Fertility of CMS wheat is restored by two Rf loci located on a recombined acrocentric chromosome

Cytoplasmic male sterility (CMS) results from incompatibility between nuclear and cytoplasmic genomes, and is characterized by the inability to produce viable pollen. The restoration of male fertility generally involves the introgression of nuclear genes, termed restorers of fertility (Rf). CMS has...

Full description

Saved in:
Bibliographic Details
Published in:Journal of experimental botany Vol. 65; no. 22; pp. 6667 - 6677
Main Authors: Castillo, Almudena, Atienza, Sergio G, Martín, Azahara C
Format: Journal Article
Language:English
Published: England Oxford University Press [etc.] 01-12-2014
Oxford University Press
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Cytoplasmic male sterility (CMS) results from incompatibility between nuclear and cytoplasmic genomes, and is characterized by the inability to produce viable pollen. The restoration of male fertility generally involves the introgression of nuclear genes, termed restorers of fertility (Rf). CMS has been widely used for hybrid seed production in many crops but not in wheat, partly owing to the complex genetics of fertility restoration. In this study, an acrocentric chromosome that restores pollen fertility of CMS wheat in Hordeum chilense cytoplasm (msH1 system) is studied. The results show that this chromosome, of H. chilense origin and named Hchac, originated from a complex reorganization of the short arm of chromosomes 1Hch (1HchS) and 6Hch (6HchS). Diversity arrays technology (DArT) markers and cytological analysis indicate that Hchac is a kind of `zebra-like′ chromosome composed of chromosome 1HchS and alternate fragments of interstitial and distal regions of chromosome 6HchS. PCR-based markers together with FISH, GISH, and meiotic pairing analysis support this result. A restorer of fertility gene, named Rf 6H ch S , has been identified on the short arm of chromosome 6HchS. Moreover, restoration by the addition of chromosome 1HchS has been observed at a very low frequency and under certain environmental conditions. Therefore, the results indicate the presence of two Rf genes on the acrocentric chromosome: Rf 6H ch S and Rf 1H ch S , the restoration potential of Rf 6H ch S being greater. The stable and high restoration of pollen fertility in the msH1 system is therefore the result of the interaction between these two restorer genes. The high potential for an acrocentric chromosome originated from a complex reorganization of chromosomes 1HchS and 6HchS from Hordeum chilense in the development of hybrid wheat technology.
AbstractList Cytoplasmic male sterility (CMS) results from incompatibility between nuclear and cytoplasmic genomes, and is characterized by the inability to produce viable pollen. The restoration of male fertility generally involves the introgression of nuclear genes, termed restorers of fertility (Rf). CMS has been widely used for hybrid seed production in many crops but not in wheat, partly owing to the complex genetics of fertility restoration. In this study, an acrocentric chromosome that restores pollen fertility of CMS wheat in Hordeum chilense cytoplasm (msH1 system) is studied. The results show that this chromosome, of H. chilense origin and named Hchac, originated from a complex reorganization of the short arm of chromosomes 1Hch (1HchS) and 6Hch (6HchS). Diversity arrays technology (DArT) markers and cytological analysis indicate that Hchac is a kind of `zebra-like′ chromosome composed of chromosome 1HchS and alternate fragments of interstitial and distal regions of chromosome 6HchS. PCR-based markers together with FISH, GISH, and meiotic pairing analysis support this result. A restorer of fertility gene, named Rf 6H ch S , has been identified on the short arm of chromosome 6HchS. Moreover, restoration by the addition of chromosome 1HchS has been observed at a very low frequency and under certain environmental conditions. Therefore, the results indicate the presence of two Rf genes on the acrocentric chromosome: Rf 6H ch S and Rf 1H ch S , the restoration potential of Rf 6H ch S being greater. The stable and high restoration of pollen fertility in the msH1 system is therefore the result of the interaction between these two restorer genes. The high potential for an acrocentric chromosome originated from a complex reorganization of chromosomes 1HchS and 6HchS from Hordeum chilense in the development of hybrid wheat technology.
Cytoplasmic male sterility (CMS) results from incompatibility between nuclear and cytoplasmic genomes, and is characterized by the inability to produce viable pollen. The restoration of male fertility generally involves the introgression of nuclear genes, termed restorers of fertility (Rf). CMS has been widely used for hybrid seed production in many crops but not in wheat, partly owing to the complex genetics of fertility restoration. In this study, an acrocentric chromosome that restores pollen fertility of CMS wheat in Hordeum chilense cytoplasm (msH1 system) is studied. The results show that this chromosome, of H. chilense origin and named H(ch)ac, originated from a complex reorganization of the short arm of chromosomes 1H(ch) (1H(ch)S) and 6H(ch) (6H(ch)S). Diversity arrays technology (DArT) markers and cytological analysis indicate that H(ch)ac is a kind of `zebra-like' chromosome composed of chromosome 1H(ch)S and alternate fragments of interstitial and distal regions of chromosome 6H(ch)S. PCR-based markers together with FISH, GISH, and meiotic pairing analysis support this result. A restorer of fertility gene, named Rf6H(ch)S, has been identified on the short arm of chromosome 6H(ch)S. Moreover, restoration by the addition of chromosome 1H(ch)S has been observed at a very low frequency and under certain environmental conditions. Therefore, the results indicate the presence of two Rf genes on the acrocentric chromosome: Rf6H(ch)S and Rf1H(ch)S, the restoration potential of Rf6H(ch)S being greater. The stable and high restoration of pollen fertility in the msH1 system is therefore the result of the interaction between these two restorer genes.
Cytoplasmic male sterility (CMS) results from incompatibility between nuclear and cytoplasmic genomes, and is characterized by the inability to produce viable pollen. The restoration of male fertility generally involves the introgression of nuclear genes, termed restorers of fertility (Rf). CMS has been widely used for hybrid seed production in many crops but not in wheat, partly owing to the complex genetics of fertility restoration. In this study, an acrocentric chromosome that restores pollen fertility of CMS wheat in Hordeum chilense cytoplasm (msH1 system) is studied. The results show that this chromosome, of H. chilense origin and named Hchac, originated from a complex reorganization of the short arm of chromosomes 1Hch (1HchS) and 6Hch (6HchS). Diversity arrays technology (DArT) markers and cytological analysis indicate that Hchac is a kind of 'zebra-like' chromosome composed of chromosome 1HchS and alternate fragments of interstitial and distal regions of chromosome 6HchS. PCR-based markers together with FISH, GISH, and meiotic pairing analysis support this result. A restorer of fertility gene, named Rf6HchS, has been identified on the short arm of chromosome 6HchS. Moreover, restoration by the addition of chromosome 1HchS has been observed at a very low frequency and under certain environmental conditions. Therefore, the results indicate the presence of two Rf genes on the acrocentric chromosome: Rf6HchS and Rf1HchS, the restoration potential of Rf6HchS being greater. The stable and high restoration of pollen fertility in the msH1 system is therefore the result of the interaction between these two restorer genes.
The high potential for an acrocentric chromosome originated from a complex reorganization of chromosomes 1H ch S and 6H ch S from Hordeum chilense in the development of hybrid wheat technology. Cytoplasmic male sterility (CMS) results from incompatibility between nuclear and cytoplasmic genomes, and is characterized by the inability to produce viable pollen. The restoration of male fertility generally involves the introgression of nuclear genes, termed restorers of fertility ( Rf ). CMS has been widely used for hybrid seed production in many crops but not in wheat, partly owing to the complex genetics of fertility restoration. In this study, an acrocentric chromosome that restores pollen fertility of CMS wheat in Hordeum chilense cytoplasm (msH1 system) is studied. The results show that this chromosome, of H. chilense origin and named H ch ac, originated from a complex reorganization of the short arm of chromosomes 1H ch (1H ch S) and 6H ch (6H ch S). Diversity arrays technology (DArT) markers and cytological analysis indicate that H ch ac is a kind of `zebra-like′ chromosome composed of chromosome 1H ch S and alternate fragments of interstitial and distal regions of chromosome 6H ch S. PCR-based markers together with FISH, GISH, and meiotic pairing analysis support this result. A restorer of fertility gene, named Rf 6H ch S , has been identified on the short arm of chromosome 6H ch S. Moreover, restoration by the addition of chromosome 1H ch S has been observed at a very low frequency and under certain environmental conditions. Therefore, the results indicate the presence of two Rf genes on the acrocentric chromosome: Rf 6H ch S and Rf 1H ch S , the restoration potential of Rf 6H ch S being greater. The stable and high restoration of pollen fertility in the msH1 system is therefore the result of the interaction between these two restorer genes.
Author Martín, Azahara C
Atienza, Sergio G
Castillo, Almudena
Author_xml – sequence: 1
  fullname: Castillo, Almudena
– sequence: 2
  fullname: Atienza, Sergio G
– sequence: 3
  fullname: Martín, Azahara C
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25271260$$D View this record in MEDLINE/PubMed
BookMark eNpVkc1v1DAQxS3Uim4LF-6AjwgpdPyVOBcktKJQqQiJ0rNxnEnXqyRu7Sxl_3scpS3lYst-P828mXdMDsYwIiGvGHxgUIvT7Z_mFONOaP2MrJgsoeBSsAOyAuC8gFpVR-Q4pS0AKFDqOTniileMl7Aiv84wTr73056Gjq6_XdK7DdqJ-kQjpilEbGmzp9NdoD862gfn58NO-TuM1GbIhaHxY35bF4PDcYreUbeJYQgpDPiCHHa2T_jy_j4hV2eff66_Fhffv5yvP10UTtYwFYJxLSyUbVXahlfYlRwQJbdCW1UpxS22TkPNAKRSzgqnlBRtxRliVepWnJCPS92bXTNkdjZie3MT_WDj3gTrzf_K6DfmOvw2ksuS1SIXeHdfIIbbXZ7dDD457Hs7Ytglw0qeKVlrmdH3C5onTili99iGgZkjMTkSs0SS4TdPjT2iDxlk4PUCbOd9_9OlVrrSs7G3i97ZYOx19MlcXXJgKufJqjqv4S-X9p2f
CitedBy_id crossref_primary_10_3389_fpls_2020_577475
crossref_primary_10_1007_s10681_017_2056_4
crossref_primary_10_3390_plants10010113
crossref_primary_10_1007_s00299_018_2248_y
crossref_primary_10_1007_s00122_019_03457_3
crossref_primary_10_1007_s00299_016_1949_3
crossref_primary_10_1007_s11032_018_0848_4
crossref_primary_10_3390_ijms19051344
crossref_primary_10_1139_gen_2018_0016
crossref_primary_10_1007_s00122_021_03767_5
crossref_primary_10_1071_FP19372
crossref_primary_10_1007_s00122_021_03777_3
crossref_primary_10_1007_s00122_022_04143_7
crossref_primary_10_1016_j_tplants_2017_10_001
crossref_primary_10_3390_ijms22179146
crossref_primary_10_1007_s10681_014_1292_0
crossref_primary_10_3390_plants10051029
crossref_primary_10_3389_fpls_2023_1163358
crossref_primary_10_1007_s00122_019_03397_y
crossref_primary_10_1007_s00122_020_03540_0
crossref_primary_10_1007_s12298_021_01109_9
Cites_doi 10.1007/s00122-011-1741-2
10.1007/s00122-013-2219-1
10.1007/BF01539455
10.1139/g94-150
10.1007/978-1-61779-870-2_5
10.1266/ggs.72.353
10.1093/genetics/156.4.1997
10.1111/j.1439-0523.1993.tb00615.x
10.1104/pp.108.130195
10.1111/j.1439-0523.2007.01483.x
10.1046/j.0960-7412.2001.01203.x
10.1023/A:1014270227360
10.1111/j.1439-0523.2004.00918.x
10.2135/cropsci1967.0011183X000700050026x
10.1073/pnas.0914991107
10.1021/jf070342p
10.1508/cytologia.16.177
10.1007/s00122-003-1311-3
10.1266/ggs.80.357
10.1093/aob/mct141
10.1266/ggs.76.33
10.1101/gad.7.12a.2345
10.1186/1471-2229-12-200
10.1007/BF00989417
10.1007/BF02732107
10.1007/BF00039229
10.1186/1471-2229-13-87
10.1007/s00122-010-1374-x
10.1007/s00122-012-1967-7
10.2135/cropsci1984.0011183X002400010005x
10.1111/j.1365-2958.2006.05026.x
10.1270/jsbbs.55.335
10.1508/cytologia.18.167
10.1071/AR07239
10.2135/cropsci1995.0011183X003500040037x
10.1006/anbo.1993.1104
10.1534/genetics.108.089599
10.1007/s001220051670
10.1007/s13353-013-0144-2
10.1093/jxb/ern068
10.1023/A:1009283003903
10.1093/genetics/33.5.439
10.1007/BF00352308
10.1104/pp.110.171579
ContentType Journal Article
Copyright Society for Experimental Biology 2014
The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. 2014
Copyright_xml – notice: Society for Experimental Biology 2014
– notice: The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
– notice: The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. 2014
DBID FBQ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1093/jxb/eru388
DatabaseName AGRIS
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE


Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1460-2431
EndPage 6677
ExternalDocumentID 10_1093_jxb_eru388
25271260
24858783
US201500017954
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-E4
-~X
.2P
.I3
0R~
18M
1TH
29K
2WC
2~F
3O-
4.4
482
48X
53G
5GY
5VS
5WA
5WD
6.Y
70D
AABJS
AABMN
AAESY
AAIMJ
AAIYJ
AAJKP
AAJQQ
AAMDB
AAMVS
AANRK
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
AAWDT
AAXTN
ABBHK
ABEUO
ABIXL
ABJNI
ABLJU
ABNKS
ABPPZ
ABPTD
ABPTK
ABQLI
ABQTQ
ABSAR
ABSMQ
ABWST
ABXZS
ABZBJ
ACFRR
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPQN
ACPRK
ACUFI
ACUTJ
ADBBV
ADEIU
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADOCK
ADORX
ADQLU
ADRIX
ADRTK
ADULT
ADVEK
ADYVW
ADZTZ
ADZXQ
AEEJZ
AEGPL
AEGXH
AEJOX
AEKPW
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AETEA
AEUPB
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFXEN
AFYAG
AGINJ
AGKEF
AGKRT
AGQXC
AGSYK
AHMBA
AHXPO
AI.
AIAGR
AIJHB
AIKOY
AJEEA
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
ANFBD
APIBT
APJGH
APWMN
AQDSO
ARIXL
ASAOO
ASPBG
ATDFG
ATTQO
AVWKF
AXUDD
AYOIW
AZFZN
AZQFJ
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
BYORX
C1A
CAG
CASEJ
CDBKE
COF
CS3
CXTWN
CZ4
D-I
DAKXR
DATOO
DFEDG
DFGAJ
DIK
DILTD
DPORF
DPPUQ
DU5
D~K
E3Z
EBS
ECGQY
EE~
EJD
ELUNK
ESX
F20
F5P
F9B
FBQ
FEDTE
FHSFR
FLUFQ
FOEOM
FQBLK
G8K
GAUVT
GJXCC
GX1
H5~
HAR
HVGLF
HW0
HZ~
H~9
IOX
J21
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
KAQDR
KBUDW
KC5
KOP
KQ8
KSI
KSN
M-Z
M49
MBTAY
ML0
MVM
N9A
NEJ
NGC
NLBLG
NOMLY
NTWIH
NU-
NVLIB
O0~
O9-
OAWHX
OBOKY
ODMLO
OHT
OJQWA
OJZSN
OK1
OVD
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RIG
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
SA0
TCN
TEORI
TLC
TN5
TR2
UHB
UKR
UPT
VH1
W8F
WH7
WOQ
X7H
XOL
YAYTL
YKOAZ
YQT
YSK
YXANX
YZZ
ZCG
ZKX
~02
~91
~KM
AAHBH
AARHZ
AAUAY
ABEJV
ABMNT
ABXSQ
ABXVV
ADACV
ADQBN
AQVQM
ATGXG
H13
IPSME
JXSIZ
ACMRT
ACZBC
AEHUL
AFSHK
AGMDO
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
AASNB
ID FETCH-LOGICAL-c490t-31283a06d76ab27ef620ee42a38a57552aedc809100455ca3c5543d721ee768d3
IEDL.DBID JLS
ISSN 0022-0957
IngestDate Tue Sep 17 21:19:07 EDT 2024
Fri Oct 25 07:37:54 EDT 2024
Fri Nov 22 00:36:09 EST 2024
Tue Oct 15 23:49:03 EDT 2024
Mon Nov 25 04:42:49 EST 2024
Wed Dec 27 19:20:45 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords zebra-like chromosome
Hordeum chilense
Acrocentric chromosome
restorer gene
cytoplasmic male sterility
Triticum aestivum
Language English
License The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-31283a06d76ab27ef620ee42a38a57552aedc809100455ca3c5543d721ee768d3
Notes http://dx.doi.org/10.1093/jxb/eru388
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC4246193
PMID 25271260
PQID 1629334984
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4246193
proquest_miscellaneous_1629334984
crossref_primary_10_1093_jxb_eru388
pubmed_primary_25271260
jstor_primary_24858783
fao_agris_US201500017954
PublicationCentury 2000
PublicationDate 2014-12-01
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: UK
PublicationTitle Journal of experimental botany
PublicationTitleAlternate J Exp Bot
PublicationYear 2014
Publisher Oxford University Press [etc.]
Oxford University Press
Publisher_xml – name: Oxford University Press [etc.]
– name: Oxford University Press
References 8253381 - Genes Dev. 1993 Dec;7(12A):2345-56
16394587 - Genes Genet Syst. 2005 Oct;80(5):357-66
11851918 - Plant J. 2002 Jan;29(2):169-81
11863070 - Chromosome Res. 2002;10(1):49-54
16468981 - Mol Microbiol. 2006 Mar;59(5):1357-68
23725040 - BMC Plant Biol. 2013;13:87
22048641 - Theor Appl Genet. 2012 Mar;124(4):713-22
12827249 - Theor Appl Genet. 2003 Aug;107(4):757-67
17439153 - J Agric Food Chem. 2007 May 16;55(10):4244-51
18470144 - Genome. 1994 Dec;37(6):1056-61
22665276 - Methods Mol Biol. 2012;888:67-89
21415278 - Plant Physiol. 2011 May;156(1):20-8
23877075 - Ann Bot. 2013 Sep;112(5):789-800
12152330 - Hereditas. 2001;135(2-3):171-4
11376549 - Genes Genet Syst. 2001 Feb;76(1):33-8
17247290 - Genetics. 1948 Sep;33(5):439-46
11321369 - Chromosome Res. 2001;9(2):137-46
8162322 - Chromosome Res. 1994 Jan;2(1):59-64
11102390 - Genetics. 2000 Dec;156(4):1997-2005
22918662 - Theor Appl Genet. 2012 Oct;125(6):1087-96
24162154 - Theor Appl Genet. 2014 Feb;127(2):309-16
18390847 - J Exp Bot. 2008;59(6):1375-81
23122232 - BMC Plant Biol. 2012;12:200
20549484 - Theor Appl Genet. 2010 Oct;121(6):1093-101
8306822 - Chromosoma. 1993 Nov;102(9):612-7
23539483 - J Appl Genet. 2013 May;54(2):179-84
20508152 - Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):12028-33
18562667 - Genetics. 2008 Jul;179(3):1169-77
19126690 - Plant Physiol. 2009 Jan;149(1):7-13
( key 20170512143139_CIT0028) 1982; 31
( key 20170512143139_CIT0055) 1984; 2
( key 20170512143139_CIT0002) 2001; 76
( key 20170512143139_CIT0005) 2007; 55
( key 20170512143139_CIT0058) 2010; 107
( key 20170512143139_CIT0007) 2002; 10
( key 20170512143139_CIT0037) 2010; 121
( key 20170512143139_CIT0038) 2001; 102
( key 20170512143139_CIT0009) 2003; 107
( key 20170512143139_CIT0003) 2012
( key 20170512143139_CIT0043) 2005; 80
( key 20170512143139_CIT0017) 1953; 18
( key 20170512143139_CIT0042) 2002; 29
( key 20170512143139_CIT0014) 2013; 112
( key 20170512143139_CIT0041) 2014; 127
( key 20170512143139_CIT0048) 1986; 4
( key 20170512143139_CIT0011) 1993; 111
( key 20170512143139_CIT0057) 2008; 179
( key 20170512143139_CIT0047) 1995; 81
( key 20170512143139_CIT0015) 1994; 37
( key 20170512143139_CIT0020) 1999
( key 20170512143139_CIT0022) 1993; 102
( key 20170512143139_CIT0054) 2013; 54
( key 20170512143139_CIT0031) 1995; 35
( key 20170512143139_CIT0040) 2003
( key 20170512143139_CIT0051) 2012; 12
( key 20170512143139_CIT0035) 2008; 59
( key 20170512143139_CIT0025) 2012; 888
( key 20170512143139_CIT0023) 1994; 2
( key 20170512143139_CIT0018) 1991
( key 20170512143139_CIT0029) 2002; 44
( key 20170512143139_CIT0008) 2013; 13
( key 20170512143139_CIT0053) 1948; 33
( key 20170512143139_CIT0034) 1998
( key 20170512143139_CIT0049) 1967; 7
( key 20170512143139_CIT0004) 2004; 123
( key 20170512143139_CIT0010) 1993; 72
( key 20170512143139_CIT0012) 2009; 149
( key 20170512143139_CIT0032) 1984; 24
( key 20170512143139_CIT0045) 2001; 135
( key 20170512143139_CIT0024) 1951; 16
( key 20170512143139_CIT0036) 2008; 127
( key 20170512143139_CIT0046) 2000; 156
( key 20170512143139_CIT0052) 1998; 28
( key 20170512143139_CIT0006) 1986; 153
( key 20170512143139_CIT0030) 2012; 125
( key 20170512143139_CIT0016) 2001; 9
( key 20170512143139_CIT0050) 2012; 124
( key 20170512143139_CIT0027) 1993; 7
( key 20170512143139_CIT0021) 2010
( key 20170512143139_CIT0001) 2012; 132
( key 20170512143139_CIT0039) 2011; 156
( key 20170512143139_CIT0026) 1997; 72
( key 20170512143139_CIT0033) 1996
( key 20170512143139_CIT0044) 2006; 59
( key 20170512143139_CIT0013) 2001
( key 20170512143139_CIT0019) 2005; 55
( key 20170512143139_CIT0056) 2008; 59
References_xml – volume: 124
  start-page: 713
  year: 2012
  ident: key 20170512143139_CIT0050
  article-title: Development of wild barley (Hordeum chilense)-derived DArT markers and their use into genetic and physical mapping
  publication-title: Theoretical and Applied Genetics
  doi: 10.1007/s00122-011-1741-2
– volume: 127
  start-page: 309
  year: 2014
  ident: key 20170512143139_CIT0041
  article-title: Yield stability of hybrids versus lines in wheat, barley, and triticale
  publication-title: Theoretical and Applied Genetics
  doi: 10.1007/s00122-013-2219-1
– volume-title: ESA Working Paper No. 12-03, June 2012
  year: 2012
  ident: key 20170512143139_CIT0003
  article-title: World agriculture towards 2030/2050, the 2012 revision
– volume: 2
  start-page: 59
  year: 1994
  ident: key 20170512143139_CIT0023
  article-title: Different species-specific chromosome translocations in Triticum timopheevii and T. turgidum support the diphyletic origin of polyploidy wheats
  publication-title: Chromosome Research
  doi: 10.1007/BF01539455
– volume: 37
  start-page: 1056
  year: 1994
  ident: key 20170512143139_CIT0015
  article-title: The molecular identification of the midget chromosome from the rye genome
  publication-title: Genome
  doi: 10.1139/g94-150
– volume: 888
  start-page: 67
  year: 2012
  ident: key 20170512143139_CIT0025
  article-title: Diversity arrays technology: a generic genome profiling technology on open platforms
  publication-title: Methods in Molecular Biology
  doi: 10.1007/978-1-61779-870-2_5
– start-page: 425
  volume-title: Quantitative genetics in maize breeding third edition
  year: 2010
  ident: key 20170512143139_CIT0021
  article-title: Inbreeding
– volume: 72
  start-page: 353
  year: 1997
  ident: key 20170512143139_CIT0026
  article-title: High-resolution RFLP mapping of the fertility restoration (Rf3) gene against Triticum timopheevii cytoplasm located on chromosome 1BS of common wheat
  publication-title: Genes and Genetic Systems
  doi: 10.1266/ggs.72.353
– volume: 156
  start-page: 1997
  year: 2000
  ident: key 20170512143139_CIT0046
  article-title: A simple sequence repeat-based linkage map of barley
  publication-title: Genetics
  doi: 10.1093/genetics/156.4.1997
– volume: 111
  start-page: 106
  year: 1993
  ident: key 20170512143139_CIT0011
  article-title: Localization of genes in rye that restore male fertility to hexaploid wheat with timopheevi cytoplasm
  publication-title: Plant Breeding
  doi: 10.1111/j.1439-0523.1993.tb00615.x
– volume: 149
  start-page: 7
  year: 2009
  ident: key 20170512143139_CIT0012
  article-title: Increasing crop productivity to meet global needs for feed, food, and fuel
  publication-title: Plant Physiology
  doi: 10.1104/pp.108.130195
– volume: 135
  start-page: 171
  year: 2001
  ident: key 20170512143139_CIT0045
  article-title: Identification of intergenomic translocations involving wheat, Hordeum vulgare and Hordeum chilense chromosomes by FISH
  publication-title: Hereditas
– start-page: 48
  volume-title: Nuclear and organellar genomes of wheat species, proceedings of the Dr. H. Kihara, memorial international symposium on cytoplasmic engineering in wheat
  year: 1991
  ident: key 20170512143139_CIT0018
  article-title: Nucleo-cytoplasmic interaction (NCI) hypothesis of genome evolution and speciation in polyploid plants
– volume: 127
  start-page: 470
  year: 2008
  ident: key 20170512143139_CIT0036
  article-title: Use of ccSSR markers for the determination of the purity of alloplasmic wheat in different Hordeum cytoplasms
  publication-title: Plant Breeding
  doi: 10.1111/j.1439-0523.2007.01483.x
– volume: 29
  start-page: 169
  year: 2002
  ident: key 20170512143139_CIT0042
  article-title: Pistilloidy, homeotic transformation of stamens into pistil-like structures, caused by nuclear–cytoplasm interaction in wheat
  publication-title: Plant Journal
  doi: 10.1046/j.0960-7412.2001.01203.x
– volume: 10
  start-page: 49
  year: 2002
  ident: key 20170512143139_CIT0007
  article-title: In situ comparative mapping (ISCM) of Glu-1 loci in Triticum and Hordeum
  publication-title: Chromosome Research
  doi: 10.1023/A:1014270227360
– volume: 123
  start-page: 303
  year: 2004
  ident: key 20170512143139_CIT0004
  article-title: Chromosomal location of genes for carotenoid pigments in Hordeum chilense
  publication-title: Plant Breeding
  doi: 10.1111/j.1439-0523.2004.00918.x
– volume: 7
  start-page: 493
  year: 1967
  ident: key 20170512143139_CIT0049
  article-title: Monosomic analysis of fertility-restoration in common wheat (Triticum aestivum L.)
  publication-title: Crop Science
  doi: 10.2135/cropsci1967.0011183X000700050026x
– volume: 107
  start-page: 12028
  year: 2010
  ident: key 20170512143139_CIT0058
  article-title: High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases
  publication-title: Proceedings of the National Academy of Sciences, USA
  doi: 10.1073/pnas.0914991107
– volume: 55
  start-page: 4244
  year: 2007
  ident: key 20170512143139_CIT0005
  article-title: Genetic variability of carotenoid concentration and degree of esterification among Tritordeum (Tritordeum Ascherson et Graebner) and durum wheat accessions
  publication-title: Journal of Agriculture and Food Chemistry
  doi: 10.1021/jf070342p
– volume: 16
  start-page: 177
  year: 1951
  ident: key 20170512143139_CIT0024
  article-title: Substitution of nucleus and its effects on genome manifestation
  publication-title: Cytologia
  doi: 10.1508/cytologia.16.177
– volume: 2
  start-page: 303
  year: 1984
  ident: key 20170512143139_CIT0055
  article-title: Hybrid wheat breeding and commercial seed development
  publication-title: Plant Breeding Reviews
– volume: 107
  start-page: 757
  year: 2003
  ident: key 20170512143139_CIT0009
  article-title: The development and evaluation of consensus chloroplast primer pairs that possess highly variable sequence regions in a diverse array of plant taxa
  publication-title: Theoretical and Applied Genetics
  doi: 10.1007/s00122-003-1311-3
– start-page: 377
  volume-title: Triticeae III
  year: 1998
  ident: key 20170512143139_CIT0034
  article-title: The potential of Hordeum chilense in breeding Triticeae species
– volume: 80
  start-page: 357
  year: 2005
  ident: key 20170512143139_CIT0043
  article-title: Chromosomal assignment and deletion mapping of barley EST markers
  publication-title: Genes and Genetic Systems
  doi: 10.1266/ggs.80.357
– volume: 112
  start-page: 789
  year: 2013
  ident: key 20170512143139_CIT0014
  article-title: Programmed cell death promotes male sterility in the functional dioecious Opuntia stenopetala (Cactaceae)
  publication-title: Annals of Botany
  doi: 10.1093/aob/mct141
– volume: 76
  start-page: 33
  year: 2001
  ident: key 20170512143139_CIT0002
  article-title: QTL analysis of fertility-restoration against cytoplasmic male sterility in wheat
  publication-title: Genes and Genetic Systems
  doi: 10.1266/ggs.76.33
– volume: 7
  start-page: 2345
  year: 1993
  ident: key 20170512143139_CIT0027
  article-title: New telomeres in yeast are initiated with a highly selected subset of TG1–3 repeats
  publication-title: Genes and Development
  doi: 10.1101/gad.7.12a.2345
– volume: 12
  start-page: 200
  year: 2012
  ident: key 20170512143139_CIT0051
  article-title: Hordeum chilense genome, a useful tool to investigate the endosperm yellow pigment content in the Triticeae
  publication-title: BMC Plant Biology
  doi: 10.1186/1471-2229-12-200
– volume: 153
  start-page: 49
  year: 1986
  ident: key 20170512143139_CIT0006
  article-title: Interspecific crosses in Hordeum (Poaceae)
  publication-title: Plant Systematic and Evolution
  doi: 10.1007/BF00989417
– volume: 4
  start-page: 102
  year: 1986
  ident: key 20170512143139_CIT0048
  article-title: Isolation of a D-genome specific repeated DNA sequence from Aegilops squarrosa
  publication-title: Plant Molecular Biology Reporter
  doi: 10.1007/BF02732107
– volume: 31
  start-page: 895
  year: 1982
  ident: key 20170512143139_CIT0028
  article-title: Monosomic analysis of fertility restoration in common wheat ‘Prof. Marchal’
  publication-title: Euphytica
  doi: 10.1007/BF00039229
– volume: 44
  start-page: 446
  year: 2002
  ident: key 20170512143139_CIT0029
  article-title: RAPD and ISSR markers of fertility restoring gene for Aegilops kotschyi cytoplasmic male sterility in wheat
  publication-title: Acta Botanica Sinica
– volume: 13
  start-page: 87
  year: 2013
  ident: key 20170512143139_CIT0008
  article-title: High-throughput genotyping of wheat-barley amphiploids utilising diversity array technology (DArT)
  publication-title: BMC Plant Biology
  doi: 10.1186/1471-2229-13-87
– volume: 121
  start-page: 1093
  year: 2010
  ident: key 20170512143139_CIT0037
  article-title: Molecular and cytological characterization of an extra acrocentric chromosome that restores male fertility of wheat in the msH1 CMS system
  publication-title: Theoretical and Applied Genetics
  doi: 10.1007/s00122-010-1374-x
– volume: 125
  start-page: 1087
  year: 2012
  ident: key 20170512143139_CIT0030
  article-title: Hybrid breeding in autogamous cereals
  publication-title: Theoretical and Applied Genetics
  doi: 10.1007/s00122-012-1967-7
– volume: 81
  start-page: 51
  year: 1995
  ident: key 20170512143139_CIT0047
  article-title: Suggested guidelines for the nomenclature and abbreviation of the genetic stock of wheat and its relatives
  publication-title: Wheat Information Service
– volume: 132
  start-page: 42
  year: 2012
  ident: key 20170512143139_CIT0001
  article-title: Effect of temperature on the expression of cytoplasmic male sterility in cultivated barley (Hordeum vulgare L.)
  publication-title: Plant Breeding
– volume: 24
  start-page: 17
  year: 1984
  ident: key 20170512143139_CIT0032
  article-title: Genetic analyses of male-fertility restoration in wheat. I. Chromosomal location of Rf genes
  publication-title: Crop Science
  doi: 10.2135/cropsci1984.0011183X002400010005x
– volume: 59
  start-page: 1357
  year: 2006
  ident: key 20170512143139_CIT0044
  article-title: Chromosome healing by de novo telomere addition in Saccharomyces cerevisiae
  publication-title: Molecular Microbiology
  doi: 10.1111/j.1365-2958.2006.05026.x
– volume: 55
  start-page: 335
  year: 2005
  ident: key 20170512143139_CIT0019
  article-title: Extended application of barley EST markers for the analysis of alien chromosomes added to wheat genetic background
  publication-title: Breeding Science
  doi: 10.1270/jsbbs.55.335
– volume: 18
  start-page: 167
  year: 1953
  ident: key 20170512143139_CIT0017
  article-title: Studies on restoration and substitution of nucleus in Aegilotriticum. I. Appearance of male-sterile Triticum durum in substitution crosses
  publication-title: Cytologia
  doi: 10.1508/cytologia.18.167
– volume: 59
  start-page: 206
  year: 2008
  ident: key 20170512143139_CIT0035
  article-title: Male fertility restoration of wheat in Hordeum chilense cytoplasm is associated with 6HchS chromosome addition
  publication-title: Australian Journal of Agriculture Research
  doi: 10.1071/AR07239
– volume: 35
  start-page: 1137
  year: 1995
  ident: key 20170512143139_CIT0031
  article-title: Genetic analysis of fertility restoration in wheat using restriction fragment length polymorphisms
  publication-title: Crop Science
  doi: 10.2135/cropsci1995.0011183X003500040037x
– volume: 28
  start-page: 15
  year: 1998
  ident: key 20170512143139_CIT0052
  article-title: DNA sequencing and primer designing for RFLP clones evenly distributed in the barley genome
  publication-title: Barley Genetics Newsletter
– start-page: 8
  volume-title: Proceedings of 10thinternational wheat genetics symposium
  year: 2003
  ident: key 20170512143139_CIT0040
  article-title: Catalogue of gene symbols for wheat
– start-page: 57
  volume-title: Triticale: Today and Tomorrow
  year: 1996
  ident: key 20170512143139_CIT0033
  article-title: Tritordeum: triticale′s new brother cereal
– volume: 72
  start-page: 239
  year: 1993
  ident: key 20170512143139_CIT0010
  article-title: Comparison of plant telomere locations using a PCR-generated synthetic probe
  publication-title: Annals of Botany
  doi: 10.1006/anbo.1993.1104
– volume: 179
  start-page: 1169
  year: 2008
  ident: key 20170512143139_CIT0057
  article-title: The origin of a “Zebra” chromosome in wheat suggests nonhomologous recombination as a novel mechanism for new chromosome evolution and step changes in chromosome number
  publication-title: Genetics
  doi: 10.1534/genetics.108.089599
– volume: 102
  start-page: 477
  year: 2001
  ident: key 20170512143139_CIT0038
  article-title: Molecular mapping of a fertility restoration locus (Rfm1) for cytoplasmic male sterility in barley (Hordeum vulgare L.)
  publication-title: Theoretical and Applied Genetics
  doi: 10.1007/s001220051670
– volume: 54
  start-page: 179
  year: 2013
  ident: key 20170512143139_CIT0054
  article-title: The importance of chromosomes from the sixth homoeologic group in the restoration of male fertility in winter triticale with Triticum timopheevii cytoplasm
  publication-title: Journal of Applied Genetics
  doi: 10.1007/s13353-013-0144-2
– volume: 59
  start-page: 1375
  year: 2008
  ident: key 20170512143139_CIT0056
  article-title: Expression of the nuclear gene TaFAd is under mitochondrial retrograde regulation in anthers of male sterile wheat plants with timopheevii cytoplasm
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/ern068
– volume: 9
  start-page: 137
  year: 2001
  ident: key 20170512143139_CIT0016
  article-title: Chromosome healing by addition of telomeric repeats in wheat occurs during the first mitotic divisions of the sporophyte and is a gradual process
  publication-title: Chromosome Research
  doi: 10.1023/A:1009283003903
– volume: 33
  start-page: 439
  year: 1948
  ident: key 20170512143139_CIT0053
  article-title: What is heterosis?
  publication-title: Genetics
  doi: 10.1093/genetics/33.5.439
– volume: 102
  start-page: 612
  year: 1993
  ident: key 20170512143139_CIT0022
  article-title: A `zebra′chromosome arising from multiple translocations involving non-homologous chromosomes
  publication-title: Chromosoma
  doi: 10.1007/BF00352308
– start-page: 1019
  volume-title: The world wheat book—a history of wheat breeding
  year: 2001
  ident: key 20170512143139_CIT0013
  article-title: Origin of cultivated wheat
– start-page: 483
  volume-title: The genetics and exploitation of heterosis in crops
  year: 1999
  ident: key 20170512143139_CIT0020
  article-title: Heterosis: What have we learned? What have we done? Where are we headed?
– volume: 156
  start-page: 20
  year: 2011
  ident: key 20170512143139_CIT0039
  article-title: Comprehensive sequence analysis of 24,783 barley full-length cDNAs derived from 12 clone libraries
  publication-title: Plant Physiology
  doi: 10.1104/pp.110.171579
SSID ssj0005055
Score 2.3259718
Snippet Cytoplasmic male sterility (CMS) results from incompatibility between nuclear and cytoplasmic genomes, and is characterized by the inability to produce viable...
The high potential for an acrocentric chromosome originated from a complex reorganization of chromosomes 1H ch S and 6H ch S from Hordeum chilense in the...
SourceID pubmedcentral
proquest
crossref
pubmed
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 6667
SubjectTerms Acrocentric chromosomes
Barley
Chromosomes
Chromosomes, Plant - genetics
Cytoplasm
Fertility - genetics
Fluorescence in situ hybridization
Genes
Genetic Loci
Genetic Markers
Hordeum chilense
hybrids
In Situ Hybridization, Fluorescence
loci
Male fertility
Meiosis
Monosomics
Plant Infertility - genetics
Polymerase Chain Reaction
Recombination, Genetic - genetics
RESEARCH PAPER
Sex chromosomes
Telomere - metabolism
Telomeres
Triticum - cytology
Triticum - genetics
Triticum - physiology
wheat
Title Fertility of CMS wheat is restored by two Rf loci located on a recombined acrocentric chromosome
URI https://www.jstor.org/stable/24858783
https://www.ncbi.nlm.nih.gov/pubmed/25271260
https://search.proquest.com/docview/1629334984
https://pubmed.ncbi.nlm.nih.gov/PMC4246193
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB51Kw5coAVKQx8yAo7RZuM8nGNfq6IKDiyVuAUnnrSLaIL2odJ_32-SptsikLhEihJLE48984395TPRe0wfZ50J_CC0KFC4Sn2bJNZHqkSytqF2LEsDp5P08zdzfCIyOR_6f2GEVtnyAttdfACk4icPRXbLpEYPaGAC0_H2VjyOII57SXDghbTXIM308MfvYsizpW6PVVllnUFlm55--Ddg-Sc_8kHCGT__T1M36NkdolQH3RDYpDWuX9CTwwao7-YlfR8LcVqwtmoqdfRpoq4l_KrpXM3aQ2XYqeJGLa4b9aVSyGxTuQCAOtXUyiopmK9QPePelpLsapH0V-Wl0PjmzRW_ovPxydejU__uVAW_jLJggaALRGGDxKWJLcKUqyQMmKPQamOB3eLQ4sONwAigvbi0ugTi0A6VIjNqE6e3aL1uat4mBfiQcIGCzyHJJwgFBbtR6UYAWaMqdqVH7_pez3914hl5t-mtc_gm73zj0TYcktsLRLX8fBLKGowkzyyOPNpqe_i-dd-9Hr3t3ZZjPsgmh625Wc7zUQIAo6PMoPHrzo2r1nGYwrjAo_SRg-9fEK3tx0_q6WWruR2J7l6m3_zLoB16CsOjjuiyS-uL2ZL3aDB3y30A9Y9n--2gvQX8pedS
link.rule.ids 230,315,782,786,808,887,27933,27934,58037,58052,58270,58285
linkProvider JSTOR
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1db9MwFL2iYxK8DNgoDR_DE_AYNY3z-QhjURFtH9ZN4s1z4pu1iCZT02rshd_OvcnSMgTSXiJFiSXH1_Y51z45BnhPw8doEzm242pKUDAPbR0E2iaoJLDWrjTISwPDaTj5Fn0-YZucD-2_MCyrrHWB9S4-EaT0B_bZdisKI9mBhz5b8LOB869kq-RwfL81BSfGELYupLHsf_-Z9nG5lvXBKlvc6eS6bAWI_6KWfysk_4Cc5Mk9K_sU9m45pfjYdIJn8ACLfdj9VBLvuzmAi4Sl08y2RZmL4_FUXPMELOaVWNbHyqAR6Y1YXZfiNBeEbXO-EAU1oiyEFpwyLyh_pnudMdwVbOovshkL-apygc_hPDk5Ox7at-cq2JkXOyuadolTaCcwYaBTN8Q8cB1Ez9Uy0sTefFfTh0dMJIjv-ZmWGXEOaShXRKTsxMgu7BRlgT0QRCACTCnlMwTzAU0GKZpBZgZEswa5bzIL3rWtrq4a-wzVbHtLRbFRTWws6FFAlL6keU2dT11ehWH4jH3Pgm7dwpvSbfNacNSGTdGI4G0OXWC5rtQgIAojvTiiwi-aMG5L-25IlXMsCO8EePMCu23ffVLMZ7XrtsfOe7F8-b8KvYVHw7PxSI2-TL6-gsf0EV4je3kNO6vlGt9ApzLrw7rr_gbxc-nD
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6xUCEuhT6A8KqrcuEQbdbO88gromqLqi5IvblOPIGtSoL2IcqF385MQlhAcOASKUosOR575hvPl88A27R8rLGx53rSUIKCReSaMDQuhUoK1kYqi7w1cNSPjn_HB4csk7PT_gvDtMqaF1hX8QkgZf-we2mLLktvxVGsOjDHlR5m78mbdMrm8IKgFQYn1BC1SqSJ6v79n3VxOFH14SrT2NMpTNWSEJ-Dl09Zkg_CTrr4ig4vwds7bCl2m8nwDmawfA9v9irCf9cf4E_KFGpG3aIqxP6PvrhiRywGIzGsj5dBK7JrMb6qxK9CUIwb8IWgqBVVKYzg1PmC8mi6NzmHvZLF_UV-zoS-UXWBH-E0PTzZP3Lvzldwcz_xxuR-CVsYL7RRaDIZYRFKD9GXRsWGUFwgDX18zICCcF-QG5UT9lCWckZEylKsWobZsipxFQQBiRAzSv0shfuQnEKGtpfbHsGtXhHY3IEv7cjry0ZGQzflb6XJPrqxjwOrZBRtzsi_6dO-5N0YDqNJ4DuwXI_yfet2eB343JpO08rgcocpsZqMdC8kKKP8JKbGK40pp60DGVHnPAeiR0a-f4FVtx8_KQfntfq2zwp8iVp7qUOfYP7nQaq_fz3-tg4L9A1-w37ZgNnxcIKb0BnZyVY9e28BnefsSQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fertility+of+CMS+wheat+is+restored+by+two+Rf+loci+located+on+a+recombined+acrocentric+chromosome&rft.jtitle=Journal+of+experimental+botany&rft.au=Castillo%2C+Almudena&rft.au=Atienza%2C+Sergio+G.&rft.au=Mart%C3%ADn%2C+Azahara+C.&rft.date=2014-12-01&rft.pub=Oxford+University+Press&rft.issn=0022-0957&rft.eissn=1460-2431&rft.volume=65&rft.issue=22&rft.spage=6667&rft.epage=6677&rft_id=info:doi/10.1093%2Fjxb%2Feru388&rft.externalDocID=24858783
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0957&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0957&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0957&client=summon