Fertility of CMS wheat is restored by two Rf loci located on a recombined acrocentric chromosome
Cytoplasmic male sterility (CMS) results from incompatibility between nuclear and cytoplasmic genomes, and is characterized by the inability to produce viable pollen. The restoration of male fertility generally involves the introgression of nuclear genes, termed restorers of fertility (Rf). CMS has...
Saved in:
Published in: | Journal of experimental botany Vol. 65; no. 22; pp. 6667 - 6677 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Oxford University Press [etc.]
01-12-2014
Oxford University Press |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Cytoplasmic male sterility (CMS) results from incompatibility between nuclear and cytoplasmic genomes, and is characterized by the inability to produce viable pollen. The restoration of male fertility generally involves the introgression of nuclear genes, termed restorers of fertility (Rf). CMS has been widely used for hybrid seed production in many crops but not in wheat, partly owing to the complex genetics of fertility restoration. In this study, an acrocentric chromosome that restores pollen fertility of CMS wheat in Hordeum chilense cytoplasm (msH1 system) is studied. The results show that this chromosome, of H. chilense origin and named Hchac, originated from a complex reorganization of the short arm of chromosomes 1Hch (1HchS) and 6Hch (6HchS). Diversity arrays technology (DArT) markers and cytological analysis indicate that Hchac is a kind of `zebra-like′ chromosome composed of chromosome 1HchS and alternate fragments of interstitial and distal regions of chromosome 6HchS. PCR-based markers together with FISH, GISH, and meiotic pairing analysis support this result. A restorer of fertility gene, named Rf 6H ch S , has been identified on the short arm of chromosome 6HchS. Moreover, restoration by the addition of chromosome 1HchS has been observed at a very low frequency and under certain environmental conditions. Therefore, the results indicate the presence of two Rf genes on the acrocentric chromosome: Rf 6H ch S and Rf 1H ch S , the restoration potential of Rf 6H ch S being greater. The stable and high restoration of pollen fertility in the msH1 system is therefore the result of the interaction between these two restorer genes.
The high potential for an acrocentric chromosome originated from a complex reorganization of chromosomes 1HchS and 6HchS from Hordeum chilense in the development of hybrid wheat technology. |
---|---|
AbstractList | Cytoplasmic male sterility (CMS) results from incompatibility between nuclear and cytoplasmic genomes, and is characterized by the inability to produce viable pollen. The restoration of male fertility generally involves the introgression of nuclear genes, termed restorers of fertility (Rf). CMS has been widely used for hybrid seed production in many crops but not in wheat, partly owing to the complex genetics of fertility restoration. In this study, an acrocentric chromosome that restores pollen fertility of CMS wheat in Hordeum chilense cytoplasm (msH1 system) is studied. The results show that this chromosome, of H. chilense origin and named Hchac, originated from a complex reorganization of the short arm of chromosomes 1Hch (1HchS) and 6Hch (6HchS). Diversity arrays technology (DArT) markers and cytological analysis indicate that Hchac is a kind of `zebra-like′ chromosome composed of chromosome 1HchS and alternate fragments of interstitial and distal regions of chromosome 6HchS. PCR-based markers together with FISH, GISH, and meiotic pairing analysis support this result. A restorer of fertility gene, named Rf 6H ch S , has been identified on the short arm of chromosome 6HchS. Moreover, restoration by the addition of chromosome 1HchS has been observed at a very low frequency and under certain environmental conditions. Therefore, the results indicate the presence of two Rf genes on the acrocentric chromosome: Rf 6H ch S and Rf 1H ch S , the restoration potential of Rf 6H ch S being greater. The stable and high restoration of pollen fertility in the msH1 system is therefore the result of the interaction between these two restorer genes.
The high potential for an acrocentric chromosome originated from a complex reorganization of chromosomes 1HchS and 6HchS from Hordeum chilense in the development of hybrid wheat technology. Cytoplasmic male sterility (CMS) results from incompatibility between nuclear and cytoplasmic genomes, and is characterized by the inability to produce viable pollen. The restoration of male fertility generally involves the introgression of nuclear genes, termed restorers of fertility (Rf). CMS has been widely used for hybrid seed production in many crops but not in wheat, partly owing to the complex genetics of fertility restoration. In this study, an acrocentric chromosome that restores pollen fertility of CMS wheat in Hordeum chilense cytoplasm (msH1 system) is studied. The results show that this chromosome, of H. chilense origin and named H(ch)ac, originated from a complex reorganization of the short arm of chromosomes 1H(ch) (1H(ch)S) and 6H(ch) (6H(ch)S). Diversity arrays technology (DArT) markers and cytological analysis indicate that H(ch)ac is a kind of `zebra-like' chromosome composed of chromosome 1H(ch)S and alternate fragments of interstitial and distal regions of chromosome 6H(ch)S. PCR-based markers together with FISH, GISH, and meiotic pairing analysis support this result. A restorer of fertility gene, named Rf6H(ch)S, has been identified on the short arm of chromosome 6H(ch)S. Moreover, restoration by the addition of chromosome 1H(ch)S has been observed at a very low frequency and under certain environmental conditions. Therefore, the results indicate the presence of two Rf genes on the acrocentric chromosome: Rf6H(ch)S and Rf1H(ch)S, the restoration potential of Rf6H(ch)S being greater. The stable and high restoration of pollen fertility in the msH1 system is therefore the result of the interaction between these two restorer genes. Cytoplasmic male sterility (CMS) results from incompatibility between nuclear and cytoplasmic genomes, and is characterized by the inability to produce viable pollen. The restoration of male fertility generally involves the introgression of nuclear genes, termed restorers of fertility (Rf). CMS has been widely used for hybrid seed production in many crops but not in wheat, partly owing to the complex genetics of fertility restoration. In this study, an acrocentric chromosome that restores pollen fertility of CMS wheat in Hordeum chilense cytoplasm (msH1 system) is studied. The results show that this chromosome, of H. chilense origin and named Hchac, originated from a complex reorganization of the short arm of chromosomes 1Hch (1HchS) and 6Hch (6HchS). Diversity arrays technology (DArT) markers and cytological analysis indicate that Hchac is a kind of 'zebra-like' chromosome composed of chromosome 1HchS and alternate fragments of interstitial and distal regions of chromosome 6HchS. PCR-based markers together with FISH, GISH, and meiotic pairing analysis support this result. A restorer of fertility gene, named Rf6HchS, has been identified on the short arm of chromosome 6HchS. Moreover, restoration by the addition of chromosome 1HchS has been observed at a very low frequency and under certain environmental conditions. Therefore, the results indicate the presence of two Rf genes on the acrocentric chromosome: Rf6HchS and Rf1HchS, the restoration potential of Rf6HchS being greater. The stable and high restoration of pollen fertility in the msH1 system is therefore the result of the interaction between these two restorer genes. The high potential for an acrocentric chromosome originated from a complex reorganization of chromosomes 1H ch S and 6H ch S from Hordeum chilense in the development of hybrid wheat technology. Cytoplasmic male sterility (CMS) results from incompatibility between nuclear and cytoplasmic genomes, and is characterized by the inability to produce viable pollen. The restoration of male fertility generally involves the introgression of nuclear genes, termed restorers of fertility ( Rf ). CMS has been widely used for hybrid seed production in many crops but not in wheat, partly owing to the complex genetics of fertility restoration. In this study, an acrocentric chromosome that restores pollen fertility of CMS wheat in Hordeum chilense cytoplasm (msH1 system) is studied. The results show that this chromosome, of H. chilense origin and named H ch ac, originated from a complex reorganization of the short arm of chromosomes 1H ch (1H ch S) and 6H ch (6H ch S). Diversity arrays technology (DArT) markers and cytological analysis indicate that H ch ac is a kind of `zebra-like′ chromosome composed of chromosome 1H ch S and alternate fragments of interstitial and distal regions of chromosome 6H ch S. PCR-based markers together with FISH, GISH, and meiotic pairing analysis support this result. A restorer of fertility gene, named Rf 6H ch S , has been identified on the short arm of chromosome 6H ch S. Moreover, restoration by the addition of chromosome 1H ch S has been observed at a very low frequency and under certain environmental conditions. Therefore, the results indicate the presence of two Rf genes on the acrocentric chromosome: Rf 6H ch S and Rf 1H ch S , the restoration potential of Rf 6H ch S being greater. The stable and high restoration of pollen fertility in the msH1 system is therefore the result of the interaction between these two restorer genes. |
Author | Martín, Azahara C Atienza, Sergio G Castillo, Almudena |
Author_xml | – sequence: 1 fullname: Castillo, Almudena – sequence: 2 fullname: Atienza, Sergio G – sequence: 3 fullname: Martín, Azahara C |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25271260$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkc1v1DAQxS3Uim4LF-6AjwgpdPyVOBcktKJQqQiJ0rNxnEnXqyRu7Sxl_3scpS3lYst-P828mXdMDsYwIiGvGHxgUIvT7Z_mFONOaP2MrJgsoeBSsAOyAuC8gFpVR-Q4pS0AKFDqOTniileMl7Aiv84wTr73056Gjq6_XdK7DdqJ-kQjpilEbGmzp9NdoD862gfn58NO-TuM1GbIhaHxY35bF4PDcYreUbeJYQgpDPiCHHa2T_jy_j4hV2eff66_Fhffv5yvP10UTtYwFYJxLSyUbVXahlfYlRwQJbdCW1UpxS22TkPNAKRSzgqnlBRtxRliVepWnJCPS92bXTNkdjZie3MT_WDj3gTrzf_K6DfmOvw2ksuS1SIXeHdfIIbbXZ7dDD457Hs7Ytglw0qeKVlrmdH3C5onTili99iGgZkjMTkSs0SS4TdPjT2iDxlk4PUCbOd9_9OlVrrSs7G3i97ZYOx19MlcXXJgKufJqjqv4S-X9p2f |
CitedBy_id | crossref_primary_10_3389_fpls_2020_577475 crossref_primary_10_1007_s10681_017_2056_4 crossref_primary_10_3390_plants10010113 crossref_primary_10_1007_s00299_018_2248_y crossref_primary_10_1007_s00122_019_03457_3 crossref_primary_10_1007_s00299_016_1949_3 crossref_primary_10_1007_s11032_018_0848_4 crossref_primary_10_3390_ijms19051344 crossref_primary_10_1139_gen_2018_0016 crossref_primary_10_1007_s00122_021_03767_5 crossref_primary_10_1071_FP19372 crossref_primary_10_1007_s00122_021_03777_3 crossref_primary_10_1007_s00122_022_04143_7 crossref_primary_10_1016_j_tplants_2017_10_001 crossref_primary_10_3390_ijms22179146 crossref_primary_10_1007_s10681_014_1292_0 crossref_primary_10_3390_plants10051029 crossref_primary_10_3389_fpls_2023_1163358 crossref_primary_10_1007_s00122_019_03397_y crossref_primary_10_1007_s00122_020_03540_0 crossref_primary_10_1007_s12298_021_01109_9 |
Cites_doi | 10.1007/s00122-011-1741-2 10.1007/s00122-013-2219-1 10.1007/BF01539455 10.1139/g94-150 10.1007/978-1-61779-870-2_5 10.1266/ggs.72.353 10.1093/genetics/156.4.1997 10.1111/j.1439-0523.1993.tb00615.x 10.1104/pp.108.130195 10.1111/j.1439-0523.2007.01483.x 10.1046/j.0960-7412.2001.01203.x 10.1023/A:1014270227360 10.1111/j.1439-0523.2004.00918.x 10.2135/cropsci1967.0011183X000700050026x 10.1073/pnas.0914991107 10.1021/jf070342p 10.1508/cytologia.16.177 10.1007/s00122-003-1311-3 10.1266/ggs.80.357 10.1093/aob/mct141 10.1266/ggs.76.33 10.1101/gad.7.12a.2345 10.1186/1471-2229-12-200 10.1007/BF00989417 10.1007/BF02732107 10.1007/BF00039229 10.1186/1471-2229-13-87 10.1007/s00122-010-1374-x 10.1007/s00122-012-1967-7 10.2135/cropsci1984.0011183X002400010005x 10.1111/j.1365-2958.2006.05026.x 10.1270/jsbbs.55.335 10.1508/cytologia.18.167 10.1071/AR07239 10.2135/cropsci1995.0011183X003500040037x 10.1006/anbo.1993.1104 10.1534/genetics.108.089599 10.1007/s001220051670 10.1007/s13353-013-0144-2 10.1093/jxb/ern068 10.1023/A:1009283003903 10.1093/genetics/33.5.439 10.1007/BF00352308 10.1104/pp.110.171579 |
ContentType | Journal Article |
Copyright | Society for Experimental Biology 2014 The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. 2014 |
Copyright_xml | – notice: Society for Experimental Biology 2014 – notice: The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. – notice: The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. 2014 |
DBID | FBQ CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1093/jxb/eru388 |
DatabaseName | AGRIS Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1460-2431 |
EndPage | 6677 |
ExternalDocumentID | 10_1093_jxb_eru388 25271260 24858783 US201500017954 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -E4 -~X .2P .I3 0R~ 18M 1TH 29K 2WC 2~F 3O- 4.4 482 48X 53G 5GY 5VS 5WA 5WD 6.Y 70D AABJS AABMN AAESY AAIMJ AAIYJ AAJKP AAJQQ AAMDB AAMVS AANRK AAOGV AAPQZ AAPXW AAUQX AAVAP AAVLN AAWDT AAXTN ABBHK ABEUO ABIXL ABJNI ABLJU ABNKS ABPPZ ABPTD ABPTK ABQLI ABQTQ ABSAR ABSMQ ABWST ABXZS ABZBJ ACFRR ACGFO ACGFS ACGOD ACIWK ACNCT ACPQN ACPRK ACUFI ACUTJ ADBBV ADEIU ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADOCK ADORX ADQLU ADRIX ADRTK ADULT ADVEK ADYVW ADZTZ ADZXQ AEEJZ AEGPL AEGXH AEJOX AEKPW AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AETEA AEUPB AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFXEN AFYAG AGINJ AGKEF AGKRT AGQXC AGSYK AHMBA AHXPO AI. AIAGR AIJHB AIKOY AJEEA AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX ANFBD APIBT APJGH APWMN AQDSO ARIXL ASAOO ASPBG ATDFG ATTQO AVWKF AXUDD AYOIW AZFZN AZQFJ BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BSWAC BYORX C1A CAG CASEJ CDBKE COF CS3 CXTWN CZ4 D-I DAKXR DATOO DFEDG DFGAJ DIK DILTD DPORF DPPUQ DU5 D~K E3Z EBS ECGQY EE~ EJD ELUNK ESX F20 F5P F9B FBQ FEDTE FHSFR FLUFQ FOEOM FQBLK G8K GAUVT GJXCC GX1 H5~ HAR HVGLF HW0 HZ~ H~9 IOX J21 JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST KAQDR KBUDW KC5 KOP KQ8 KSI KSN M-Z M49 MBTAY ML0 MVM N9A NEJ NGC NLBLG NOMLY NTWIH NU- NVLIB O0~ O9- OAWHX OBOKY ODMLO OHT OJQWA OJZSN OK1 OVD OWPYF O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y QBD R44 RD5 RIG RNI ROL ROX ROZ RUSNO RW1 RXO RZF RZO SA0 TCN TEORI TLC TN5 TR2 UHB UKR UPT VH1 W8F WH7 WOQ X7H XOL YAYTL YKOAZ YQT YSK YXANX YZZ ZCG ZKX ~02 ~91 ~KM AAHBH AARHZ AAUAY ABEJV ABMNT ABXSQ ABXVV ADACV ADQBN AQVQM ATGXG H13 IPSME JXSIZ ACMRT ACZBC AEHUL AFSHK AGMDO CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM AASNB |
ID | FETCH-LOGICAL-c490t-31283a06d76ab27ef620ee42a38a57552aedc809100455ca3c5543d721ee768d3 |
IEDL.DBID | JLS |
ISSN | 0022-0957 |
IngestDate | Tue Sep 17 21:19:07 EDT 2024 Fri Oct 25 07:37:54 EDT 2024 Fri Nov 22 00:36:09 EST 2024 Tue Oct 15 23:49:03 EDT 2024 Mon Nov 25 04:42:49 EST 2024 Wed Dec 27 19:20:45 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | zebra-like chromosome Hordeum chilense Acrocentric chromosome restorer gene cytoplasmic male sterility Triticum aestivum |
Language | English |
License | The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c490t-31283a06d76ab27ef620ee42a38a57552aedc809100455ca3c5543d721ee768d3 |
Notes | http://dx.doi.org/10.1093/jxb/eru388 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC4246193 |
PMID | 25271260 |
PQID | 1629334984 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4246193 proquest_miscellaneous_1629334984 crossref_primary_10_1093_jxb_eru388 pubmed_primary_25271260 jstor_primary_24858783 fao_agris_US201500017954 |
PublicationCentury | 2000 |
PublicationDate | 2014-12-01 |
PublicationDateYYYYMMDD | 2014-12-01 |
PublicationDate_xml | – month: 12 year: 2014 text: 2014-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: UK |
PublicationTitle | Journal of experimental botany |
PublicationTitleAlternate | J Exp Bot |
PublicationYear | 2014 |
Publisher | Oxford University Press [etc.] Oxford University Press |
Publisher_xml | – name: Oxford University Press [etc.] – name: Oxford University Press |
References | 8253381 - Genes Dev. 1993 Dec;7(12A):2345-56 16394587 - Genes Genet Syst. 2005 Oct;80(5):357-66 11851918 - Plant J. 2002 Jan;29(2):169-81 11863070 - Chromosome Res. 2002;10(1):49-54 16468981 - Mol Microbiol. 2006 Mar;59(5):1357-68 23725040 - BMC Plant Biol. 2013;13:87 22048641 - Theor Appl Genet. 2012 Mar;124(4):713-22 12827249 - Theor Appl Genet. 2003 Aug;107(4):757-67 17439153 - J Agric Food Chem. 2007 May 16;55(10):4244-51 18470144 - Genome. 1994 Dec;37(6):1056-61 22665276 - Methods Mol Biol. 2012;888:67-89 21415278 - Plant Physiol. 2011 May;156(1):20-8 23877075 - Ann Bot. 2013 Sep;112(5):789-800 12152330 - Hereditas. 2001;135(2-3):171-4 11376549 - Genes Genet Syst. 2001 Feb;76(1):33-8 17247290 - Genetics. 1948 Sep;33(5):439-46 11321369 - Chromosome Res. 2001;9(2):137-46 8162322 - Chromosome Res. 1994 Jan;2(1):59-64 11102390 - Genetics. 2000 Dec;156(4):1997-2005 22918662 - Theor Appl Genet. 2012 Oct;125(6):1087-96 24162154 - Theor Appl Genet. 2014 Feb;127(2):309-16 18390847 - J Exp Bot. 2008;59(6):1375-81 23122232 - BMC Plant Biol. 2012;12:200 20549484 - Theor Appl Genet. 2010 Oct;121(6):1093-101 8306822 - Chromosoma. 1993 Nov;102(9):612-7 23539483 - J Appl Genet. 2013 May;54(2):179-84 20508152 - Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):12028-33 18562667 - Genetics. 2008 Jul;179(3):1169-77 19126690 - Plant Physiol. 2009 Jan;149(1):7-13 ( key 20170512143139_CIT0028) 1982; 31 ( key 20170512143139_CIT0055) 1984; 2 ( key 20170512143139_CIT0002) 2001; 76 ( key 20170512143139_CIT0005) 2007; 55 ( key 20170512143139_CIT0058) 2010; 107 ( key 20170512143139_CIT0007) 2002; 10 ( key 20170512143139_CIT0037) 2010; 121 ( key 20170512143139_CIT0038) 2001; 102 ( key 20170512143139_CIT0009) 2003; 107 ( key 20170512143139_CIT0003) 2012 ( key 20170512143139_CIT0043) 2005; 80 ( key 20170512143139_CIT0017) 1953; 18 ( key 20170512143139_CIT0042) 2002; 29 ( key 20170512143139_CIT0014) 2013; 112 ( key 20170512143139_CIT0041) 2014; 127 ( key 20170512143139_CIT0048) 1986; 4 ( key 20170512143139_CIT0011) 1993; 111 ( key 20170512143139_CIT0057) 2008; 179 ( key 20170512143139_CIT0047) 1995; 81 ( key 20170512143139_CIT0015) 1994; 37 ( key 20170512143139_CIT0020) 1999 ( key 20170512143139_CIT0022) 1993; 102 ( key 20170512143139_CIT0054) 2013; 54 ( key 20170512143139_CIT0031) 1995; 35 ( key 20170512143139_CIT0040) 2003 ( key 20170512143139_CIT0051) 2012; 12 ( key 20170512143139_CIT0035) 2008; 59 ( key 20170512143139_CIT0025) 2012; 888 ( key 20170512143139_CIT0023) 1994; 2 ( key 20170512143139_CIT0018) 1991 ( key 20170512143139_CIT0029) 2002; 44 ( key 20170512143139_CIT0008) 2013; 13 ( key 20170512143139_CIT0053) 1948; 33 ( key 20170512143139_CIT0034) 1998 ( key 20170512143139_CIT0049) 1967; 7 ( key 20170512143139_CIT0004) 2004; 123 ( key 20170512143139_CIT0010) 1993; 72 ( key 20170512143139_CIT0012) 2009; 149 ( key 20170512143139_CIT0032) 1984; 24 ( key 20170512143139_CIT0045) 2001; 135 ( key 20170512143139_CIT0024) 1951; 16 ( key 20170512143139_CIT0036) 2008; 127 ( key 20170512143139_CIT0046) 2000; 156 ( key 20170512143139_CIT0052) 1998; 28 ( key 20170512143139_CIT0006) 1986; 153 ( key 20170512143139_CIT0030) 2012; 125 ( key 20170512143139_CIT0016) 2001; 9 ( key 20170512143139_CIT0050) 2012; 124 ( key 20170512143139_CIT0027) 1993; 7 ( key 20170512143139_CIT0021) 2010 ( key 20170512143139_CIT0001) 2012; 132 ( key 20170512143139_CIT0039) 2011; 156 ( key 20170512143139_CIT0026) 1997; 72 ( key 20170512143139_CIT0033) 1996 ( key 20170512143139_CIT0044) 2006; 59 ( key 20170512143139_CIT0013) 2001 ( key 20170512143139_CIT0019) 2005; 55 ( key 20170512143139_CIT0056) 2008; 59 |
References_xml | – volume: 124 start-page: 713 year: 2012 ident: key 20170512143139_CIT0050 article-title: Development of wild barley (Hordeum chilense)-derived DArT markers and their use into genetic and physical mapping publication-title: Theoretical and Applied Genetics doi: 10.1007/s00122-011-1741-2 – volume: 127 start-page: 309 year: 2014 ident: key 20170512143139_CIT0041 article-title: Yield stability of hybrids versus lines in wheat, barley, and triticale publication-title: Theoretical and Applied Genetics doi: 10.1007/s00122-013-2219-1 – volume-title: ESA Working Paper No. 12-03, June 2012 year: 2012 ident: key 20170512143139_CIT0003 article-title: World agriculture towards 2030/2050, the 2012 revision – volume: 2 start-page: 59 year: 1994 ident: key 20170512143139_CIT0023 article-title: Different species-specific chromosome translocations in Triticum timopheevii and T. turgidum support the diphyletic origin of polyploidy wheats publication-title: Chromosome Research doi: 10.1007/BF01539455 – volume: 37 start-page: 1056 year: 1994 ident: key 20170512143139_CIT0015 article-title: The molecular identification of the midget chromosome from the rye genome publication-title: Genome doi: 10.1139/g94-150 – volume: 888 start-page: 67 year: 2012 ident: key 20170512143139_CIT0025 article-title: Diversity arrays technology: a generic genome profiling technology on open platforms publication-title: Methods in Molecular Biology doi: 10.1007/978-1-61779-870-2_5 – start-page: 425 volume-title: Quantitative genetics in maize breeding third edition year: 2010 ident: key 20170512143139_CIT0021 article-title: Inbreeding – volume: 72 start-page: 353 year: 1997 ident: key 20170512143139_CIT0026 article-title: High-resolution RFLP mapping of the fertility restoration (Rf3) gene against Triticum timopheevii cytoplasm located on chromosome 1BS of common wheat publication-title: Genes and Genetic Systems doi: 10.1266/ggs.72.353 – volume: 156 start-page: 1997 year: 2000 ident: key 20170512143139_CIT0046 article-title: A simple sequence repeat-based linkage map of barley publication-title: Genetics doi: 10.1093/genetics/156.4.1997 – volume: 111 start-page: 106 year: 1993 ident: key 20170512143139_CIT0011 article-title: Localization of genes in rye that restore male fertility to hexaploid wheat with timopheevi cytoplasm publication-title: Plant Breeding doi: 10.1111/j.1439-0523.1993.tb00615.x – volume: 149 start-page: 7 year: 2009 ident: key 20170512143139_CIT0012 article-title: Increasing crop productivity to meet global needs for feed, food, and fuel publication-title: Plant Physiology doi: 10.1104/pp.108.130195 – volume: 135 start-page: 171 year: 2001 ident: key 20170512143139_CIT0045 article-title: Identification of intergenomic translocations involving wheat, Hordeum vulgare and Hordeum chilense chromosomes by FISH publication-title: Hereditas – start-page: 48 volume-title: Nuclear and organellar genomes of wheat species, proceedings of the Dr. H. Kihara, memorial international symposium on cytoplasmic engineering in wheat year: 1991 ident: key 20170512143139_CIT0018 article-title: Nucleo-cytoplasmic interaction (NCI) hypothesis of genome evolution and speciation in polyploid plants – volume: 127 start-page: 470 year: 2008 ident: key 20170512143139_CIT0036 article-title: Use of ccSSR markers for the determination of the purity of alloplasmic wheat in different Hordeum cytoplasms publication-title: Plant Breeding doi: 10.1111/j.1439-0523.2007.01483.x – volume: 29 start-page: 169 year: 2002 ident: key 20170512143139_CIT0042 article-title: Pistilloidy, homeotic transformation of stamens into pistil-like structures, caused by nuclear–cytoplasm interaction in wheat publication-title: Plant Journal doi: 10.1046/j.0960-7412.2001.01203.x – volume: 10 start-page: 49 year: 2002 ident: key 20170512143139_CIT0007 article-title: In situ comparative mapping (ISCM) of Glu-1 loci in Triticum and Hordeum publication-title: Chromosome Research doi: 10.1023/A:1014270227360 – volume: 123 start-page: 303 year: 2004 ident: key 20170512143139_CIT0004 article-title: Chromosomal location of genes for carotenoid pigments in Hordeum chilense publication-title: Plant Breeding doi: 10.1111/j.1439-0523.2004.00918.x – volume: 7 start-page: 493 year: 1967 ident: key 20170512143139_CIT0049 article-title: Monosomic analysis of fertility-restoration in common wheat (Triticum aestivum L.) publication-title: Crop Science doi: 10.2135/cropsci1967.0011183X000700050026x – volume: 107 start-page: 12028 year: 2010 ident: key 20170512143139_CIT0058 article-title: High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases publication-title: Proceedings of the National Academy of Sciences, USA doi: 10.1073/pnas.0914991107 – volume: 55 start-page: 4244 year: 2007 ident: key 20170512143139_CIT0005 article-title: Genetic variability of carotenoid concentration and degree of esterification among Tritordeum (Tritordeum Ascherson et Graebner) and durum wheat accessions publication-title: Journal of Agriculture and Food Chemistry doi: 10.1021/jf070342p – volume: 16 start-page: 177 year: 1951 ident: key 20170512143139_CIT0024 article-title: Substitution of nucleus and its effects on genome manifestation publication-title: Cytologia doi: 10.1508/cytologia.16.177 – volume: 2 start-page: 303 year: 1984 ident: key 20170512143139_CIT0055 article-title: Hybrid wheat breeding and commercial seed development publication-title: Plant Breeding Reviews – volume: 107 start-page: 757 year: 2003 ident: key 20170512143139_CIT0009 article-title: The development and evaluation of consensus chloroplast primer pairs that possess highly variable sequence regions in a diverse array of plant taxa publication-title: Theoretical and Applied Genetics doi: 10.1007/s00122-003-1311-3 – start-page: 377 volume-title: Triticeae III year: 1998 ident: key 20170512143139_CIT0034 article-title: The potential of Hordeum chilense in breeding Triticeae species – volume: 80 start-page: 357 year: 2005 ident: key 20170512143139_CIT0043 article-title: Chromosomal assignment and deletion mapping of barley EST markers publication-title: Genes and Genetic Systems doi: 10.1266/ggs.80.357 – volume: 112 start-page: 789 year: 2013 ident: key 20170512143139_CIT0014 article-title: Programmed cell death promotes male sterility in the functional dioecious Opuntia stenopetala (Cactaceae) publication-title: Annals of Botany doi: 10.1093/aob/mct141 – volume: 76 start-page: 33 year: 2001 ident: key 20170512143139_CIT0002 article-title: QTL analysis of fertility-restoration against cytoplasmic male sterility in wheat publication-title: Genes and Genetic Systems doi: 10.1266/ggs.76.33 – volume: 7 start-page: 2345 year: 1993 ident: key 20170512143139_CIT0027 article-title: New telomeres in yeast are initiated with a highly selected subset of TG1–3 repeats publication-title: Genes and Development doi: 10.1101/gad.7.12a.2345 – volume: 12 start-page: 200 year: 2012 ident: key 20170512143139_CIT0051 article-title: Hordeum chilense genome, a useful tool to investigate the endosperm yellow pigment content in the Triticeae publication-title: BMC Plant Biology doi: 10.1186/1471-2229-12-200 – volume: 153 start-page: 49 year: 1986 ident: key 20170512143139_CIT0006 article-title: Interspecific crosses in Hordeum (Poaceae) publication-title: Plant Systematic and Evolution doi: 10.1007/BF00989417 – volume: 4 start-page: 102 year: 1986 ident: key 20170512143139_CIT0048 article-title: Isolation of a D-genome specific repeated DNA sequence from Aegilops squarrosa publication-title: Plant Molecular Biology Reporter doi: 10.1007/BF02732107 – volume: 31 start-page: 895 year: 1982 ident: key 20170512143139_CIT0028 article-title: Monosomic analysis of fertility restoration in common wheat ‘Prof. Marchal’ publication-title: Euphytica doi: 10.1007/BF00039229 – volume: 44 start-page: 446 year: 2002 ident: key 20170512143139_CIT0029 article-title: RAPD and ISSR markers of fertility restoring gene for Aegilops kotschyi cytoplasmic male sterility in wheat publication-title: Acta Botanica Sinica – volume: 13 start-page: 87 year: 2013 ident: key 20170512143139_CIT0008 article-title: High-throughput genotyping of wheat-barley amphiploids utilising diversity array technology (DArT) publication-title: BMC Plant Biology doi: 10.1186/1471-2229-13-87 – volume: 121 start-page: 1093 year: 2010 ident: key 20170512143139_CIT0037 article-title: Molecular and cytological characterization of an extra acrocentric chromosome that restores male fertility of wheat in the msH1 CMS system publication-title: Theoretical and Applied Genetics doi: 10.1007/s00122-010-1374-x – volume: 125 start-page: 1087 year: 2012 ident: key 20170512143139_CIT0030 article-title: Hybrid breeding in autogamous cereals publication-title: Theoretical and Applied Genetics doi: 10.1007/s00122-012-1967-7 – volume: 81 start-page: 51 year: 1995 ident: key 20170512143139_CIT0047 article-title: Suggested guidelines for the nomenclature and abbreviation of the genetic stock of wheat and its relatives publication-title: Wheat Information Service – volume: 132 start-page: 42 year: 2012 ident: key 20170512143139_CIT0001 article-title: Effect of temperature on the expression of cytoplasmic male sterility in cultivated barley (Hordeum vulgare L.) publication-title: Plant Breeding – volume: 24 start-page: 17 year: 1984 ident: key 20170512143139_CIT0032 article-title: Genetic analyses of male-fertility restoration in wheat. I. Chromosomal location of Rf genes publication-title: Crop Science doi: 10.2135/cropsci1984.0011183X002400010005x – volume: 59 start-page: 1357 year: 2006 ident: key 20170512143139_CIT0044 article-title: Chromosome healing by de novo telomere addition in Saccharomyces cerevisiae publication-title: Molecular Microbiology doi: 10.1111/j.1365-2958.2006.05026.x – volume: 55 start-page: 335 year: 2005 ident: key 20170512143139_CIT0019 article-title: Extended application of barley EST markers for the analysis of alien chromosomes added to wheat genetic background publication-title: Breeding Science doi: 10.1270/jsbbs.55.335 – volume: 18 start-page: 167 year: 1953 ident: key 20170512143139_CIT0017 article-title: Studies on restoration and substitution of nucleus in Aegilotriticum. I. Appearance of male-sterile Triticum durum in substitution crosses publication-title: Cytologia doi: 10.1508/cytologia.18.167 – volume: 59 start-page: 206 year: 2008 ident: key 20170512143139_CIT0035 article-title: Male fertility restoration of wheat in Hordeum chilense cytoplasm is associated with 6HchS chromosome addition publication-title: Australian Journal of Agriculture Research doi: 10.1071/AR07239 – volume: 35 start-page: 1137 year: 1995 ident: key 20170512143139_CIT0031 article-title: Genetic analysis of fertility restoration in wheat using restriction fragment length polymorphisms publication-title: Crop Science doi: 10.2135/cropsci1995.0011183X003500040037x – volume: 28 start-page: 15 year: 1998 ident: key 20170512143139_CIT0052 article-title: DNA sequencing and primer designing for RFLP clones evenly distributed in the barley genome publication-title: Barley Genetics Newsletter – start-page: 8 volume-title: Proceedings of 10thinternational wheat genetics symposium year: 2003 ident: key 20170512143139_CIT0040 article-title: Catalogue of gene symbols for wheat – start-page: 57 volume-title: Triticale: Today and Tomorrow year: 1996 ident: key 20170512143139_CIT0033 article-title: Tritordeum: triticale′s new brother cereal – volume: 72 start-page: 239 year: 1993 ident: key 20170512143139_CIT0010 article-title: Comparison of plant telomere locations using a PCR-generated synthetic probe publication-title: Annals of Botany doi: 10.1006/anbo.1993.1104 – volume: 179 start-page: 1169 year: 2008 ident: key 20170512143139_CIT0057 article-title: The origin of a “Zebra” chromosome in wheat suggests nonhomologous recombination as a novel mechanism for new chromosome evolution and step changes in chromosome number publication-title: Genetics doi: 10.1534/genetics.108.089599 – volume: 102 start-page: 477 year: 2001 ident: key 20170512143139_CIT0038 article-title: Molecular mapping of a fertility restoration locus (Rfm1) for cytoplasmic male sterility in barley (Hordeum vulgare L.) publication-title: Theoretical and Applied Genetics doi: 10.1007/s001220051670 – volume: 54 start-page: 179 year: 2013 ident: key 20170512143139_CIT0054 article-title: The importance of chromosomes from the sixth homoeologic group in the restoration of male fertility in winter triticale with Triticum timopheevii cytoplasm publication-title: Journal of Applied Genetics doi: 10.1007/s13353-013-0144-2 – volume: 59 start-page: 1375 year: 2008 ident: key 20170512143139_CIT0056 article-title: Expression of the nuclear gene TaFAd is under mitochondrial retrograde regulation in anthers of male sterile wheat plants with timopheevii cytoplasm publication-title: Journal of Experimental Botany doi: 10.1093/jxb/ern068 – volume: 9 start-page: 137 year: 2001 ident: key 20170512143139_CIT0016 article-title: Chromosome healing by addition of telomeric repeats in wheat occurs during the first mitotic divisions of the sporophyte and is a gradual process publication-title: Chromosome Research doi: 10.1023/A:1009283003903 – volume: 33 start-page: 439 year: 1948 ident: key 20170512143139_CIT0053 article-title: What is heterosis? publication-title: Genetics doi: 10.1093/genetics/33.5.439 – volume: 102 start-page: 612 year: 1993 ident: key 20170512143139_CIT0022 article-title: A `zebra′chromosome arising from multiple translocations involving non-homologous chromosomes publication-title: Chromosoma doi: 10.1007/BF00352308 – start-page: 1019 volume-title: The world wheat book—a history of wheat breeding year: 2001 ident: key 20170512143139_CIT0013 article-title: Origin of cultivated wheat – start-page: 483 volume-title: The genetics and exploitation of heterosis in crops year: 1999 ident: key 20170512143139_CIT0020 article-title: Heterosis: What have we learned? What have we done? Where are we headed? – volume: 156 start-page: 20 year: 2011 ident: key 20170512143139_CIT0039 article-title: Comprehensive sequence analysis of 24,783 barley full-length cDNAs derived from 12 clone libraries publication-title: Plant Physiology doi: 10.1104/pp.110.171579 |
SSID | ssj0005055 |
Score | 2.3259718 |
Snippet | Cytoplasmic male sterility (CMS) results from incompatibility between nuclear and cytoplasmic genomes, and is characterized by the inability to produce viable... The high potential for an acrocentric chromosome originated from a complex reorganization of chromosomes 1H ch S and 6H ch S from Hordeum chilense in the... |
SourceID | pubmedcentral proquest crossref pubmed jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 6667 |
SubjectTerms | Acrocentric chromosomes Barley Chromosomes Chromosomes, Plant - genetics Cytoplasm Fertility - genetics Fluorescence in situ hybridization Genes Genetic Loci Genetic Markers Hordeum chilense hybrids In Situ Hybridization, Fluorescence loci Male fertility Meiosis Monosomics Plant Infertility - genetics Polymerase Chain Reaction Recombination, Genetic - genetics RESEARCH PAPER Sex chromosomes Telomere - metabolism Telomeres Triticum - cytology Triticum - genetics Triticum - physiology wheat |
Title | Fertility of CMS wheat is restored by two Rf loci located on a recombined acrocentric chromosome |
URI | https://www.jstor.org/stable/24858783 https://www.ncbi.nlm.nih.gov/pubmed/25271260 https://search.proquest.com/docview/1629334984 https://pubmed.ncbi.nlm.nih.gov/PMC4246193 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB51Kw5coAVKQx8yAo7RZuM8nGNfq6IKDiyVuAUnnrSLaIL2odJ_32-SptsikLhEihJLE48984395TPRe0wfZ50J_CC0KFC4Sn2bJNZHqkSytqF2LEsDp5P08zdzfCIyOR_6f2GEVtnyAttdfACk4icPRXbLpEYPaGAC0_H2VjyOII57SXDghbTXIM308MfvYsizpW6PVVllnUFlm55--Ddg-Sc_8kHCGT__T1M36NkdolQH3RDYpDWuX9CTwwao7-YlfR8LcVqwtmoqdfRpoq4l_KrpXM3aQ2XYqeJGLa4b9aVSyGxTuQCAOtXUyiopmK9QPePelpLsapH0V-Wl0PjmzRW_ovPxydejU__uVAW_jLJggaALRGGDxKWJLcKUqyQMmKPQamOB3eLQ4sONwAigvbi0ugTi0A6VIjNqE6e3aL1uat4mBfiQcIGCzyHJJwgFBbtR6UYAWaMqdqVH7_pez3914hl5t-mtc_gm73zj0TYcktsLRLX8fBLKGowkzyyOPNpqe_i-dd-9Hr3t3ZZjPsgmh625Wc7zUQIAo6PMoPHrzo2r1nGYwrjAo_SRg-9fEK3tx0_q6WWruR2J7l6m3_zLoB16CsOjjuiyS-uL2ZL3aDB3y30A9Y9n--2gvQX8pedS |
link.rule.ids | 230,315,782,786,808,887,27933,27934,58037,58052,58270,58285 |
linkProvider | JSTOR |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1db9MwFL2iYxK8DNgoDR_DE_AYNY3z-QhjURFtH9ZN4s1z4pu1iCZT02rshd_OvcnSMgTSXiJFiSXH1_Y51z45BnhPw8doEzm242pKUDAPbR0E2iaoJLDWrjTISwPDaTj5Fn0-YZucD-2_MCyrrHWB9S4-EaT0B_bZdisKI9mBhz5b8LOB869kq-RwfL81BSfGELYupLHsf_-Z9nG5lvXBKlvc6eS6bAWI_6KWfysk_4Cc5Mk9K_sU9m45pfjYdIJn8ACLfdj9VBLvuzmAi4Sl08y2RZmL4_FUXPMELOaVWNbHyqAR6Y1YXZfiNBeEbXO-EAU1oiyEFpwyLyh_pnudMdwVbOovshkL-apygc_hPDk5Ox7at-cq2JkXOyuadolTaCcwYaBTN8Q8cB1Ez9Uy0sTefFfTh0dMJIjv-ZmWGXEOaShXRKTsxMgu7BRlgT0QRCACTCnlMwTzAU0GKZpBZgZEswa5bzIL3rWtrq4a-wzVbHtLRbFRTWws6FFAlL6keU2dT11ehWH4jH3Pgm7dwpvSbfNacNSGTdGI4G0OXWC5rtQgIAojvTiiwi-aMG5L-25IlXMsCO8EePMCu23ffVLMZ7XrtsfOe7F8-b8KvYVHw7PxSI2-TL6-gsf0EV4je3kNO6vlGt9ApzLrw7rr_gbxc-nD |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6xUCEuhT6A8KqrcuEQbdbO88gromqLqi5IvblOPIGtSoL2IcqF385MQlhAcOASKUosOR575hvPl88A27R8rLGx53rSUIKCReSaMDQuhUoK1kYqi7w1cNSPjn_HB4csk7PT_gvDtMqaF1hX8QkgZf-we2mLLktvxVGsOjDHlR5m78mbdMrm8IKgFQYn1BC1SqSJ6v79n3VxOFH14SrT2NMpTNWSEJ-Dl09Zkg_CTrr4ig4vwds7bCl2m8nwDmawfA9v9irCf9cf4E_KFGpG3aIqxP6PvrhiRywGIzGsj5dBK7JrMb6qxK9CUIwb8IWgqBVVKYzg1PmC8mi6NzmHvZLF_UV-zoS-UXWBH-E0PTzZP3Lvzldwcz_xxuR-CVsYL7RRaDIZYRFKD9GXRsWGUFwgDX18zICCcF-QG5UT9lCWckZEylKsWobZsipxFQQBiRAzSv0shfuQnEKGtpfbHsGtXhHY3IEv7cjry0ZGQzflb6XJPrqxjwOrZBRtzsi_6dO-5N0YDqNJ4DuwXI_yfet2eB343JpO08rgcocpsZqMdC8kKKP8JKbGK40pp60DGVHnPAeiR0a-f4FVtx8_KQfntfq2zwp8iVp7qUOfYP7nQaq_fz3-tg4L9A1-w37ZgNnxcIKb0BnZyVY9e28BnefsSQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fertility+of+CMS+wheat+is+restored+by+two+Rf+loci+located+on+a+recombined+acrocentric+chromosome&rft.jtitle=Journal+of+experimental+botany&rft.au=Castillo%2C+Almudena&rft.au=Atienza%2C+Sergio+G.&rft.au=Mart%C3%ADn%2C+Azahara+C.&rft.date=2014-12-01&rft.pub=Oxford+University+Press&rft.issn=0022-0957&rft.eissn=1460-2431&rft.volume=65&rft.issue=22&rft.spage=6667&rft.epage=6677&rft_id=info:doi/10.1093%2Fjxb%2Feru388&rft.externalDocID=24858783 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0957&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0957&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0957&client=summon |