Evidence of Müller Glia Conversion Into Retina Ganglion Cells Using Neurogenin2
Degenerative retinopathies are the leading causes of irreversible visual impairment in the elderly, affecting hundreds of millions of patients. Müller glia cells (MGC), the main type of glia found in the vertebrate retina, can resume proliferation in the rodent adult injured retina but contribute we...
Saved in:
Published in: | Frontiers in cellular neuroscience Vol. 12; p. 410 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Switzerland
Frontiers Research Foundation
12-11-2018
Frontiers Media S.A |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Degenerative retinopathies are the leading causes of irreversible visual impairment in the elderly, affecting hundreds of millions of patients. Müller glia cells (MGC), the main type of glia found in the vertebrate retina, can resume proliferation in the rodent adult injured retina but contribute weakly to tissue repair when compared to zebrafish retina. However, postnatal and adult mouse MGC can be genetically reprogrammed through the expression of the transcription factor (TF) Achaete-scute homolog 1 (ASCL1) into induced neurons (iNs), displaying key hallmarks of photoreceptors, bipolar and amacrine cells, which may contribute to regenerate the damaged retina. Here, we show that the TF neurogenin 2 (NEUROG2) is also sufficient to lineage-reprogram postnatal mouse MGC into iNs. The efficiency of MGC lineage conversion by NEUROG2 is similar to that observed after expression of ASCL1 and both TFs induce the generation of functionally active iNs. Treatment of MGC cultures with EGF and FGF2 prior to Neurog2 or Ascl1 expression enhances reprogramming efficiencies, what can be at least partially explained by an increase in the frequency of MGCs expressing sex determining region Y (SRY)-box 2 (SOX2). Transduction of either Neurog2 or Ascl1 led to the upregulation of key retina neuronal genes in MGC-derived iNs, but only NEUROG2 induced a consistent increase in the expression of putative retinal ganglion cell (RGC) genes. Moreover,
electroporation of Neurog2 in late progenitors from the neonatal rat retina, which are transcriptionally similar to MGCs, also induced a shift in the generation of retinal cell subtypes, favoring neuronal differentiation at the expense of MGCs and resuming the generation of RGCs. Altogether, our data indicate that NEUROG2 induces lineage conversion of postnatal rodent MGCs into RGC-like iNs
and resumes the generation of this neuronal type from late progenitors of the retina
. |
---|---|
AbstractList | Degenerative retinopathies are the leading causes of irreversible visual impairment in the elderly, affecting hundreds of millions of patients. Müller glia cells (MGC), the main type of glia found in the vertebrate retina, can resume proliferation in the rodent adult injured retina but contribute weakly to tissue repair when compared to zebrafish retina. However, postnatal and adult mouse MGC can be genetically reprogrammed through the expression of the transcription factor (TF) Achaete-scute homolog 1 (ASCL1) into induced neurons (iNs), displaying key hallmarks of photoreceptors, bipolar and amacrine cells, which may contribute to regenerate the damaged retina. Here, we show that the TF neurogenin 2 (NEUROG2) is also sufficient to lineage-reprogram postnatal mouse MGC into iNs. The efficiency of MGC lineage conversion by NEUROG2 is similar to that observed after expression of ASCL1 and both TFs induce the generation of functionally active iNs. Treatment of MGC cultures with EGF and FGF2 prior to Neurog2 or Ascl1 expression enhances reprogramming efficiencies, what can be at least partially explained by an increase in the frequency of MGCs expressing sex determining region Y (SRY)-box 2 (SOX2). Transduction of either Neurog2 or Ascl1 led to the upregulation of key retina neuronal genes in MGC-derived iNs, but only NEUROG2 induced a consistent increase in the expression of putative retinal ganglion cell (RGC) genes. Moreover,
electroporation of Neurog2 in late progenitors from the neonatal rat retina, which are transcriptionally similar to MGCs, also induced a shift in the generation of retinal cell subtypes, favoring neuronal differentiation at the expense of MGCs and resuming the generation of RGCs. Altogether, our data indicate that NEUROG2 induces lineage conversion of postnatal rodent MGCs into RGC-like iNs
and resumes the generation of this neuronal type from late progenitors of the retina
. Degenerative retinopathies are the leading causes of irreversible visual impairment in the elderly, affecting hundreds of millions of patients. Müller glia cells (MGC), the main type of glia found in the vertebrate retina, can resume proliferation in the rodent adult injured retina but contribute weakly to tissue repair when compared to zebrafish retina. However, postnatal and adult mouse MGC can be genetically reprogrammed through the expression of the transcription factor (TF) Achaete-scute homolog 1 (ASCL1) into induced neurons (iNs), displaying key hallmarks of photoreceptors, bipolar and amacrine cells, which may contribute to regenerate the damaged retina. Here, we show that the TF neurogenin 2 (NEUROG2) is also sufficient to lineage-reprogram postnatal mouse MGC into iNs. The efficiency of MGC lineage conversion by NEUROG2 is similar to that observed after expression of ASCL1 and both TFs induce the generation of functionally active iNs. Treatment of MGC cultures with EGF and FGF2 prior to Neurog2 or Ascl1 expression enhances reprogramming efficiencies, what can be at least partially explained by an increase in the frequency of MGCs expressing sex determining region Y (SRY)-box 2 (SOX2). Transduction of either Neurog2 or Ascl1 led to the upregulation of key retina neuronal genes in MGC-derived iNs, but only NEUROG2 induced a consistent increase in the expression of putative retinal ganglion cell (RGC) genes. Moreover, in vivo electroporation of Neurog2 in late progenitors from the neonatal rat retina, which are transcriptionally similar to MGCs, also induced a shift in the generation of retinal cell subtypes, favoring neuronal differentiation at the expense of MGCs and resuming the generation of RGCs. Altogether, our data indicate that NEUROG2 induces lineage conversion of postnatal rodent MGCs into RGC-like iNs in vitro and resumes the generation of this neuronal type from late progenitors of the retina in vivo . Degenerative retinopathies are the leading causes of irreversible visual impairment in the elderly, affecting hundreds of millions of patients. Müller glia cells (MGC), the main type of glia found in the vertebrate retina, can resume proliferation in the rodent adult injured retina but contribute weakly to tissue repair when compared to zebrafish retina. However, postnatal and adult mouse MGC can be genetically reprogrammed through the expression of the transcription factor (TF) Achaete-scute homolog 1 (ASCL1) into induced neurons (iNs), displaying key hallmarks of photoreceptors, bipolar and amacrine cells, which may contribute to regenerate the damaged retina. Here, we show that the TF neurogenin 2 (NEUROG2) is also sufficient to lineage-reprogram postnatal mouse MGC into iNs. The efficiency of MGC lineage conversion by NEUROG2 is similar to that observed after expression of ASCL1 and both TFs induce the generation of functionally active iNs. Treatment of MGC cultures with EGF and FGF2 prior to Neurog2 or Ascl1 expression enhances reprogramming efficiencies, what can be at least partially explained by an increase in the frequency of MGCs expressing sex determining region Y (SRY)-box 2 (SOX2). Transduction of either Neurog2 or Ascl1 led to the upregulation of key retina neuronal genes in MGC-derived iNs, but only NEUROG2 induced a consistent increase in the expression of putative retinal ganglion cell (RGC) genes. Moreover, in vivo electroporation of Neurog2 in late progenitors from the neonatal rat retina, which are transcriptionally similar to MGCs, also induced a shift in the generation of retinal cell subtypes, favoring neuronal differentiation at the expense of MGCs and resuming the generation of RGCs. Altogether, our data indicate that NEUROG2 induces lineage conversion of postnatal rodent MGCs into RGC-like iNs in vitro and resumes the generation of this neuronal type from late progenitors of the retina in vivo. |
Author | Landeira, Bruna Soares Linden, Rafael Guimarães, Roberta Pereira de Melo de Melo Reis, Ricardo A Coelho, Diego Marques Golbert, Daiane Cristina Ferreira Silveira, Mariana S Costa, Marcos R |
AuthorAffiliation | 2 Lab Neurogenesis, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil 1 Brain Institute, Federal University of Rio Grande do Norte , Natal , Brazil 3 Lab Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil 4 Bioinformatics Multidisciplinary Environment, IMD, Federal University of Rio Grande do Norte , Rio de Janeiro , Brazil |
AuthorAffiliation_xml | – name: 4 Bioinformatics Multidisciplinary Environment, IMD, Federal University of Rio Grande do Norte , Rio de Janeiro , Brazil – name: 2 Lab Neurogenesis, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil – name: 3 Lab Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil – name: 1 Brain Institute, Federal University of Rio Grande do Norte , Natal , Brazil |
Author_xml | – sequence: 1 givenname: Roberta Pereira de Melo surname: Guimarães fullname: Guimarães, Roberta Pereira de Melo organization: Lab Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil – sequence: 2 givenname: Bruna Soares surname: Landeira fullname: Landeira, Bruna Soares organization: Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil – sequence: 3 givenname: Diego Marques surname: Coelho fullname: Coelho, Diego Marques organization: Bioinformatics Multidisciplinary Environment, IMD, Federal University of Rio Grande do Norte, Rio de Janeiro, Brazil – sequence: 4 givenname: Daiane Cristina Ferreira surname: Golbert fullname: Golbert, Daiane Cristina Ferreira organization: Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil – sequence: 5 givenname: Mariana S surname: Silveira fullname: Silveira, Mariana S organization: Lab Neurogenesis, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil – sequence: 6 givenname: Rafael surname: Linden fullname: Linden, Rafael organization: Lab Neurogenesis, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil – sequence: 7 givenname: Ricardo A surname: de Melo Reis fullname: de Melo Reis, Ricardo A organization: Lab Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil – sequence: 8 givenname: Marcos R surname: Costa fullname: Costa, Marcos R organization: Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30483060$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkU1vEzEQhleoiH7AnRNaiQuXhLHX9toXJBSVEKl8CNGz5fWOgyPHLvZuJP4bt_6xbpJStZxsjd95NOPnvDqJKWJVvSYwbxqp3rtoMcwpEDkHYASeVWdECDrjBOjJo_tpdV7KBkBQweSL6rQBJhsQcFZ9v9z5HidMnVz95fZvCJjrZfCmXqS4w1x8ivUqDqn-gYOPpl6auA774gJDKPV18XFdf8UxpzVGH-nL6rkzoeCr-_Oiuv50-XPxeXb1bblafLyaWaZgmDnbIpNKdLZtOGfWdI5KB852XDHeKaYMMEUZJZwLcAgt8KaXjkmghImuuahWR26fzEbfZL81-Y9OxutDIeW1NnnwNqDuWcsNM51FcAxQmQ571_O250S1INjE-nBk3YzdFnuLccgmPIE-fYn-l16nnRaUgTgA3t0Dcvo9Yhn01pdJTTAR01g0JY0UTHAFU_Ttf9FNGnOcvkpTKqeF2QSdUnBM2ZxKyegehiGg9-r1Qb3eq9cH9VPLm8dLPDT8c93cATGErDk |
CitedBy_id | crossref_primary_10_1007_s12264_020_00510_w crossref_primary_10_4103_1673_5374_300329 crossref_primary_10_7554_eLife_73202 crossref_primary_10_1016_j_stemcr_2021_01_006 crossref_primary_10_3390_ijms21124273 crossref_primary_10_1134_S1062360420040062 crossref_primary_10_4103_1673_5374_386400 crossref_primary_10_1016_j_gde_2020_05_025 crossref_primary_10_1089_cell_2023_0123 crossref_primary_10_1016_j_preteyeres_2022_101065 crossref_primary_10_4103_1673_5374_301034 crossref_primary_10_1126_science_aba7721 crossref_primary_10_1002_ame2_12177 crossref_primary_10_1194_jlr_TR120000618 crossref_primary_10_3389_fcell_2020_581136 crossref_primary_10_1002_stem_3370 crossref_primary_10_1007_s12264_021_00751_3 crossref_primary_10_3389_fnins_2020_569361 crossref_primary_10_1016_j_jneumeth_2021_109096 crossref_primary_10_1177_0192623320976375 crossref_primary_10_3389_fbioe_2021_658498 crossref_primary_10_1038_s41598_023_50222_0 crossref_primary_10_1002_wrna_1652 crossref_primary_10_3389_fncel_2021_602888 crossref_primary_10_4252_wjsc_v11_i7_431 crossref_primary_10_1515_jcim_2021_0114 crossref_primary_10_1186_s12974_024_03134_3 crossref_primary_10_3390_ijms22094616 |
Cites_doi | 10.1126/science.1175509 10.1002/stem.579 10.1186/s40662-017-0071-0 10.1523/JNEUROSCI.1615-07.2007 10.1016/j.brainres.2008.02.035 10.1002/cne.20134 10.1038/nn1192 10.1146/annurev-neuro-071714-034120 10.1038/nmeth.4230 10.1073/pnas.1510595112 10.1007/978-1-4939-7522-8_8 10.1016/j.neuron.2012.06.033 10.1016/j.brainres.2008.03.095 10.1038/srep30552 10.1002/jnr.22629 10.1002/cne.23521 10.1167/iovs.15-18590 10.1002/dvdy.24375 10.1016/j.ydbio.2010.02.002 10.1634/stemcells.2006-0724 10.1016/j.preteyeres.2009.05.002 10.1126/science.1239882 10.1242/dev.064006 10.1016/0896-6273(90)90136-4 10.5966/sctm.2011-0005 10.1002/ar.1092120215 10.1016/j.ydbio.2006.07.029 10.1016/j.stemcr.2017.05.009 10.1155/2017/2817252 10.1016/j.febslet.2013.05.020 10.1038/nature23283 10.1073/pnas.2235688100 10.1038/s41586-018-0425-3 10.1006/meth.2001.1262 10.1038/ncb3108 10.1016/j.cell.2015.05.002 10.1002/jnr.10533 10.1002/stem.1885 10.1073/pnas.0807453105 10.18240/ijo.2016.07.03 10.1016/j.brainres.2018.02.045. 10.1016/B978-0-12-394387-3.00002-1 10.1016/j.gde.2016.05.028 10.1016/j.celrep.2017.01.075 10.1242/dev.091355 10.1167/iovs.10-5208 10.1016/j.mcn.2015.10.004 10.1371/journal.pbio.1000373 10.1073/pnas.0402129101 10.1016/bs.pbr.2016.12.010 10.1073/pnas.0610155104 10.1016/j.stem.2015.05.014 10.1016/S0959-4388(99)80005-1 10.1016/j.celrep.2015.02.025 10.2147/EB.S9078 10.1371/journal.pone.0022817 10.1002/glia.22958 10.1002/glia.22846 10.1167/iovs.07-1619 10.1523/JNEUROSCI.2837-05.2005 10.1007/978-1-61779-848-1_15 10.1016/0014-4835(90)90063-Z 10.1371/journal.pbio.0020247 10.1186/scrt305 |
ContentType | Journal Article |
Copyright | 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2018 Guimarães, Landeira, Coelho, Golbert, Silveira, Linden, de Melo Reis and Costa. 2018 Guimarães, Landeira, Coelho, Golbert, Silveira, Linden, de Melo Reis and Costa |
Copyright_xml | – notice: 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2018 Guimarães, Landeira, Coelho, Golbert, Silveira, Linden, de Melo Reis and Costa. 2018 Guimarães, Landeira, Coelho, Golbert, Silveira, Linden, de Melo Reis and Costa |
DBID | NPM AAYXX CITATION 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PIMPY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3389/fncel.2018.00410 |
DatabaseName | PubMed CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database Biological Science Database Publicly Available Content Database (Proquest) (PQ_SDU_P3) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest Biological Science Collection ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1662-5102 |
EndPage | 410 |
ExternalDocumentID | oai_doaj_org_article_d475a4abce0f40e9abedfd57d5197064 10_3389_fncel_2018_00410 30483060 |
Genre | Journal Article |
GeographicLocations | Brazil Rio de Janeiro Brazil |
GeographicLocations_xml | – name: Rio de Janeiro Brazil – name: Brazil |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ ABUWG ACGFO ACGFS ACXDI ADBBV ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ C1A CCPQU CS3 DIK DWQXO E3Z EMOBN F5P GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE IAO IEA IHR IHW IPNFZ ISR KQ8 LK8 M2P M48 M7P M~E NPM O5R O5S OK1 PGMZT PIMPY PQQKQ PROAC RIG RNS RPM TR2 AAYXX CITATION 3V. 7XB 8FK PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c490t-fc7e4896bc73554cabf28f0fcb5945b949a04924215560fe07053d8f4802146b3 |
IEDL.DBID | RPM |
ISSN | 1662-5102 |
IngestDate | Tue Oct 22 15:16:54 EDT 2024 Tue Sep 17 21:26:22 EDT 2024 Fri Oct 25 23:43:13 EDT 2024 Thu Oct 10 16:49:42 EDT 2024 Thu Sep 26 19:38:23 EDT 2024 Sat Sep 28 08:48:25 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | müller glia cells retina ganglion cells retina lineage-reprogramming neurogenin2 Ascl1 induced neurons |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c490t-fc7e4896bc73554cabf28f0fcb5945b949a04924215560fe07053d8f4802146b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors have contributed equally to this work Reviewed by: Antje Grosche, Ludwig-Maximilians-Universität München, Germany; Xiao-Feng Zhao, University of Michigan, United States Edited by: Sandra Henriques Vaz, Instituto de Medicina Molecular (IMM), Portugal |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6240664/ |
PMID | 30483060 |
PQID | 2282424624 |
PQPubID | 4424410 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d475a4abce0f40e9abedfd57d5197064 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6240664 proquest_miscellaneous_2138646590 proquest_journals_2282424624 crossref_primary_10_3389_fncel_2018_00410 pubmed_primary_30483060 |
PublicationCentury | 2000 |
PublicationDate | 2018-11-12 |
PublicationDateYYYYMMDD | 2018-11-12 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-12 day: 12 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Lausanne |
PublicationTitle | Frontiers in cellular neuroscience |
PublicationTitleAlternate | Front Cell Neurosci |
PublicationYear | 2018 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | Jadhav (B24) 2009; 28 Chouchane (B12) 2017; 9 Giannelli (B16) 2011; 29 Yao (B63) 2018; 560 Das (B13) 2006; 299 Chamling (B10) 2016; 57 Livak (B33) 2001; 25 Karl (B26) 2008; 105 Amamoto (B2) 2014; 343 Martersteck (B36) 2017; 18 Macosko (B35) 2015; 161 Ooto (B43) 2004; 101 Singhal (B51) 2012; 1 Cepko (B9) 1999; 9 Bhatia (B5) 2011; 52 Blackshaw (B6) 2004; 2 Berninger (B4) 2007; 27 Hicks (B22) 1990; 51 Nelson (B40) 2011; 6 Wong-Riley (B60) 2010; 2 Turner (B56) 1990; 4 Raposo (B47) 2015; 10 Lee (B30) 2012; 116 Heinrich (B21) 2015; 17 Sanes (B50) 2015; 38 Kimura (B28) 2017; 2017 Todd (B54) 2015; 69 Hufnagel (B23) 2010; 340 Lawrence (B29) 2007; 25 de Melo Reis (B14) 2008; 1205 Wilken (B58) 2016; 40 Song (B52) 2004; 7 Masserdotti (B37) 2015; 17 Torper (B55) 2017; 230 Hamon (B18) 2016; 245 Ueki (B57) 2015; 112 Karl (B27) 2012; 884 Chouchane (B11) 2018 Matsuda (B39) 2007; 104 Athanasiou (B3) 2013; 587 Quina (B45) 2005; 25 Liang (B31) 2017; 4 Nickerson (B42) 2011; 89 Matsuda (B38) 2004; 101 Young (B64) 1985; 212 Rodriguez (B48) 2014; 522 Jorstad (B25) 2017; 548 Gill (B17) 2016; 6 Heinrich (B20) 2010; 8 de Melo (B15) 2018; 1715 Abu-Hassan (B1) 2015; 33 Brzezinski (B8) 2011; 138 Wu (B61) 2016; 9 He (B19) 2012; 75 Wohl (B59) 2016; 64 Lin (B32) 2009; 50 Loffler (B34) 2015; 63 Nickerson (B41) 2008; 1230 Rapaport (B46) 2004; 474 Pollak (B44) 2013; 140 Rolf (B49) 2003; 71 Song (B53) 2013; 4 Bonifazi (B7) 2009; 326 Yang (B62) 2017; 14 |
References_xml | – volume: 326 start-page: 1419 year: 2009 ident: B7 article-title: GABAergic hub neurons orchestrate synchrony in developing hippocampal networks publication-title: Science doi: 10.1126/science.1175509 contributor: fullname: Bonifazi – volume: 29 start-page: 344 year: 2011 ident: B16 article-title: Adult human Muller glia cells are a highly efficient source of rod photoreceptors publication-title: Stem Cells doi: 10.1002/stem.579 contributor: fullname: Giannelli – volume: 4 start-page: 6 year: 2017 ident: B31 article-title: Proposing new indicators for glaucoma healthcare service publication-title: Eye Vis. doi: 10.1186/s40662-017-0071-0 contributor: fullname: Liang – volume: 27 start-page: 8654 year: 2007 ident: B4 article-title: Functional properties of neurons derived from in vitro reprogrammed postnatal astroglia publication-title: J Neurosci doi: 10.1523/JNEUROSCI.1615-07.2007 contributor: fullname: Berninger – volume: 1205 start-page: 1 year: 2008 ident: B14 article-title: Muller glia factors induce survival and neuritogenesis of peripheral and central neurons publication-title: Brain Res. doi: 10.1016/j.brainres.2008.02.035 contributor: fullname: de Melo Reis – volume: 474 start-page: 304 year: 2004 ident: B46 article-title: Timing and topography of cell genesis in the rat retina publication-title: J. Comp. Neurol. doi: 10.1002/cne.20134 contributor: fullname: Rapaport – volume: 7 start-page: 229 year: 2004 ident: B52 article-title: FGF2-induced chromatin remodeling regulates CNTF-mediated gene expression and astrocyte differentiation publication-title: Nat. Neurosci. doi: 10.1038/nn1192 contributor: fullname: Song – volume: 38 start-page: 221 year: 2015 ident: B50 article-title: The types of retinal ganglion cells: current status and implications for neuronal classification publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev-neuro-071714-034120 contributor: fullname: Sanes – volume: 14 start-page: 349 year: 2017 ident: B62 article-title: In vivo imaging of neural activity publication-title: Nat. Methods doi: 10.1038/nmeth.4230 contributor: fullname: Yang – volume: 112 start-page: 13717 year: 2015 ident: B57 article-title: Transgenic expression of the proneural transcription factor Ascl1 in Muller glia stimulates retinal regeneration in young mice publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1510595112 contributor: fullname: Ueki – volume: 1715 start-page: 101 year: 2018 ident: B15 article-title: In vivo electroporation of developing mouse retina publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-7522-8_8 contributor: fullname: de Melo – volume: 75 start-page: 786 year: 2012 ident: B19 article-title: How variable clones build an invariant retina publication-title: Neuron doi: 10.1016/j.neuron.2012.06.033 contributor: fullname: He – volume: 1230 start-page: 1 year: 2008 ident: B41 article-title: Neural progenitor potential in cultured Muller glia: effects of passaging and exogenous growth factor exposure publication-title: Brain Res. doi: 10.1016/j.brainres.2008.03.095 contributor: fullname: Nickerson – volume: 6 start-page: 30552 year: 2016 ident: B17 article-title: Enriched retinal ganglion cells derived from human embryonic stem cells publication-title: Sci. Rep. doi: 10.1038/srep30552 contributor: fullname: Gill – volume: 89 start-page: 1018 year: 2011 ident: B42 article-title: Effects of epidermal growth factor and erythropoietin on Muller glial activation and phenotypic plasticity in the adult mammalian retina publication-title: J. Neurosci. Res. doi: 10.1002/jnr.22629 contributor: fullname: Nickerson – volume: 522 start-page: 1411 year: 2014 ident: B48 article-title: The RNA binding protein RBPMS is a selective marker of ganglion cells in the mammalian retina publication-title: J. Comp. Neurol. doi: 10.1002/cne.23521 contributor: fullname: Rodriguez – volume: 57 year: 2016 ident: B10 article-title: The potential of human stem cells for the study and treatment of glaucoma publication-title: Invest. Ophthalmol. Vis. Sci doi: 10.1167/iovs.15-18590 contributor: fullname: Chamling – volume: 245 start-page: 727 year: 2016 ident: B18 article-title: Muller glial cell-dependent regeneration of the neural retina: an overview across vertebrate model systems publication-title: Dev. Dyn. doi: 10.1002/dvdy.24375 contributor: fullname: Hamon – volume: 340 start-page: 490 year: 2010 ident: B23 article-title: Neurog2 controls the leading edge of neurogenesis in the mammalian retina publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2010.02.002 contributor: fullname: Hufnagel – volume: 25 start-page: 2033 year: 2007 ident: B29 article-title: MIO-M1 cells and similar muller glial cell lines derived from adult human retina exhibit neural stem cell characteristics publication-title: Stem Cells doi: 10.1634/stemcells.2006-0724 contributor: fullname: Lawrence – volume: 28 start-page: 249 year: 2009 ident: B24 article-title: Development and neurogenic potential of Muller glial cells in the vertebrate retina publication-title: Prog. Retin. Eye Res. doi: 10.1016/j.preteyeres.2009.05.002 contributor: fullname: Jadhav – volume: 343 start-page: 1239882 year: 2014 ident: B2 article-title: Development-inspired reprogramming of the mammalian central nervous system publication-title: Science doi: 10.1126/science.1239882 contributor: fullname: Amamoto – volume: 138 start-page: 3519 year: 2011 ident: B8 article-title: Ascl1 expression defines a subpopulation of lineage-restricted progenitors in the mammalian retina publication-title: Development doi: 10.1242/dev.064006 contributor: fullname: Brzezinski – volume: 4 start-page: 833 year: 1990 ident: B56 article-title: Lineage-independent determination of cell type in the embryonic mouse retina publication-title: Neuron doi: 10.1016/0896-6273(90)90136-4 contributor: fullname: Turner – volume: 1 start-page: 188 year: 2012 ident: B51 article-title: Human Muller glia with stem cell characteristics differentiate into retinal ganglion cell (RGC) precursors in vitro and partially restore RGC function in vivo following transplantation publication-title: Stem Cells Transl. Med. doi: 10.5966/sctm.2011-0005 contributor: fullname: Singhal – volume: 212 start-page: 199 year: 1985 ident: B64 article-title: Cell differentiation in the retina of the mouse publication-title: Anat. Rec. doi: 10.1002/ar.1092120215 contributor: fullname: Young – volume: 299 start-page: 283 year: 2006 ident: B13 article-title: Neural stem cell properties of Muller glia in the mammalian retina: regulation by Notch and Wnt signaling publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2006.07.029 contributor: fullname: Das – volume: 9 start-page: 162 year: 2017 ident: B12 article-title: Lineage reprogramming of astroglial cells from different origins into distinct neuronal subtypes publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2017.05.009 contributor: fullname: Chouchane – volume: 2017 start-page: 2817252 year: 2017 ident: B28 article-title: Targeting oxidative stress for treatment of glaucoma and optic neuritis publication-title: Oxid. Med. Cell Longev. doi: 10.1155/2017/2817252 contributor: fullname: Kimura – volume: 587 start-page: 2008 year: 2013 ident: B3 article-title: The cell stress machinery and retinal degeneration publication-title: FEBS Lett doi: 10.1016/j.febslet.2013.05.020 contributor: fullname: Athanasiou – volume: 548 start-page: 103 year: 2017 ident: B25 article-title: Stimulation of functional neuronal regeneration from Muller glia in adult mice publication-title: Nature doi: 10.1038/nature23283 contributor: fullname: Jorstad – volume: 101 start-page: 16 year: 2004 ident: B38 article-title: Electroporation and RNA interference in the rodent retina in vivo and in vitro publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.2235688100 contributor: fullname: Matsuda – volume: 560 start-page: 484 year: 2018 ident: B63 article-title: Restoration of vision after de novo genesis of rod photoreceptors in mammalian retinas publication-title: Nature doi: 10.1038/s41586-018-0425-3 contributor: fullname: Yao – volume: 25 start-page: 402 year: 2001 ident: B33 article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method publication-title: Methods doi: 10.1006/meth.2001.1262 contributor: fullname: Livak – volume: 17 start-page: 204 year: 2015 ident: B21 article-title: In vivo reprogramming for tissue repair publication-title: Nat. Cell Biol. doi: 10.1038/ncb3108 contributor: fullname: Heinrich – volume: 161 start-page: 1202 year: 2015 ident: B35 article-title: Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets publication-title: Cell doi: 10.1016/j.cell.2015.05.002 contributor: fullname: Macosko – volume: 71 start-page: 835 year: 2003 ident: B49 article-title: Altered expression of CHL1 by glial cells in response to optic nerve injury and intravitreal application of fibroblast growth factor-2 publication-title: J. Neurosci. Res. doi: 10.1002/jnr.10533 contributor: fullname: Rolf – volume: 33 start-page: 751 year: 2015 ident: B1 article-title: Induced pluripotent stem cells restore function in a human cell loss model of open-angle glaucoma publication-title: Stem Cells doi: 10.1002/stem.1885 contributor: fullname: Abu-Hassan – volume: 105 start-page: 19508 year: 2008 ident: B26 article-title: Stimulation of neural regeneration in the mouse retina publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0807453105 contributor: fullname: Karl – volume: 9 start-page: 948 year: 2016 ident: B61 article-title: Promotion on the differentiation of retinal Muller cells into retinal ganglion cells by Brn-3b publication-title: Int. J. Ophthalmol. doi: 10.18240/ijo.2016.07.03 contributor: fullname: Wu – year: 2018 ident: B11 article-title: Instructing neuronal identity during CNS development and astroglial-lineage reprogramming: roles of NEUROG2 and ASCL1 publication-title: Brain Res doi: 10.1016/j.brainres.2018.02.045. contributor: fullname: Chouchane – volume: 116 start-page: 39 year: 2012 ident: B30 article-title: Mechanisms of resistance to histone deacetylase inhibitors publication-title: Adv. Cancer Res. doi: 10.1016/B978-0-12-394387-3.00002-1 contributor: fullname: Lee – volume: 40 start-page: 57 year: 2016 ident: B58 article-title: Retinal regeneration in birds and mice publication-title: Curr. Opin. Genet. Dev. doi: 10.1016/j.gde.2016.05.028 contributor: fullname: Wilken – volume: 18 start-page: 2058 year: 2017 ident: B36 article-title: Diverse central projection patterns of retinal ganglion cells publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.01.075 contributor: fullname: Martersteck – volume: 140 start-page: 2619 year: 2013 ident: B44 article-title: ASCL1 reprograms mouse Muller glia into neurogenic retinal progenitors publication-title: Development doi: 10.1242/dev.091355 contributor: fullname: Pollak – volume: 52 start-page: 136 year: 2011 ident: B5 article-title: SOX2 is required for adult human muller stem cell survival and maintenance of progenicity in vitro publication-title: Invest. Ophthalmol. Vis. Sci doi: 10.1167/iovs.10-5208 contributor: fullname: Bhatia – volume: 69 start-page: 54 year: 2015 ident: B54 article-title: Heparin-binding EGF-like growth factor (HB-EGF) stimulates the proliferation of Muller glia-derived progenitor cells in avian and murine retinas publication-title: Mol. Cell Neurosci. doi: 10.1016/j.mcn.2015.10.004 contributor: fullname: Todd – volume: 8 start-page: e1000373 year: 2010 ident: B20 article-title: Directing astroglia from the cerebral cortex into subtype specific functional neurons publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000373 contributor: fullname: Heinrich – volume: 101 start-page: 13654 year: 2004 ident: B43 article-title: Potential for neural regeneration after neurotoxic injury in the adult mammalian retina publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0402129101 contributor: fullname: Ooto – volume: 230 start-page: 69 year: 2017 ident: B55 article-title: Brain repair from intrinsic cell sources: Turning reactive glia into neurons publication-title: Prog. Brain. Res. doi: 10.1016/bs.pbr.2016.12.010 contributor: fullname: Torper – volume: 104 start-page: 1027 year: 2007 ident: B39 article-title: Controlled expression of transgenes introduced by in vivo electroporation publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0610155104 contributor: fullname: Matsuda – volume: 17 start-page: 74 year: 2015 ident: B37 article-title: Transcriptional mechanisms of proneural factors and REST in regulating neuronal reprogramming of astrocytes publication-title: Cell Stem Cell doi: 10.1016/j.stem.2015.05.014 contributor: fullname: Masserdotti – volume: 9 start-page: 37 year: 1999 ident: B9 article-title: The roles of intrinsic and extrinsic cues and bHLH genes in the determination of retinal cell fates publication-title: Curr. Opin. Neurobiol doi: 10.1016/S0959-4388(99)80005-1 contributor: fullname: Cepko – volume: 10 start-page: 1544 year: 2015 ident: B47 article-title: Ascl1 coordinately regulates gene expression and the chromatin landscape during neurogenesis publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.02.025 contributor: fullname: Raposo – volume: 2 start-page: 99 year: 2010 ident: B60 article-title: Energy metabolism of the visual system publication-title: Eye Brain doi: 10.2147/EB.S9078 contributor: fullname: Wong-Riley – volume: 6 start-page: e22817 year: 2011 ident: B40 article-title: Genome-wide analysis of Muller glial differentiation reveals a requirement for Notch signaling in postmitotic cells to maintain the glial fate publication-title: PLoS ONE doi: 10.1371/journal.pone.0022817 contributor: fullname: Nelson – volume: 64 start-page: 743 year: 2016 ident: B59 article-title: miR-124-9-9* potentiates Ascl1-induced reprogramming of cultured Muller glia publication-title: Glia doi: 10.1002/glia.22958 contributor: fullname: Wohl – volume: 63 start-page: 1809 year: 2015 ident: B34 article-title: Age-dependent Muller glia neurogenic competence in the mouse retina publication-title: Glia doi: 10.1002/glia.22846 contributor: fullname: Loffler – volume: 50 start-page: 68 year: 2009 ident: B32 article-title: Sox2 plays a role in the induction of amacrine and Muller glial cells in mouse retinal progenitor cells publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.07-1619 contributor: fullname: Lin – volume: 25 start-page: 11595 year: 2005 ident: B45 article-title: Brn3a-expressing retinal ganglion cells project specifically to thalamocortical and collicular visual pathways publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2837-05.2005 contributor: fullname: Quina – volume: 884 start-page: 213 year: 2012 ident: B27 article-title: Studying the generation of regenerated retinal neuron from Muller glia in the mouse eye publication-title: Methods Mol. Biol. doi: 10.1007/978-1-61779-848-1_15 contributor: fullname: Karl – volume: 51 start-page: 119 year: 1990 ident: B22 article-title: The growth and behaviour of rat retinal Muller cells in vitro. 1. An improved method for isolation and culture publication-title: Exp. Eye Res. doi: 10.1016/0014-4835(90)90063-Z contributor: fullname: Hicks – volume: 2 start-page: E247 year: 2004 ident: B6 article-title: Genomic analysis of mouse retinal development publication-title: PLoS Biol doi: 10.1371/journal.pbio.0020247 contributor: fullname: Blackshaw – volume: 4 start-page: 94 year: 2013 ident: B53 article-title: Atoh7 promotes the differentiation of retinal stem cells derived from Muller cells into retinal ganglion cells by inhibiting Notch signaling publication-title: Stem Cell Res. Ther. doi: 10.1186/scrt305 contributor: fullname: Song |
SSID | ssj0062648 |
Score | 2.364933 |
Snippet | Degenerative retinopathies are the leading causes of irreversible visual impairment in the elderly, affecting hundreds of millions of patients. Müller glia... |
SourceID | doaj pubmedcentral proquest crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 410 |
SubjectTerms | Amacrine cells Ascl1 ASCL1 protein Biophysics Cell differentiation Electroporation Epidermal growth factor Fibroblast growth factor 2 Fibroblasts Gene expression Geriatrics Glaucoma Glucose induced neurons lineage-reprogramming müller glia cells Neonates Neural stem cells neurogenin2 Neurogenins Neuronal-glial interactions Neurons Neuroscience Penicillin Photoreceptors Plasmids Retina Retinal ganglion cells Stem cells Transcription factors |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELZKDhUXVGiBtAG5EpceVmzWs971EQIkPaRCPCRultcPESnaoCb5d9z6xzrj3UQJqsSlt5Xtg_cbjz3jmfnM2JlxNgtOiERAkdJtVT9RHtXdg8FvS5Ra5CiO7otfT-XVNdHkrJ_6opywhh64Ae7cQZEbMJX1aYDUK1N5F1xeOKq4xPM07r6pXDlTzR4sKW-rCUqiC6bOAwJIcYY-JU4CVctuHEKRq_9fBubbPMmNg-fmE9trLUZ-0cx0n33w9QH7OG5j4p_Z7ephUD4LfPznlWr7-HA6MXxAGeXxOoz_rBczfkflzYYPDZXuYuPAT6dzHpMGeCTpwMU0qbMv7PHm-mEwStp3EhILKl0kwRYeSiUrW5D1YE0VsjKkwVa5grxSoAz6ART7zdG-CR61PBeuDFDGZ70rccg69az2x4wLWZgK9xzjQIJC5IVVQqBPVVrvvBdd9mMFnH5p6DA0uhEEso4gawJZR5C77JKQXY8jIuvYgOLVrXj1e-Ltst5KLrrVrrnO0E-EDGSG3d_X3agXFOwwtZ8tcUxflBJkrnAeR40Y1zMRxKOfSuwptgS8NdXtnnryHLm3JVlAEr7-j3_7xnYJLaps7Gc91ln8XvoTtjN3y9O4mv8C-J36sg priority: 102 providerName: Directory of Open Access Journals |
Title | Evidence of Müller Glia Conversion Into Retina Ganglion Cells Using Neurogenin2 |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30483060 https://www.proquest.com/docview/2282424624 https://search.proquest.com/docview/2138646590 https://pubmed.ncbi.nlm.nih.gov/PMC6240664 https://doaj.org/article/d475a4abce0f40e9abedfd57d5197064 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB7RPSAuaHmHfchIXDhkm8TOw0fovjgUrXhI3Cw_oVI3WW3bf7e3_WPMOEmhiBO3yHEUax72jGfmG4C32tkiOM5TLuqMbqvyVHpUdy80PluC1CJH8fJL_el7c3pGMDnlWAsTk_atWZy0y-uTdvEz5lbeXNvpmCc2vZrPKjqGKjGdwARtw9FF77ffilK2-ngkel9yGpB2FGLIKWdS5NT5jROMehZBKX8fRRGx_19m5t_Zkn8cP-f78HiwG9n7fn1P4IFvn8LD-RAZfwZXY3tQ1gU2v7-jCj92sVxoNqO88ngpxj626459piJnzS40FfDi4MwvlysWUwdYhOpAkVq0xXP4dn72dXaZDt0SUitktk6Drb1oZGVsTTaE1SYUTciCNaUUpZFCavQGKAJcopUTPOp6yV0TRBObexv-AvbarvWvgPGq1gZ3Hu1EJWRdam4l5-hZNdY773kC70bCqZseFEOhM0H0VpHeiuitIr0T-ECU3c4jOOs40N3-UANTlRP4E6GN9VkQmZfaeBdcWTsqq0WjKYHDkS9q0LGVKtBbFIVAYUjgzfY1ageFPHTruw3OyXlTiaqUuI6XPRu3KxnFIIF6h8E7S919gwIZEbgHAXz9318ewCMiERU15sUh7K1vN_4IJiu3OY63AsdRpn8BOnT62w |
link.rule.ids | 230,315,729,782,786,866,887,2106,27933,27934,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RIgEXypvQAkbiwiHdJHYePtKl7VZ0qwqKxM1y_ICVtknV3f133PhjzDjJlkWceotiR7Hm89gznpnPAO-1NZm3nMdclAmdVqWxdKjuTmh8NkSpRY7i5Gt59r36dEg0OflQCxOS9k0922_ml_vN7GfIrby6NKMhT2x0Ph0XtA0VYrQFd1Ffk2Rw0rsFuKCkrS4iif6XHHmUHgUZUsqaFCnd_caJSD0JtJQ3m1Hg7P-foflvvuRfG9DRzi2H_gge9hYn-9g1P4Y7rnkC96Z9TP0pnA8Xi7LWs-nvX1QbyI7nM83GlJEejtPYSbNs2Rcqj9bsWFPpL74cu_l8wULSAQskHzgZZ032DL4dHV6MJ3F_z0JshEyWsTelE5UsalOS9WF07bPKJ97UuRR5LYXU6EdQ7DhH-8g7XCVybisvqnAteM2fw3bTNu4lMF6UusY1S1tRCFnmmhvJOfpklXHWOR7Bh0Hg6qqj01DohhBOKuCkCCcVcIrggBBZ9yMi7PCivf6hepkqK_AnQtfGJV4kTuraWW_z0lJBLppbEewNeKpeOxcqQz9TZAKxiODduhn1ioIlunHtCvukvCpEkUscx4sO_vVIhukTQbkxMTaGutmC8yFwd_f4v7r1l2_h_uRieqpOT84-78IDEheVRqbZHmwvr1fuNWwt7OpN0Ig_WZcPeQ |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIlVceFMCBYzEhUO6Sew8fIRtt61gqxUPiZvl-AErbZNVd_ffceOPMeMkC4s4wS1yHMWahz3jmfkG4JW2JvOW85iLMqHbqjSWDtXdCY3PhiC1yFE8_1hefqlOTgkmZ9vqKyTtm3p-3Cyujpv5t5BbubwyoyFPbDSbjgs6hgoxWlo_2oObqLNJNjjq3SZcUOJWF5VEH0yOPFKQAg0pZU6KlPq_cQJTTwI05a8DKeD2_83Y_DNn8rdDaHLnP5Z_F273lid70025Bzdccx8Opn1s_QHMhgajrPVs-uM71Qiys8VcszFlpodrNXbRrFv2gcqkNTvTVAKMg2O3WKxYSD5gAewDhXLeZA_h8-T00_g87vstxEbIZB17UzpRyaI2JVkhRtc-q3ziTZ1LkddSSI3-BMWQc7STvMPdIue28qIK7cFr_gj2m7Zxj4HxotQ17l3aikLIMtfcSM7RN6uMs87xCF4PRFfLDlZDoTtCvFKBV4p4pQKvInhLXNnOI0DsMNBef1U9XZUV-BOha-MSLxInde2st3lpqTAXza4Ijgaeql5LVypDf1NkAvkRwcvta9QvCproxrUbnJPyqhBFLnEdh50IbFcyiFAE5Y5w7Cx19w3KRMDw7mXgyT9_-QIOZicT9f7i8t1TuEXUogrJNDuC_fX1xj2DvZXdPA9K8RPmVxH5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evidence+of+M%C3%BCller+Glia+Conversion+Into+Retina+Ganglion+Cells+Using+Neurogenin2&rft.jtitle=Frontiers+in+cellular+neuroscience&rft.au=Roberta+Pereira+de+Melo+Guimar%C3%A3es&rft.au=Bruna+Soares+Landeira&rft.au=Diego+Marques+Coelho&rft.au=Daiane+Cristina+Ferreira+Golbert&rft.date=2018-11-12&rft.pub=Frontiers+Research+Foundation&rft.eissn=1662-5102&rft_id=info:doi/10.3389%2Ffncel.2018.00410&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5102&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5102&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5102&client=summon |