High rates of anaerobic methanotrophy at low sulfate concentrations with implications for past and present methane levels
Despite the importance of the anaerobic oxidation of methane (AOM) to global biogeochemical cycles, the relationship between sulfate concentration and the rate of AOM has not been previously experimentally constrained. Here, we present measurements showing substantial methane oxidation at low sulfat...
Saved in:
Published in: | Geobiology Vol. 9; no. 2; pp. 131 - 139 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford, UK
Blackwell Publishing Ltd
01-03-2011
Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Despite the importance of the anaerobic oxidation of methane (AOM) to global biogeochemical cycles, the relationship between sulfate concentration and the rate of AOM has not been previously experimentally constrained. Here, we present measurements showing substantial methane oxidation at low sulfate concentrations, with no significant decrease in the rate of AOM until sulfate levels are well below 1 mm. At sulfate levels below 1 mm, there appears to be a strong decoupling of AOM and sulfate reduction, with a ¹³C-label transferred from methane to carbon dioxide occurring at a rate almost an order of magnitude faster than the observed rate of sulfate reduction. These results allow for the possibility that high rates of AOM occurred in the Archean oceans and that high rates of AOM may be found in freshwater environments (lakes, rivers, etc.) and deep ocean sediments today. |
---|---|
AbstractList | Despite the importance of the anaerobic oxidation of methane (AOM) to global biogeochemical cycles, the relationship between sulfate concentration and the rate of AOM has not been previously experimentally constrained. Here, we present measurements showing substantial methane oxidation at low sulfate concentrations, with no significant decrease in the rate of AOM until sulfate levels are well below 1mm. At sulfate levels below 1mm, there appears to be a strong decoupling of AOM and sulfate reduction, with a 13C-label transferred from methane to carbon dioxide occurring at a rate almost an order of magnitude faster than the observed rate of sulfate reduction. These results allow for the possibility that high rates of AOM occurred in the Archean oceans and that high rates of AOM may be found in freshwater environments (lakes, rivers, etc.) and deep ocean sediments today. Despite the importance of the anaerobic oxidation of methane (AOM) to global biogeochemical cycles, the relationship between sulfate concentration and the rate of AOM has not been previously experimentally constrained. Here, we present measurements showing substantial methane oxidation at low sulfate concentrations, with no significant decrease in the rate of AOM until sulfate levels are well below 1 mm. At sulfate levels below 1 mm, there appears to be a strong decoupling of AOM and sulfate reduction, with a 13C‐label transferred from methane to carbon dioxide occurring at a rate almost an order of magnitude faster than the observed rate of sulfate reduction. These results allow for the possibility that high rates of AOM occurred in the Archean oceans and that high rates of AOM may be found in freshwater environments (lakes, rivers, etc.) and deep ocean sediments today. Despite the importance of the anaerobic oxidation of methane (AOM) to global biogeochemical cycles, the relationship between sulfate concentration and the rate of AOM has not been previously experimentally constrained. Here, we present measurements showing substantial methane oxidation at low sulfate concentrations, with no significant decrease in the rate of AOM until sulfate levels are well below 1 mM. At sulfate levels below 1 mM, there appears to be a strong decoupling of AOM and sulfate reduction, with a (13)C-label transferred from methane to carbon dioxide occurring at a rate almost an order of magnitude faster than the observed rate of sulfate reduction. These results allow for the possibility that high rates of AOM occurred in the Archean oceans and that high rates of AOM may be found in freshwater environments (lakes, rivers, etc.) and deep ocean sediments today. Abstract Despite the importance of the anaerobic oxidation of methane (AOM) to global biogeochemical cycles, the relationship between sulfate concentration and the rate of AOM has not been previously experimentally constrained. Here, we present measurements showing substantial methane oxidation at low sulfate concentrations, with no significant decrease in the rate of AOM until sulfate levels are well below 1 m m . At sulfate levels below 1 m m , there appears to be a strong decoupling of AOM and sulfate reduction, with a 13 C‐label transferred from methane to carbon dioxide occurring at a rate almost an order of magnitude faster than the observed rate of sulfate reduction. These results allow for the possibility that high rates of AOM occurred in the Archean oceans and that high rates of AOM may be found in freshwater environments (lakes, rivers, etc.) and deep ocean sediments today. Despite the importance of the anaerobic oxidation of methane (AOM) to global biogeochemical cycles, the relationship between sulfate concentration and the rate of AOM has not been previously experimentally constrained. Here, we present measurements showing substantial methane oxidation at low sulfate concentrations, with no significant decrease in the rate of AOM until sulfate levels are well below 1 mm. At sulfate levels below 1 mm, there appears to be a strong decoupling of AOM and sulfate reduction, with a ¹³C-label transferred from methane to carbon dioxide occurring at a rate almost an order of magnitude faster than the observed rate of sulfate reduction. These results allow for the possibility that high rates of AOM occurred in the Archean oceans and that high rates of AOM may be found in freshwater environments (lakes, rivers, etc.) and deep ocean sediments today. |
Author | CLAIRE, M. W. BEAL, E. J. HOUSE, C. H. |
Author_xml | – sequence: 1 fullname: BEAL, E.J – sequence: 2 fullname: CLAIRE, M.W – sequence: 3 fullname: HOUSE, C.H |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21231994$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU-P1CAYxolZ4_7Rr6AkHtxLR6BQSuJFx3V2k80ao5s9EqaFHcZOqdA6M9_et3acgwcjF17g9zzA-5yjkza0FiFMyYzCeLueUS5ZxotCzRiBXUJYIWe7J-jseHByrKU8RecprQHiIqfP0CmjLKdK8TO0v_aPKxxNbxMODpvW2BiWvsIb269MG_oYutUemx43YYvT0DhAcRXayrY9yHxoE976foX9pmt8ddhxIeLOpB4Ma9xFm4A-WFrc2J-2Sc_RU2eaZF8c5gt0_-nq2_w6u_28uJm_v80qrojMalowWUhF6mVRL5WQqjbMCmacY7y0uWWOcwULW9eOQC8YJ9zxqmTCUZFX-QV6M_l2MfwYbOr1xqfKNg08JQxJlwLaJJUogbz8J0k5ZUIoShWgr_9C12GILfxDs5KIkhLKCFDlRFUxpBSt0130GxP3mhI9BqnXesxIj3npMUj9O0i9A-nLwwXDcmPro_BPcgC8m4Ctb-z-v4314sMNFCDPJrlPvd0d5SZ-13AqhX64W-j5xy93YvHA9ci_mnhngjaP0Sd9_xWMc0IVZ1IV-S9Zhsa_ |
CitedBy_id | crossref_primary_10_1016_j_watres_2022_118441 crossref_primary_10_1073_pnas_2006857118 crossref_primary_10_1002_2014GB004951 crossref_primary_10_1073_pnas_1618798114 crossref_primary_10_3389_feart_2016_00061 crossref_primary_10_1016_j_scitotenv_2017_08_140 crossref_primary_10_1021_es3009503 crossref_primary_10_1016_j_gca_2015_11_022 crossref_primary_10_1016_j_limno_2017_08_001 crossref_primary_10_1089_ast_2016_1598 crossref_primary_10_3389_fmicb_2017_00619 crossref_primary_10_1016_j_earscirev_2020_103300 crossref_primary_10_1016_j_epsl_2015_11_021 crossref_primary_10_1002_bit_26576 crossref_primary_10_1038_srep40848 crossref_primary_10_1155_2022_7571792 crossref_primary_10_1007_s00284_012_0103_x crossref_primary_10_1016_j_scitotenv_2017_06_187 crossref_primary_10_1016_j_scitotenv_2024_174287 crossref_primary_10_1038_ngeo2069 crossref_primary_10_3389_fmicb_2015_00988 crossref_primary_10_1038_srep46708 crossref_primary_10_1016_j_gca_2013_03_029 crossref_primary_10_1038_ismej_2015_213 crossref_primary_10_1016_j_marpetgeo_2018_01_032 crossref_primary_10_1111_j_1574_6941_2012_01466_x crossref_primary_10_3847_1538_4357_ab88c9 crossref_primary_10_1038_s43247_023_00879_2 crossref_primary_10_1016_j_watres_2018_07_053 crossref_primary_10_2166_wst_2019_201 crossref_primary_10_3390_life1010019 crossref_primary_10_1016_j_chemgeo_2018_03_027 crossref_primary_10_1038_ncomms6094 crossref_primary_10_1111_gbi_12007 crossref_primary_10_1155_2017_1654237 crossref_primary_10_1038_s41561_019_0351_5 crossref_primary_10_1089_ast_2013_1078 crossref_primary_10_5194_bg_8_779_2011 crossref_primary_10_1016_j_epsl_2013_12_010 crossref_primary_10_1128_mSphereDirect_00309_17 crossref_primary_10_5194_gmd_15_7593_2022 crossref_primary_10_1016_j_chemgeo_2012_12_012 crossref_primary_10_1007_s11104_016_3061_4 crossref_primary_10_2112_JCOASTRES_D_18_00107_1 crossref_primary_10_1111_gbi_12331 crossref_primary_10_1111_gbi_12251 crossref_primary_10_1093_femsec_fiy089 crossref_primary_10_1073_pnas_1608549113 crossref_primary_10_1016_j_gca_2018_10_014 |
Cites_doi | 10.4319/lo.1977.22.1.0010 10.1111/j.1462-2920.2009.01903.x 10.1126/science.1100025 10.1016/j.chemgeo.2003.12.019 10.1098/rsta.2007.2047 10.1111/j.1462-2920.2007.01441.x 10.1128/AEM.71.1.467-479.2005 10.1111/j.1462-2920.2006.01127.x 10.1111/j.1462-2920.2008.01724.x 10.1016/0012-821X(76)90195-3 10.1111/j.1462-2920.2004.00669.x 10.1128/jb.137.1.420-432.1979 10.1128/AEM.69.9.5472-5482.2003 10.1038/nature08883 10.1080/01490450701672083 10.1126/science.1078265 10.1126/science.1061338 10.1016/S0025-3227(96)00075-8 10.1128/AEM.71.12.8925-8928.2005 10.1128/aem.50.4.940-945.1985 10.4319/lo.1985.30.5.0944 10.1038/35036572 10.1111/j.1462-2920.2007.01526.x 10.1126/science.1169984 10.1155/2005/650670 10.1128/AEM.67.4.1646-1656.2001 10.1016/S0146-6380(00)00106-6 10.1126/science.288.5466.658 10.1128/AEM.00067-09 10.1046/j.1462-2920.2002.00299.x 10.1128/AEM.67.4.1922-1934.2001 10.1016/0016-7037(84)90191-1 10.1038/nature04617 10.1130/0091-7613(1976)4<297:MPACIA>2.0.CO;2 10.1046/j.1462-2920.2003.00418.x 10.1029/94GB01800 10.1073/pnas.072210299 10.1029/2001GC000286 |
ContentType | Journal Article |
Copyright | 2011 Blackwell Publishing Ltd 2011 Blackwell Publishing Ltd. Copyright Wiley Subscription Services, Inc. Mar 2011 |
Copyright_xml | – notice: 2011 Blackwell Publishing Ltd – notice: 2011 Blackwell Publishing Ltd. – notice: Copyright Wiley Subscription Services, Inc. Mar 2011 |
DBID | FBQ BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 8FD F1W FR3 H95 L.G P64 RC3 7TN 7X8 |
DOI | 10.1111/j.1472-4669.2010.00267.x |
DatabaseName | AGRIS Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts Oceanic Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Oceanic Abstracts MEDLINE - Academic |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic MEDLINE Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1472-4669 |
EndPage | 139 |
ExternalDocumentID | 10_1111_j_1472_4669_2010_00267_x 21231994 GBI267 ark_67375_WNG_CDQN5GW4_7 US201301942796 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GeographicLocations | Pacific Ocean California |
GeographicLocations_xml | – name: Pacific Ocean – name: California |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 29H 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABHUG ABPTK ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFVGU AFZJQ AGJLS AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD ESX F00 F01 F04 F5P FBQ FEDTE G-S G.N GODZA H.T H.X HF~ HVGLF HZ~ IHE IX1 J0M LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OVD P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI TN5 UB1 W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WUPDE WXSBR WYISQ XG1 ZZTAW ~02 ~IA ~KM ~WT AHBTC AITYG BSCLL HGLYW OIG CGR CUY CVF ECM EIF NPM AAYXX CITATION 8FD AAMNL F1W FR3 H95 L.G P64 RC3 7TN 7X8 |
ID | FETCH-LOGICAL-c4907-d16276790db6db9579da2e52aff248e3e2f449ff2eddf00102404f4c825f153c3 |
IEDL.DBID | 33P |
ISSN | 1472-4677 |
IngestDate | Fri Aug 16 05:55:57 EDT 2024 Sat Aug 17 03:14:59 EDT 2024 Tue Nov 19 06:54:19 EST 2024 Fri Aug 23 02:03:16 EDT 2024 Sat Sep 28 07:58:06 EDT 2024 Sat Aug 24 00:42:28 EDT 2024 Wed Oct 30 09:56:18 EDT 2024 Wed Dec 27 19:18:17 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | 2011 Blackwell Publishing Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4907-d16276790db6db9579da2e52aff248e3e2f449ff2eddf00102404f4c825f153c3 |
Notes | http://dx.doi.org/10.1111/j.1472-4669.2010.00267.x istex:FE7F7EAF395DE508F21BFC4C02E86B6EA8A531F2 ArticleID:GBI267 ark:/67375/WNG-CDQN5GW4-7 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 21231994 |
PQID | 2805810120 |
PQPubID | 2034137 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_851477958 proquest_miscellaneous_1412559119 proquest_journals_2805810120 crossref_primary_10_1111_j_1472_4669_2010_00267_x pubmed_primary_21231994 wiley_primary_10_1111_j_1472_4669_2010_00267_x_GBI267 istex_primary_ark_67375_WNG_CDQN5GW4_7 fao_agris_US201301942796 |
PublicationCentury | 2000 |
PublicationDate | March 2011 |
PublicationDateYYYYMMDD | 2011-03-01 |
PublicationDate_xml | – month: 03 year: 2011 text: March 2011 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England – name: Chichester |
PublicationTitle | Geobiology |
PublicationTitleAlternate | Geobiology |
PublicationYear | 2011 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Hinrichs KU (2002) Microbial fixation of methane carbon at 2.7 Ga: was an anaerobic mechanism possible? Geochemistry, Geophysics, Geosystems 3, 1. Raghoebarsing A, Pol A, van de Pas-Schoonen KT, Smolders AJ, Ettwig KF, Rijpstra WI, Schouten S, Damsté JS, Op den Camp HJ, Jetten MS, Strous M (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440, 918-921. Hinrichs KU, Summons RE, Orphan VJ, Sylva SP, Hayes JM (2000) Molecular and isotopic analysis of anaerobic methane-oxidizing communities in marine sediments. Organic Geochemistry 31, 1685. Eller G, Kanel L, Kruger M (2005) Cooccurrence of aerobic and anaerobic methane oxidation in the water column of Lake Plußsee. Applied and Environmental Microbiology 71, 8925. Catling DC, Claire MW, Zahnle KJ (2007) Anaerobic methanotrophy and the rise of oxygen. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences 365, 1867-1888. Smemo K, Yavitt JB (2007) Evidence for anaerobic CH4 oxidation in freshwater peatlands. Geomicrobiology Journal 24, 583. Moran JJ, House CH, Freeman KH, Ferry JG (2005) Trace methane oxidation studied in several Euryarchaeota under diverse conditions. Archaea 1, 303-309. Ettwig KF, Shima S, Pas-Schoonen KTvd, Kahnt J, Medema MH, Camp HJMod, Jetten MSM, Strous M (2008) Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea. Environmental Microbiology 10, 3164-3173. Wetzel RG (1983) Limnology, 2nd edn. W. B. Saunders, Philadelphia, PA. Ettwig KF, van Alen T, van de Pas-Schoonen KT, Jetten MSM, Strous M (2009) Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum. Applied and Environmental Microbiology 75, 3656-3662. Hallam SJ, Putnam N, Preston CM, Detter JC, Rokhsar D, Richardson PM, DeLong EF (2004) Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305, 1457-1462. Harder J (1997) Anaerobic methane oxidation by bacteria employing 14C-methane uncontaminated with 14C-carbon monoxide. Marine Geology 137, 13-23. Thomsen TR (2001) Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment. Applied and Environmental Microbiology 67, 1646. Hinrichs KU, Hayes JM, Sylva SP, Brewer PG, DeLong EF (1999) Methane-consuming archaebacteria in marine sediments. Nature 398, 802-805. Orphan VJ, House CH, Hinrichs K-U, McKeegan KD, DeLong EF (2002) From the cover: multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proceedings of the National Academy of Sciences of the USA 99, 7663-7668. Habicht KS, Gade M, Thamdrup B, Berg P, Canfield DE (2002) Calibration of sulfate levels in the Archean Ocean. Science 298, 2372. Moran JJ, Beal EJ, Vrentas JM, Orphan VJ, Freeman KH, H HC (2008) Methyl sulfides as intermediates in the anaerobic oxidation of methane. Environmental Microbiology 10, 162. Hoehler TM (1994) Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium. Global Biogeochemical Cycles 8, 451. Nauhaus K, Treude T, Boetius AA, Krüger M (2005) Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities. Environmental Microbiology 7, 98. Alperin MJ, Reeburgh WS (1985) Inhibition experiments on anaerobic methane oxidation. Applied and Environmental Microbiology 50, 940-945. Nauhaus K, Albrecht M, Elvert M, Boetius A, Widdel F (2007) In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate. Environmental Microbiology 9, 187. Girguis PR (2004) Growth and population dynamics of anaerobic methane-oxidizing archaea and sulfate-reducing bacteria in a continuous-flow bioreactor. Applied and Environmental Microbiology 71, 3725. Girguis PR, Orphan VJ, Hallam SJ, DeLong EF (2003) Growth and methane oxidation rates of anaerobic methanotrophic archaea in a continuous-flow bioreactor. Applied and Environmental Microbiology 69, 5472. Joye SB, Boetius A, Orcutt BN, Montoya JP, Schulz HN, Erickson MJ, Lugo SK (2004) The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps. Chemical Geology 205, 219-238. Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MMM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels HJCT, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT, Op den Camp HJM, Janssen-Megens EM, Francoijs K-J, Stunnenberg H, Weissenbach J, Jetten MSM, Strous M (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464, 543-548. Iversen N, Jorgensen BB (1985) Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark). Limnology and Oceanography 30, 944-955. Orcutt BN, Samarkin V, Boetius A, Samantha J (2008) On the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico. Environmental Microbiology 10, 1108-1117. Claire M, Catling D, Zahnle K (2008) First results from a 1D time-dependent photochemical model. Astrobiology 8, 423. Beal EJ, House CH, Orphan VJ (2009) Manganese- and iron-dependent marine methane oxidation. Science 325, 184. Orphan VJ, House CH, Hinrichs KU, McKeegen KD, DeLong EF (2001b) Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293, 484. Devol AH, Anderson JJ, Kuivila K, Murray JW (1984) A model for coupled sulfate reduction and methane oxidation in the sediments of Saanich Inlet. Geochimica et Cosmochimica Acta 48, 993-1004. Reeburgh WS (1976) Methane consumption in Cariaco Trench waters and sediments. Earth and Planetary Science Letters 28, 337. Knittel K, Loesekann T, Boetius A, Kort R, Amann R (2005) Diversity and distribution of methanotrophic archaea at cold seeps. Applied and Environmental Microbiology 71, 467. Zehnder AJ, Brock TD (1979) Methane formation and methane oxidation by methanogenic bacteria. Journal of Bacteriology 137, 420-432. Canfield DE, Habicht KS, Thamdrup B (2000) The Archean sulfur cycle and the early history of atmospheric oxygen. Science 288, 658-661. Martens CS, Berner RA (1977) Interstitial water chemistry of anoxic Long Island Sound sediments. 1. Dissolved gases. Limnology and Oceanography 22, 10-25. Nauhaus K, Boetius A, Kruger M, Widdel F (2002) In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Environmental Microbiology 4, 296-305. Lyman J, Fleming RH (1940) Composition of sea water. Journal of Marine Research 3, 134-167. Orphan VJ, Turk KA, Green AM, House CH (2009) Patterns of 15N assimilation and growth of methanotrophic ANME-2 archaea and sulfate-reducing bacteria within structured syntrophic consortia revealed by FISH-SIMS. Environmental Microbiology 11, 1777-1791. Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen B, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407, 623-626. Orphan VJ, Hinrichs KU, Ussler W III, Paull CK, Taylor LT, Sylva SP, Hayes JM, Delong EF (2001a) Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Applied and Environmental Microbiology 67, 1922-1934. Barnes RO, Goldberg ED (1976) Methane production and consumption in anoxic marine sediments. Geology 4, 297. 2007; 365 1997; 137 2001b; 293 1984; 48 2010; 464 2002; 298 2002; 99 2002; 3 2008; 8 2002; 4 2008; 10 1977; 22 2001a; 67 1976; 28 2001; 67 2004; 305 2004; 205 1976; 4 2000; 407 1994; 8 2009; 11 1940; 3 1979; 137 2009; 75 2004; 71 2000; 31 2003; 69 2007; 9 2005; 7 2006; 440 1983 2005; 1 1985; 30 2005; 71 1985; 50 2000; 288 1999; 398 2007; 24 2009; 325 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 Hayes JM (e_1_2_5_19_1) 1983 e_1_2_5_24_1 e_1_2_5_21_1 Lyman J (e_1_2_5_27_1) 1940; 3 e_1_2_5_44_1 e_1_2_5_22_1 Claire M (e_1_2_5_8_1) 2008; 8 e_1_2_5_29_1 e_1_2_5_42_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_40_1 Wetzel RG (e_1_2_5_43_1) 1983 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_39_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_18_1 Girguis PR (e_1_2_5_14_1) 2004; 71 e_1_2_5_30_1 e_1_2_5_31_1 |
References_xml | – volume: 8 year: 1994 article-title: Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen‐sulfate reducer consortium publication-title: Global Biogeochemical Cycles – year: 1983 – volume: 298 year: 2002 article-title: Calibration of sulfate levels in the Archean Ocean publication-title: Science – volume: 11 start-page: 1777 year: 2009 end-page: 1791 article-title: Patterns of 15N assimilation and growth of methanotrophic ANME‐2 archaea and sulfate‐reducing bacteria within structured syntrophic consortia revealed by FISH‐SIMS publication-title: Environmental Microbiology – volume: 48 start-page: 993 year: 1984 end-page: 1004 article-title: A model for coupled sulfate reduction and methane oxidation in the sediments of Saanich Inlet publication-title: Geochimica et Cosmochimica Acta – volume: 99 start-page: 7663 year: 2002 end-page: 7668 article-title: From the cover: multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments publication-title: Proceedings of the National Academy of Sciences of the USA – volume: 9 year: 2007 article-title: In vitro cell growth of marine archaeal‐bacterial consortia during anaerobic oxidation of methane with sulfate publication-title: Environmental Microbiology – volume: 67 year: 2001 article-title: Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment publication-title: Applied and Environmental Microbiology – volume: 71 year: 2005 article-title: Cooccurrence of aerobic and anaerobic methane oxidation in the water column of Lake Plußsee publication-title: Applied and Environmental Microbiology – volume: 407 start-page: 623 year: 2000 end-page: 626 article-title: A marine microbial consortium apparently mediating anaerobic oxidation of methane publication-title: Nature – volume: 365 start-page: 1867 year: 2007 end-page: 1888 article-title: Anaerobic methanotrophy and the rise of oxygen publication-title: Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences – volume: 137 start-page: 420 year: 1979 end-page: 432 article-title: Methane formation and methane oxidation by methanogenic bacteria publication-title: Journal of Bacteriology – volume: 4 start-page: 296 year: 2002 end-page: 305 article-title: In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area publication-title: Environmental Microbiology – volume: 24 year: 2007 article-title: Evidence for anaerobic CH4 oxidation in freshwater peatlands publication-title: Geomicrobiology Journal – volume: 288 start-page: 658 year: 2000 end-page: 661 article-title: The Archean sulfur cycle and the early history of atmospheric oxygen publication-title: Science – volume: 325 start-page: 184 year: 2009 article-title: Manganese‐ and iron‐dependent marine methane oxidation publication-title: Science – volume: 31 year: 2000 article-title: Molecular and isotopic analysis of anaerobic methane‐oxidizing communities in marine sediments publication-title: Organic Geochemistry – volume: 3 year: 2002 article-title: Microbial fixation of methane carbon at 2.7 Ga: was an anaerobic mechanism possible? publication-title: Geochemistry, Geophysics, Geosystems – volume: 293 year: 2001b article-title: Methane‐consuming archaea revealed by directly coupled isotopic and phylogenetic analysis publication-title: Science – volume: 75 start-page: 3656 year: 2009 end-page: 3662 article-title: Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum publication-title: Applied and Environmental Microbiology – volume: 205 start-page: 219 year: 2004 end-page: 238 article-title: The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps publication-title: Chemical Geology – volume: 8 start-page: 423 year: 2008 article-title: First results from a 1D time‐dependent photochemical model publication-title: Astrobiology – volume: 305 start-page: 1457 year: 2004 end-page: 1462 article-title: Reverse methanogenesis: testing the hypothesis with environmental genomics publication-title: Science – volume: 398 start-page: 802 year: 1999 end-page: 805 article-title: Methane‐consuming archaebacteria in marine sediments publication-title: Nature – volume: 71 year: 2004 article-title: Growth and population dynamics of anaerobic methane‐oxidizing archaea and sulfate‐reducing bacteria in a continuous‐flow bioreactor publication-title: Applied and Environmental Microbiology – volume: 69 year: 2003 article-title: Growth and methane oxidation rates of anaerobic methanotrophic archaea in a continuous‐flow bioreactor publication-title: Applied and Environmental Microbiology – volume: 440 start-page: 918 year: 2006 end-page: 921 article-title: A microbial consortium couples anaerobic methane oxidation to denitrification publication-title: Nature – volume: 10 start-page: 1108 year: 2008 end-page: 1117 article-title: On the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico publication-title: Environmental Microbiology – volume: 28 year: 1976 article-title: Methane consumption in Cariaco Trench waters and sediments publication-title: Earth and Planetary Science Letters – volume: 50 start-page: 940 year: 1985 end-page: 945 article-title: Inhibition experiments on anaerobic methane oxidation publication-title: Applied and Environmental Microbiology – volume: 1 start-page: 303 year: 2005 end-page: 309 article-title: Trace methane oxidation studied in several Euryarchaeota under diverse conditions publication-title: Archaea – volume: 71 year: 2005 article-title: Diversity and distribution of methanotrophic archaea at cold seeps publication-title: Applied and Environmental Microbiology – volume: 22 start-page: 10 year: 1977 end-page: 25 article-title: Interstitial water chemistry of anoxic Long Island Sound sediments. 1. Dissolved gases publication-title: Limnology and Oceanography – volume: 10 start-page: 3164 year: 2008 end-page: 3173 article-title: Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea publication-title: Environmental Microbiology – volume: 30 start-page: 944 year: 1985 end-page: 955 article-title: Anaerobic methane oxidation rates at the sulfate‐methane transition in marine sediments from Kattegat and Skagerrak (Denmark) publication-title: Limnology and Oceanography – volume: 464 start-page: 543 year: 2010 end-page: 548 article-title: Nitrite‐driven anaerobic methane oxidation by oxygenic bacteria publication-title: Nature – start-page: 291 year: 1983 end-page: 301 – volume: 7 year: 2005 article-title: Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME‐I and ANME‐II communities publication-title: Environmental Microbiology – volume: 3 start-page: 134 year: 1940 end-page: 167 article-title: Composition of sea water publication-title: Journal of Marine Research – volume: 4 start-page: 297 year: 1976 article-title: Methane production and consumption in anoxic marine sediments publication-title: Geology – volume: 67 start-page: 1922 year: 2001a end-page: 1934 article-title: Comparative analysis of methane‐oxidizing archaea and sulfate‐reducing bacteria in anoxic marine sediments publication-title: Applied and Environmental Microbiology – volume: 10 start-page: 162 year: 2008 article-title: Methyl sulfides as intermediates in the anaerobic oxidation of methane publication-title: Environmental Microbiology – volume: 137 start-page: 13 year: 1997 end-page: 23 article-title: Anaerobic methane oxidation by bacteria employing 14C‐methane uncontaminated with 14C‐carbon monoxide publication-title: Marine Geology – ident: e_1_2_5_28_1 doi: 10.4319/lo.1977.22.1.0010 – ident: e_1_2_5_38_1 doi: 10.1111/j.1462-2920.2009.01903.x – ident: e_1_2_5_17_1 doi: 10.1126/science.1100025 – ident: e_1_2_5_25_1 doi: 10.1016/j.chemgeo.2003.12.019 – ident: e_1_2_5_7_1 doi: 10.1098/rsta.2007.2047 – ident: e_1_2_5_30_1 doi: 10.1111/j.1462-2920.2007.01441.x – start-page: 291 volume-title: Earth’s Earliest Biosphere: Its Origin and Evolution year: 1983 ident: e_1_2_5_19_1 contributor: fullname: Hayes JM – ident: e_1_2_5_26_1 doi: 10.1128/AEM.71.1.467-479.2005 – ident: e_1_2_5_33_1 doi: 10.1111/j.1462-2920.2006.01127.x – ident: e_1_2_5_11_1 doi: 10.1111/j.1462-2920.2008.01724.x – ident: e_1_2_5_40_1 doi: 10.1016/0012-821X(76)90195-3 – ident: e_1_2_5_32_1 doi: 10.1111/j.1462-2920.2004.00669.x – ident: e_1_2_5_44_1 doi: 10.1128/jb.137.1.420-432.1979 – ident: e_1_2_5_15_1 doi: 10.1128/AEM.69.9.5472-5482.2003 – volume: 8 start-page: 423 year: 2008 ident: e_1_2_5_8_1 article-title: First results from a 1D time‐dependent photochemical model publication-title: Astrobiology contributor: fullname: Claire M – ident: e_1_2_5_13_1 doi: 10.1038/nature08883 – ident: e_1_2_5_41_1 doi: 10.1080/01490450701672083 – ident: e_1_2_5_16_1 doi: 10.1126/science.1078265 – ident: e_1_2_5_36_1 doi: 10.1126/science.1061338 – ident: e_1_2_5_18_1 doi: 10.1016/S0025-3227(96)00075-8 – ident: e_1_2_5_10_1 doi: 10.1128/AEM.71.12.8925-8928.2005 – volume: 71 year: 2004 ident: e_1_2_5_14_1 article-title: Growth and population dynamics of anaerobic methane‐oxidizing archaea and sulfate‐reducing bacteria in a continuous‐flow bioreactor publication-title: Applied and Environmental Microbiology contributor: fullname: Girguis PR – ident: e_1_2_5_2_1 doi: 10.1128/aem.50.4.940-945.1985 – ident: e_1_2_5_24_1 doi: 10.4319/lo.1985.30.5.0944 – ident: e_1_2_5_5_1 doi: 10.1038/35036572 – ident: e_1_2_5_34_1 doi: 10.1111/j.1462-2920.2007.01526.x – ident: e_1_2_5_4_1 doi: 10.1126/science.1169984 – volume: 3 start-page: 134 year: 1940 ident: e_1_2_5_27_1 article-title: Composition of sea water publication-title: Journal of Marine Research contributor: fullname: Lyman J – ident: e_1_2_5_29_1 doi: 10.1155/2005/650670 – ident: e_1_2_5_42_1 doi: 10.1128/AEM.67.4.1646-1656.2001 – ident: e_1_2_5_22_1 doi: 10.1016/S0146-6380(00)00106-6 – ident: e_1_2_5_6_1 doi: 10.1126/science.288.5466.658 – ident: e_1_2_5_12_1 doi: 10.1128/AEM.00067-09 – ident: e_1_2_5_31_1 doi: 10.1046/j.1462-2920.2002.00299.x – ident: e_1_2_5_35_1 doi: 10.1128/AEM.67.4.1922-1934.2001 – ident: e_1_2_5_9_1 doi: 10.1016/0016-7037(84)90191-1 – ident: e_1_2_5_39_1 doi: 10.1038/nature04617 – ident: e_1_2_5_3_1 doi: 10.1130/0091-7613(1976)4<297:MPACIA>2.0.CO;2 – ident: e_1_2_5_21_1 doi: 10.1046/j.1462-2920.2003.00418.x – volume-title: Limnology year: 1983 ident: e_1_2_5_43_1 contributor: fullname: Wetzel RG – ident: e_1_2_5_23_1 doi: 10.1029/94GB01800 – ident: e_1_2_5_37_1 doi: 10.1073/pnas.072210299 – ident: e_1_2_5_20_1 doi: 10.1029/2001GC000286 |
SSID | ssj0024531 |
Score | 2.1989424 |
Snippet | Despite the importance of the anaerobic oxidation of methane (AOM) to global biogeochemical cycles, the relationship between sulfate concentration and the rate... Abstract Despite the importance of the anaerobic oxidation of methane (AOM) to global biogeochemical cycles, the relationship between sulfate concentration and... |
SourceID | proquest crossref pubmed wiley istex fao |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 131 |
SubjectTerms | Anaerobiosis Archaea - metabolism Bacteria - metabolism Biogeochemical cycle Biogeochemical cycles California Carbon dioxide Carbon Dioxide - metabolism Carbon Isotopes - metabolism Fluvial sediments Fresh Water Freshwater Freshwater environments Freshwater lakes Geologic Sediments Inland water environment Lakes Methane Methane - metabolism Oceans Oxidation Oxidation-Reduction Pacific Ocean Paleontology Rivers Sediments Sulfate reduction Sulfates Sulfates - metabolism Sulphate reduction |
Title | High rates of anaerobic methanotrophy at low sulfate concentrations with implications for past and present methane levels |
URI | https://api.istex.fr/ark:/67375/WNG-CDQN5GW4-7/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1472-4669.2010.00267.x https://www.ncbi.nlm.nih.gov/pubmed/21231994 https://www.proquest.com/docview/2805810120 https://search.proquest.com/docview/1412559119 https://search.proquest.com/docview/851477958 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7RShx5Q0MLMhLiFpR4HTs-Qh9bOKxApSo3y4lthFglq82u2v57Zpxk6aIiIcQtUexRPPbY39jjbwBe14XjKlMhDd7bVFjEcFaIOq106XVWl1LHXASnZ2r2tTw6Jpqcj-NdmJ4fYrPhRpYR52sycFt1vxm54qmQUo8RWlyqt4Qn0WmItzkmn37R7hUxNeFQRantoJ5bBW2tVDvBtohfSfVXt4HRbWwbF6eT-_-zWQ_g3gBR2bt-TD2EO755BHf7pJXXj-GaQkMYMUx0rA3MNtYTl1PNKBm1bdrVssWuY3bF5u0l69bzgEVZTdcjm4Gjt2O0_cu-34hmZwie2cJ2KxTo2KK_FDWI9GxOoU3dEzg_Of5yeJoOCRzSWqDTnbpcciWVzlwlXUUHgs5yX3AbAheln3gehND44p0Lkd1OZCKIGr3WgDNxPXkKu03b-D1gHCdmiaJCLaUIytmJqNBTdDZXrkQYk0A-dpZZ9Dwd5qZ_o7ghlRpSqYkqNVcJ7GGvGvsNp1NzfsbpEDfXgistE3gTu3ojyy5_UAicKszFbGoOjz7PiumFMCqBg3EsmMH6O8PLrIjEaVkCrzaf0W7pMAa11q47_KWcvLk81wmwP5RBNCyU0kWZwLN-mG3-hxAH0TonUMTR9NeNNtP3H_Dh-T_W26eNjTEK7wB2V8u1fwE7nVu_jAb3E4gqJNQ |
link.rule.ids | 315,782,786,1408,27935,27936,46066,46490 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-xIcRe-GYLDDAS4i0ocRw7foR9tNNGBdqm8Wa5sY0QVVI1rdj-e-6StKxoSAjxlijxKbnznX-2z78DeFPmjqtEhTh4b2NhEcNZIcp4rAuvk7KQuq1FMDxVoy_F_gHR5Bwvz8J0_BCrBTfyjDZek4PTgvRvXq54LKTUyxQtLtU7BJS3hRSa6jhk2adfxHt5W5ywb6PUelrPjZLWxqqNYGtEsKT8y5vg6Dq6bYenw_v_9ccewL0epbL3Xbd6CLd89QjudHUrrx7DFWWHMCKZaFgdmK2sJzqnklE9alvV81mN1mN2zib1D9YsJgFfZSWdkKx6mt6G0Qow-3YtoZ0hfmZT28xRoGPT7lxUL9KzCWU3NU_g_PDgbG8Y9zUc4hJNoGKXSq6k0okbSzemPUFnuc-5DYGLwmeeByE03njnQktwJxIRRIkT14DBuMyewmZVV34HGMfYLFFUKKUUQTmbiTFOFp1NlSsQyUSQLq1lph1Vh7k-xVHckEoNqdS0KjWXEeygWY39ihHVnJ9y2sdNteBKywjetrZeybKz75QFp3JzMRqYvf3Po3xwIYyKYHfZGUwfABrDiyRvudOSCF6vHqPr0n4Maq1eNPhJKU3o0lRHwP7wDgJioZTOiwi2u362-h4CHcTsHEHedqe__mkz-HCEF8_-sd0ruDs8-3hiTo5Gx89hq1tkp6S8Xdiczxb-BWw0bvGy9b6f-8Io-A |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED6xIRAv_IYFBhgJ8RaUuI4dP8K6bgNUDY1pvFlubCNElVRNK7b_njsnLSsaEkK8JYp9is8--zv7_B3Aq6pwXGUqpMF7mwqLGM4KUaUTXXqdVaXUMRfB4YkafymH-0ST8351F6bjh1hvuJFlxPmaDHzmwm9GrngqpNSrCC0u1RvEk9cFoXK6zjE4_sW7V8TchH0dpTajeq6UtLFUbQXbIIAl3Z9fhUY3wW1cnUZ3_me77sLtHqOyt92gugfXfH0fbnRZKy8ewAXFhjCimGhZE5itrScyp4pRNmpbN4t5g33H7IJNmx-sXU4DFmUV3Y-se5LeltH-L_t2KZydIXpmM9suUKBjs-5WVC_SsynFNrUP4XS0_3nvMO0zOKSVQK87dbnkSiqduYl0EzoRdJb7gtsQuCj9wPMghMYX71yI9HYiE0FU6LYGnIqrwSPYrpva7wDjODNLFBUqKUVQzg7EBF1FZ3PlSsQxCeSrzjKzjqjDXHZwFDekUkMqNVGl5jyBHexVY7_ifGpOTzid4uZacKVlAq9jV69l2fl3ioFThTkbH5i94adxcXAmjEpgdzUWTG_-reFlVkTmtCyBl-vPaLh0GoNaa5Yt_lJO7lye6wTYH8ogHBZK6aJM4HE3zNb_Q5CDeJ0TKOJo-utGm4N3R_jw5B_rvYCbx8OR-Xg0_vAUbnU77BSRtwvbi_nSP4Ot1i2fR9v7CUIyJ6c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+rates+of+anaerobic+methanotrophy+at+low+sulfate+concentrations+with+implications+for+past+and+present+methane+levels&rft.jtitle=Geobiology&rft.au=BEAL%2C+E.+J.&rft.au=CLAIRE%2C+M.+W.&rft.au=HOUSE%2C+C.+H.&rft.date=2011-03-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1472-4677&rft.eissn=1472-4669&rft.volume=9&rft.issue=2&rft.spage=131&rft.epage=139&rft_id=info:doi/10.1111%2Fj.1472-4669.2010.00267.x&rft.externalDBID=10.1111%252Fj.1472-4669.2010.00267.x&rft.externalDocID=GBI267 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1472-4677&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1472-4677&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1472-4677&client=summon |