
  doi: 10.5966/sctm.2011-0005
  contributor:
    fullname: Singhal
– volume: 212
  start-page: 199
  year: 1985
  ident: B64
  article-title: Cell differentiation in the retina of the mouse
  publication-title: Anat. Rec.
  doi: 10.1002/ar.1092120215
  contributor:
    fullname: Young
– volume: 299
  start-page: 283
  year: 2006
  ident: B13
  article-title: Neural stem cell properties of Muller glia in the mammalian retina: regulation by Notch and Wnt signaling
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2006.07.029
  contributor:
    fullname: Das
– volume: 9
  start-page: 162
  year: 2017
  ident: B12
  article-title: Lineage reprogramming of astroglial cells from different origins into distinct neuronal subtypes
  publication-title: Stem Cell Rep.
  doi: 10.1016/j.stemcr.2017.05.009
  contributor:
    fullname: Chouchane
– volume: 2017
  start-page: 2817252
  year: 2017
  ident: B28
  article-title: Targeting oxidative stress for treatment of glaucoma and optic neuritis
  publication-title: Oxid. Med. Cell Longev.
  doi: 10.1155/2017/2817252
  contributor:
    fullname: Kimura
– volume: 587
  start-page: 2008
  year: 2013
  ident: B3
  article-title: The cell stress machinery and retinal degeneration
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2013.05.020
  contributor:
    fullname: Athanasiou
– volume: 548
  start-page: 103
  year: 2017
  ident: B25
  article-title: Stimulation of functional neuronal regeneration from Muller glia in adult mice
  publication-title: Nature
  doi: 10.1038/nature23283
  contributor:
    fullname: Jorstad
– volume: 101
  start-page: 16
  year: 2004
  ident: B38
  article-title: Electroporation and RNA interference in the rodent retina in vivo and in vitro
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.2235688100
  contributor:
    fullname: Matsuda
– volume: 560
  start-page: 484
  year: 2018
  ident: B63
  article-title: Restoration of vision after de novo genesis of rod photoreceptors in mammalian retinas
  publication-title: Nature
  doi: 10.1038/s41586-018-0425-3
  contributor:
    fullname: Yao
– volume: 25
  start-page: 402
  year: 2001
  ident: B33
  article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method
  publication-title: Methods
  doi: 10.1006/meth.2001.1262
  contributor:
    fullname: Livak
– volume: 17
  start-page: 204
  year: 2015
  ident: B21
  article-title: In vivo reprogramming for tissue repair
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3108
  contributor:
    fullname: Heinrich
– volume: 161
  start-page: 1202
  year: 2015
  ident: B35
  article-title: Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.002
  contributor:
    fullname: Macosko
– volume: 71
  start-page: 835
  year: 2003
  ident: B49
  article-title: Altered expression of CHL1 by glial cells in response to optic nerve injury and intravitreal application of fibroblast growth factor-2
  publication-title: J. Neurosci. Res.
  doi: 10.1002/jnr.10533
  contributor:
    fullname: Rolf
– volume: 33
  start-page: 751
  year: 2015
  ident: B1
  article-title: Induced pluripotent stem cells restore function in a human cell loss model of open-angle glaucoma
  publication-title: Stem Cells
  doi: 10.1002/stem.1885
  contributor:
    fullname: Abu-Hassan
– volume: 105
  start-page: 19508
  year: 2008
  ident: B26
  article-title: Stimulation of neural regeneration in the mouse retina
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0807453105
  contributor:
    fullname: Karl
– volume: 9
  start-page: 948
  year: 2016
  ident: B61
  article-title: Promotion on the differentiation of retinal Muller cells into retinal ganglion cells by Brn-3b
  publication-title: Int. J. Ophthalmol.
  doi: 10.18240/ijo.2016.07.03
  contributor:
    fullname: Wu
– year: 2018
  ident: B11
  article-title: Instructing neuronal identity during CNS development and astroglial-lineage reprogramming: roles of NEUROG2 and ASCL1
  publication-title: Brain Res
  doi: 10.1016/j.brainres.2018.02.045.
  contributor:
    fullname: Chouchane
– volume: 116
  start-page: 39
  year: 2012
  ident: B30
  article-title: Mechanisms of resistance to histone deacetylase inhibitors
  publication-title: Adv. Cancer Res.
  doi: 10.1016/B978-0-12-394387-3.00002-1
  contributor:
    fullname: Lee
– volume: 40
  start-page: 57
  year: 2016
  ident: B58
  article-title: Retinal regeneration in birds and mice
  publication-title: Curr. Opin. Genet. Dev.
  doi: 10.1016/j.gde.2016.05.028
  contributor:
    fullname: Wilken
– volume: 18
  start-page: 2058
  year: 2017
  ident: B36
  article-title: Diverse central projection patterns of retinal ganglion cells
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.01.075
  contributor:
    fullname: Martersteck
– volume: 140
  start-page: 2619
  year: 2013
  ident: B44
  article-title: ASCL1 reprograms mouse Muller glia into neurogenic retinal progenitors
  publication-title: Development
  doi: 10.1242/dev.091355
  contributor:
    fullname: Pollak
– volume: 52
  start-page: 136
  year: 2011
  ident: B5
  article-title: SOX2 is required for adult human muller stem cell survival and maintenance of progenicity in vitro
  publication-title: Invest. Ophthalmol. Vis. Sci
  doi: 10.1167/iovs.10-5208
  contributor:
    fullname: Bhatia
– volume: 69
  start-page: 54
  year: 2015
  ident: B54
  article-title: Heparin-binding EGF-like growth factor (HB-EGF) stimulates the proliferation of Muller glia-derived progenitor cells in avian and murine retinas
  publication-title: Mol. Cell Neurosci.
  doi: 10.1016/j.mcn.2015.10.004
  contributor:
    fullname: Todd
– volume: 8
  start-page: e1000373
  year: 2010
  ident: B20
  article-title: Directing astroglia from the cerebral cortex into subtype specific functional neurons
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1000373
  contributor:
    fullname: Heinrich
– volume: 101
  start-page: 13654
  year: 2004
  ident: B43
  article-title: Potential for neural regeneration after neurotoxic injury in the adult mammalian retina
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0402129101
  contributor:
    fullname: Ooto
– volume: 230
  start-page: 69
  year: 2017
  ident: B55
  article-title: Brain repair from intrinsic cell sources: Turning reactive glia into neurons
  publication-title: Prog. Brain. Res.
  doi: 10.1016/bs.pbr.2016.12.010
  contributor:
    fullname: Torper
– volume: 104
  start-page: 1027
  year: 2007
  ident: B39
  article-title: Controlled expression of transgenes introduced by in vivo electroporation
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0610155104
  contributor:
    fullname: Matsuda
– volume: 17
  start-page: 74
  year: 2015
  ident: B37
  article-title: Transcriptional mechanisms of proneural factors and REST in regulating neuronal reprogramming of astrocytes
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2015.05.014
  contributor:
    fullname: Masserdotti
– volume: 9
  start-page: 37
  year: 1999
  ident: B9
  article-title: The roles of intrinsic and extrinsic cues and bHLH genes in the determination of retinal cell fates
  publication-title: Curr. Opin. Neurobiol
  doi: 10.1016/S0959-4388(99)80005-1
  contributor:
    fullname: Cepko
– volume: 10
  start-page: 1544
  year: 2015
  ident: B47
  article-title: Ascl1 coordinately regulates gene expression and the chromatin landscape during neurogenesis
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.02.025
  contributor:
    fullname: Raposo
– volume: 2
  start-page: 99
  year: 2010
  ident: B60
  article-title: Energy metabolism of the visual system
  publication-title: Eye Brain
  doi: 10.2147/EB.S9078
  contributor:
    fullname: Wong-Riley
– volume: 6
  start-page: e22817
  year: 2011
  ident: B40
  article-title: Genome-wide analysis of Muller glial differentiation reveals a requirement for Notch signaling in postmitotic cells to maintain the glial fate
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0022817
  contributor:
    fullname: Nelson
– volume: 64
  start-page: 743
  year: 2016
  ident: B59
  article-title: miR-124-9-9* potentiates Ascl1-induced reprogramming of cultured Muller glia
  publication-title: Glia
  doi: 10.1002/glia.22958
  contributor:
    fullname: Wohl
– volume: 63
  start-page: 1809
  year: 2015
  ident: B34
  article-title: Age-dependent Muller glia neurogenic competence in the mouse retina
  publication-title: Glia
  doi: 10.1002/glia.22846
  contributor:
    fullname: Loffler
– volume: 50
  start-page: 68
  year: 2009
  ident: B32
  article-title: Sox2 plays a role in the induction of amacrine and Muller glial cells in mouse retinal progenitor cells
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.07-1619
  contributor:
    fullname: Lin
– volume: 25
  start-page: 11595
  year: 2005
  ident: B45
  article-title: Brn3a-expressing retinal ganglion cells project specifically to thalamocortical and collicular visual pathways
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2837-05.2005
  contributor:
    fullname: Quina
– volume: 884
  start-page: 213
  year: 2012
  ident: B27
  article-title: Studying the generation of regenerated retinal neuron from Muller glia in the mouse eye
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-61779-848-1_15
  contributor:
    fullname: Karl
– volume: 51
  start-page: 119
  year: 1990
  ident: B22
  article-title: The growth and behaviour of rat retinal Muller cells in vitro. 1. An improved method for isolation and culture
  publication-title: Exp. Eye Res.
  doi: 10.1016/0014-4835(90)90063-Z
  contributor:
    fullname: Hicks
– volume: 2
  start-page: E247
  year: 2004
  ident: B6
  article-title: Genomic analysis of mouse retinal development
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0020247
  contributor:
    fullname: Blackshaw
– volume: 4
  start-page: 94
  year: 2013
  ident: B53
  article-title: Atoh7 promotes the differentiation of retinal stem cells derived from Muller cells into retinal ganglion cells by inhibiting Notch signaling
  publication-title: Stem Cell Res. Ther.
  doi: 10.1186/scrt305
  contributor:
    fullname: Song
SSID ssj0062648
Score 2.364933
Snippet Degenerative retinopathies are the leading causes of irreversible visual impairment in the elderly, affecting hundreds of millions of patients. Müller glia...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 410
SubjectTerms Amacrine cells
Ascl1
ASCL1 protein
Biophysics
Cell differentiation
Electroporation
Epidermal growth factor
Fibroblast growth factor 2
Fibroblasts
Gene expression
Geriatrics
Glaucoma
Glucose
induced neurons
lineage-reprogramming
müller glia cells
Neonates
Neural stem cells
neurogenin2
Neurogenins
Neuronal-glial interactions
Neurons
Neuroscience
Penicillin
Photoreceptors
Plasmids
Retina
Retinal ganglion cells
Stem cells
Transcription factors
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELZKDhUXVGiBtAG5EpceVmzWs971EQIkPaRCPCRultcPESnaoCb5d9z6xzrj3UQJqsSlt5Xtg_cbjz3jmfnM2JlxNgtOiERAkdJtVT9RHtXdg8FvS5Ra5CiO7otfT-XVNdHkrJ_6opywhh64Ae7cQZEbMJX1aYDUK1N5F1xeOKq4xPM07r6pXDlTzR4sKW-rCUqiC6bOAwJIcYY-JU4CVctuHEKRq_9fBubbPMmNg-fmE9trLUZ-0cx0n33w9QH7OG5j4p_Z7ephUD4LfPznlWr7-HA6MXxAGeXxOoz_rBczfkflzYYPDZXuYuPAT6dzHpMGeCTpwMU0qbMv7PHm-mEwStp3EhILKl0kwRYeSiUrW5D1YE0VsjKkwVa5grxSoAz6ART7zdG-CR61PBeuDFDGZ70rccg69az2x4wLWZgK9xzjQIJC5IVVQqBPVVrvvBdd9mMFnH5p6DA0uhEEso4gawJZR5C77JKQXY8jIuvYgOLVrXj1e-Ltst5KLrrVrrnO0E-EDGSG3d_X3agXFOwwtZ8tcUxflBJkrnAeR40Y1zMRxKOfSuwptgS8NdXtnnryHLm3JVlAEr7-j3_7xnYJLaps7Gc91ln8XvoTtjN3y9O4mv8C-J36sg
  priority: 102
  providerName: Directory of Open Access Journals
Title Evidence of Müller Glia Conversion Into Retina Ganglion Cells Using Neurogenin2
URI https://www.ncbi.nlm.nih.gov/pubmed/30483060
https://www.proquest.com/docview/2282424624
https://search.proquest.com/docview/2138646590
https://pubmed.ncbi.nlm.nih.gov/PMC6240664
https://doaj.org/article/d475a4abce0f40e9abedfd57d5197064
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB7RPSAuaHmHfchIXDhkm8TOw0fovjgUrXhI3Cw_oVI3WW3bf7e3_WPMOEmhiBO3yHEUax72jGfmG4C32tkiOM5TLuqMbqvyVHpUdy80PluC1CJH8fJL_el7c3pGMDnlWAsTk_atWZy0y-uTdvEz5lbeXNvpmCc2vZrPKjqGKjGdwARtw9FF77ffilK2-ngkel9yGpB2FGLIKWdS5NT5jROMehZBKX8fRRGx_19m5t_Zkn8cP-f78HiwG9n7fn1P4IFvn8LD-RAZfwZXY3tQ1gU2v7-jCj92sVxoNqO88ngpxj626459piJnzS40FfDi4MwvlysWUwdYhOpAkVq0xXP4dn72dXaZDt0SUitktk6Drb1oZGVsTTaE1SYUTciCNaUUpZFCavQGKAJcopUTPOp6yV0TRBObexv-AvbarvWvgPGq1gZ3Hu1EJWRdam4l5-hZNdY773kC70bCqZseFEOhM0H0VpHeiuitIr0T-ECU3c4jOOs40N3-UANTlRP4E6GN9VkQmZfaeBdcWTsqq0WjKYHDkS9q0LGVKtBbFIVAYUjgzfY1ageFPHTruw3OyXlTiaqUuI6XPRu3KxnFIIF6h8E7S919gwIZEbgHAXz9318ewCMiERU15sUh7K1vN_4IJiu3OY63AsdRpn8BOnT62w
link.rule.ids 230,315,729,782,786,866,887,2106,27933,27934,53800,53802
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RIgEXypvQAkbiwiHdJHYePtKl7VZ0qwqKxM1y_ICVtknV3f133PhjzDjJlkWceotiR7Hm89gznpnPAO-1NZm3nMdclAmdVqWxdKjuTmh8NkSpRY7i5Gt59r36dEg0OflQCxOS9k0922_ml_vN7GfIrby6NKMhT2x0Ph0XtA0VYrQFd1Ffk2Rw0rsFuKCkrS4iif6XHHmUHgUZUsqaFCnd_caJSD0JtJQ3m1Hg7P-foflvvuRfG9DRzi2H_gge9hYn-9g1P4Y7rnkC96Z9TP0pnA8Xi7LWs-nvX1QbyI7nM83GlJEejtPYSbNs2Rcqj9bsWFPpL74cu_l8wULSAQskHzgZZ032DL4dHV6MJ3F_z0JshEyWsTelE5UsalOS9WF07bPKJ97UuRR5LYXU6EdQ7DhH-8g7XCVybisvqnAteM2fw3bTNu4lMF6UusY1S1tRCFnmmhvJOfpklXHWOR7Bh0Hg6qqj01DohhBOKuCkCCcVcIrggBBZ9yMi7PCivf6hepkqK_AnQtfGJV4kTuraWW_z0lJBLppbEewNeKpeOxcqQz9TZAKxiODduhn1ioIlunHtCvukvCpEkUscx4sO_vVIhukTQbkxMTaGutmC8yFwd_f4v7r1l2_h_uRieqpOT84-78IDEheVRqbZHmwvr1fuNWwt7OpN0Ig_WZcPeQ
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIlVceFMCBYzEhUO6Sew8fIRtt61gqxUPiZvl-AErbZNVd_ffceOPMeMkC4s4wS1yHMWahz3jmfkG4JW2JvOW85iLMqHbqjSWDtXdCY3PhiC1yFE8_1hefqlOTgkmZ9vqKyTtm3p-3Cyujpv5t5BbubwyoyFPbDSbjgs6hgoxWlo_2oObqLNJNjjq3SZcUOJWF5VEH0yOPFKQAg0pZU6KlPq_cQJTTwI05a8DKeD2_83Y_DNn8rdDaHLnP5Z_F273lid70025Bzdccx8Opn1s_QHMhgajrPVs-uM71Qiys8VcszFlpodrNXbRrFv2gcqkNTvTVAKMg2O3WKxYSD5gAewDhXLeZA_h8-T00_g87vstxEbIZB17UzpRyaI2JVkhRtc-q3ziTZ1LkddSSI3-BMWQc7STvMPdIue28qIK7cFr_gj2m7Zxj4HxotQ17l3aikLIMtfcSM7RN6uMs87xCF4PRFfLDlZDoTtCvFKBV4p4pQKvInhLXNnOI0DsMNBef1U9XZUV-BOha-MSLxInde2st3lpqTAXza4Ijgaeql5LVypDf1NkAvkRwcvta9QvCproxrUbnJPyqhBFLnEdh50IbFcyiFAE5Y5w7Cx19w3KRMDw7mXgyT9_-QIOZicT9f7i8t1TuEXUogrJNDuC_fX1xj2DvZXdPA9K8RPmVxH5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evidence+of+M%C3%BCller+Glia+Conversion+Into+Retina+Ganglion+Cells+Using+Neurogenin2&rft.jtitle=Frontiers+in+cellular+neuroscience&rft.au=Roberta+Pereira+de+Melo+Guimar%C3%A3es&rft.au=Bruna+Soares+Landeira&rft.au=Diego+Marques+Coelho&rft.au=Daiane+Cristina+Ferreira+Golbert&rft.date=2018-11-12&rft.pub=Frontiers+Research+Foundation&rft.eissn=1662-5102&rft_id=info:doi/10.3389%2Ffncel.2018.00410&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5102&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5102&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5102&client=summon