High rates of anaerobic methanotrophy at low sulfate concentrations with implications for past and present methane levels

Despite the importance of the anaerobic oxidation of methane (AOM) to global biogeochemical cycles, the relationship between sulfate concentration and the rate of AOM has not been previously experimentally constrained. Here, we present measurements showing substantial methane oxidation at low sulfat...

Full description

Saved in:
Bibliographic Details
Published in:Geobiology Vol. 9; no. 2; pp. 131 - 139
Main Authors: BEAL, E.J, CLAIRE, M.W, HOUSE, C.H
Format: Journal Article
Language:English
Published: Oxford, UK Blackwell Publishing Ltd 01-03-2011
Wiley Subscription Services, Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Despite the importance of the anaerobic oxidation of methane (AOM) to global biogeochemical cycles, the relationship between sulfate concentration and the rate of AOM has not been previously experimentally constrained. Here, we present measurements showing substantial methane oxidation at low sulfate concentrations, with no significant decrease in the rate of AOM until sulfate levels are well below 1 mm. At sulfate levels below 1 mm, there appears to be a strong decoupling of AOM and sulfate reduction, with a ¹³C-label transferred from methane to carbon dioxide occurring at a rate almost an order of magnitude faster than the observed rate of sulfate reduction. These results allow for the possibility that high rates of AOM occurred in the Archean oceans and that high rates of AOM may be found in freshwater environments (lakes, rivers, etc.) and deep ocean sediments today.
AbstractList Despite the importance of the anaerobic oxidation of methane (AOM) to global biogeochemical cycles, the relationship between sulfate concentration and the rate of AOM has not been previously experimentally constrained. Here, we present measurements showing substantial methane oxidation at low sulfate concentrations, with no significant decrease in the rate of AOM until sulfate levels are well below 1mm. At sulfate levels below 1mm, there appears to be a strong decoupling of AOM and sulfate reduction, with a 13C-label transferred from methane to carbon dioxide occurring at a rate almost an order of magnitude faster than the observed rate of sulfate reduction. These results allow for the possibility that high rates of AOM occurred in the Archean oceans and that high rates of AOM may be found in freshwater environments (lakes, rivers, etc.) and deep ocean sediments today.
Despite the importance of the anaerobic oxidation of methane (AOM) to global biogeochemical cycles, the relationship between sulfate concentration and the rate of AOM has not been previously experimentally constrained. Here, we present measurements showing substantial methane oxidation at low sulfate concentrations, with no significant decrease in the rate of AOM until sulfate levels are well below 1 mm. At sulfate levels below 1 mm, there appears to be a strong decoupling of AOM and sulfate reduction, with a 13C‐label transferred from methane to carbon dioxide occurring at a rate almost an order of magnitude faster than the observed rate of sulfate reduction. These results allow for the possibility that high rates of AOM occurred in the Archean oceans and that high rates of AOM may be found in freshwater environments (lakes, rivers, etc.) and deep ocean sediments today.
Despite the importance of the anaerobic oxidation of methane (AOM) to global biogeochemical cycles, the relationship between sulfate concentration and the rate of AOM has not been previously experimentally constrained. Here, we present measurements showing substantial methane oxidation at low sulfate concentrations, with no significant decrease in the rate of AOM until sulfate levels are well below 1 mM. At sulfate levels below 1 mM, there appears to be a strong decoupling of AOM and sulfate reduction, with a (13)C-label transferred from methane to carbon dioxide occurring at a rate almost an order of magnitude faster than the observed rate of sulfate reduction. These results allow for the possibility that high rates of AOM occurred in the Archean oceans and that high rates of AOM may be found in freshwater environments (lakes, rivers, etc.) and deep ocean sediments today.
Abstract Despite the importance of the anaerobic oxidation of methane (AOM) to global biogeochemical cycles, the relationship between sulfate concentration and the rate of AOM has not been previously experimentally constrained. Here, we present measurements showing substantial methane oxidation at low sulfate concentrations, with no significant decrease in the rate of AOM until sulfate levels are well below 1 m m . At sulfate levels below 1 m m , there appears to be a strong decoupling of AOM and sulfate reduction, with a 13 C‐label transferred from methane to carbon dioxide occurring at a rate almost an order of magnitude faster than the observed rate of sulfate reduction. These results allow for the possibility that high rates of AOM occurred in the Archean oceans and that high rates of AOM may be found in freshwater environments (lakes, rivers, etc.) and deep ocean sediments today.
Despite the importance of the anaerobic oxidation of methane (AOM) to global biogeochemical cycles, the relationship between sulfate concentration and the rate of AOM has not been previously experimentally constrained. Here, we present measurements showing substantial methane oxidation at low sulfate concentrations, with no significant decrease in the rate of AOM until sulfate levels are well below 1 mm. At sulfate levels below 1 mm, there appears to be a strong decoupling of AOM and sulfate reduction, with a ¹³C-label transferred from methane to carbon dioxide occurring at a rate almost an order of magnitude faster than the observed rate of sulfate reduction. These results allow for the possibility that high rates of AOM occurred in the Archean oceans and that high rates of AOM may be found in freshwater environments (lakes, rivers, etc.) and deep ocean sediments today.
Author CLAIRE, M. W.
BEAL, E. J.
HOUSE, C. H.
Author_xml – sequence: 1
  fullname: BEAL, E.J
– sequence: 2
  fullname: CLAIRE, M.W
– sequence: 3
  fullname: HOUSE, C.H
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21231994$$D View this record in MEDLINE/PubMed
BookMark eNqNkU-P1CAYxolZ4_7Rr6AkHtxLR6BQSuJFx3V2k80ao5s9EqaFHcZOqdA6M9_et3acgwcjF17g9zzA-5yjkza0FiFMyYzCeLueUS5ZxotCzRiBXUJYIWe7J-jseHByrKU8RecprQHiIqfP0CmjLKdK8TO0v_aPKxxNbxMODpvW2BiWvsIb269MG_oYutUemx43YYvT0DhAcRXayrY9yHxoE976foX9pmt8ddhxIeLOpB4Ma9xFm4A-WFrc2J-2Sc_RU2eaZF8c5gt0_-nq2_w6u_28uJm_v80qrojMalowWUhF6mVRL5WQqjbMCmacY7y0uWWOcwULW9eOQC8YJ9zxqmTCUZFX-QV6M_l2MfwYbOr1xqfKNg08JQxJlwLaJJUogbz8J0k5ZUIoShWgr_9C12GILfxDs5KIkhLKCFDlRFUxpBSt0130GxP3mhI9BqnXesxIj3npMUj9O0i9A-nLwwXDcmPro_BPcgC8m4Ctb-z-v4314sMNFCDPJrlPvd0d5SZ-13AqhX64W-j5xy93YvHA9ci_mnhngjaP0Sd9_xWMc0IVZ1IV-S9Zhsa_
CitedBy_id crossref_primary_10_1016_j_watres_2022_118441
crossref_primary_10_1073_pnas_2006857118
crossref_primary_10_1002_2014GB004951
crossref_primary_10_1073_pnas_1618798114
crossref_primary_10_3389_feart_2016_00061
crossref_primary_10_1016_j_scitotenv_2017_08_140
crossref_primary_10_1021_es3009503
crossref_primary_10_1016_j_gca_2015_11_022
crossref_primary_10_1016_j_limno_2017_08_001
crossref_primary_10_1089_ast_2016_1598
crossref_primary_10_3389_fmicb_2017_00619
crossref_primary_10_1016_j_earscirev_2020_103300
crossref_primary_10_1016_j_epsl_2015_11_021
crossref_primary_10_1002_bit_26576
crossref_primary_10_1038_srep40848
crossref_primary_10_1155_2022_7571792
crossref_primary_10_1007_s00284_012_0103_x
crossref_primary_10_1016_j_scitotenv_2017_06_187
crossref_primary_10_1016_j_scitotenv_2024_174287
crossref_primary_10_1038_ngeo2069
crossref_primary_10_3389_fmicb_2015_00988
crossref_primary_10_1038_srep46708
crossref_primary_10_1016_j_gca_2013_03_029
crossref_primary_10_1038_ismej_2015_213
crossref_primary_10_1016_j_marpetgeo_2018_01_032
crossref_primary_10_1111_j_1574_6941_2012_01466_x
crossref_primary_10_3847_1538_4357_ab88c9
crossref_primary_10_1038_s43247_023_00879_2
crossref_primary_10_1016_j_watres_2018_07_053
crossref_primary_10_2166_wst_2019_201
crossref_primary_10_3390_life1010019
crossref_primary_10_1016_j_chemgeo_2018_03_027
crossref_primary_10_1038_ncomms6094
crossref_primary_10_1111_gbi_12007
crossref_primary_10_1155_2017_1654237
crossref_primary_10_1038_s41561_019_0351_5
crossref_primary_10_1089_ast_2013_1078
crossref_primary_10_5194_bg_8_779_2011
crossref_primary_10_1016_j_epsl_2013_12_010
crossref_primary_10_1128_mSphereDirect_00309_17
crossref_primary_10_5194_gmd_15_7593_2022
crossref_primary_10_1016_j_chemgeo_2012_12_012
crossref_primary_10_1007_s11104_016_3061_4
crossref_primary_10_2112_JCOASTRES_D_18_00107_1
crossref_primary_10_1111_gbi_12331
crossref_primary_10_1111_gbi_12251
crossref_primary_10_1093_femsec_fiy089
crossref_primary_10_1073_pnas_1608549113
crossref_primary_10_1016_j_gca_2018_10_014
Cites_doi 10.4319/lo.1977.22.1.0010
10.1111/j.1462-2920.2009.01903.x
10.1126/science.1100025
10.1016/j.chemgeo.2003.12.019
10.1098/rsta.2007.2047
10.1111/j.1462-2920.2007.01441.x
10.1128/AEM.71.1.467-479.2005
10.1111/j.1462-2920.2006.01127.x
10.1111/j.1462-2920.2008.01724.x
10.1016/0012-821X(76)90195-3
10.1111/j.1462-2920.2004.00669.x
10.1128/jb.137.1.420-432.1979
10.1128/AEM.69.9.5472-5482.2003
10.1038/nature08883
10.1080/01490450701672083
10.1126/science.1078265
10.1126/science.1061338
10.1016/S0025-3227(96)00075-8
10.1128/AEM.71.12.8925-8928.2005
10.1128/aem.50.4.940-945.1985
10.4319/lo.1985.30.5.0944
10.1038/35036572
10.1111/j.1462-2920.2007.01526.x
10.1126/science.1169984
10.1155/2005/650670
10.1128/AEM.67.4.1646-1656.2001
10.1016/S0146-6380(00)00106-6
10.1126/science.288.5466.658
10.1128/AEM.00067-09
10.1046/j.1462-2920.2002.00299.x
10.1128/AEM.67.4.1922-1934.2001
10.1016/0016-7037(84)90191-1
10.1038/nature04617
10.1130/0091-7613(1976)4<297:MPACIA>2.0.CO;2
10.1046/j.1462-2920.2003.00418.x
10.1029/94GB01800
10.1073/pnas.072210299
10.1029/2001GC000286
ContentType Journal Article
Copyright 2011 Blackwell Publishing Ltd
2011 Blackwell Publishing Ltd.
Copyright Wiley Subscription Services, Inc. Mar 2011
Copyright_xml – notice: 2011 Blackwell Publishing Ltd
– notice: 2011 Blackwell Publishing Ltd.
– notice: Copyright Wiley Subscription Services, Inc. Mar 2011
DBID FBQ
BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
8FD
F1W
FR3
H95
L.G
P64
RC3
7TN
7X8
DOI 10.1111/j.1472-4669.2010.00267.x
DatabaseName AGRIS
Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Oceanic Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Oceanic Abstracts
MEDLINE - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

MEDLINE - Academic
MEDLINE
Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef

Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1472-4669
EndPage 139
ExternalDocumentID 10_1111_j_1472_4669_2010_00267_x
21231994
GBI267
ark_67375_WNG_CDQN5GW4_7
US201301942796
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GeographicLocations Pacific Ocean
California
GeographicLocations_xml – name: Pacific Ocean
– name: California
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
29H
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABHUG
ABPTK
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFVGU
AFZJQ
AGJLS
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
F5P
FBQ
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZ~
IHE
IX1
J0M
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OVD
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
TN5
UB1
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WUPDE
WXSBR
WYISQ
XG1
ZZTAW
~02
~IA
~KM
~WT
AHBTC
AITYG
BSCLL
HGLYW
OIG
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
8FD
AAMNL
F1W
FR3
H95
L.G
P64
RC3
7TN
7X8
ID FETCH-LOGICAL-c4907-d16276790db6db9579da2e52aff248e3e2f449ff2eddf00102404f4c825f153c3
IEDL.DBID 33P
ISSN 1472-4677
IngestDate Fri Aug 16 05:55:57 EDT 2024
Sat Aug 17 03:14:59 EDT 2024
Tue Nov 19 06:54:19 EST 2024
Fri Aug 23 02:03:16 EDT 2024
Sat Sep 28 07:58:06 EDT 2024
Sat Aug 24 00:42:28 EDT 2024
Wed Oct 30 09:56:18 EDT 2024
Wed Dec 27 19:18:17 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License 2011 Blackwell Publishing Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4907-d16276790db6db9579da2e52aff248e3e2f449ff2eddf00102404f4c825f153c3
Notes http://dx.doi.org/10.1111/j.1472-4669.2010.00267.x
istex:FE7F7EAF395DE508F21BFC4C02E86B6EA8A531F2
ArticleID:GBI267
ark:/67375/WNG-CDQN5GW4-7
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 21231994
PQID 2805810120
PQPubID 2034137
PageCount 9
ParticipantIDs proquest_miscellaneous_851477958
proquest_miscellaneous_1412559119
proquest_journals_2805810120
crossref_primary_10_1111_j_1472_4669_2010_00267_x
pubmed_primary_21231994
wiley_primary_10_1111_j_1472_4669_2010_00267_x_GBI267
istex_primary_ark_67375_WNG_CDQN5GW4_7
fao_agris_US201301942796
PublicationCentury 2000
PublicationDate March 2011
PublicationDateYYYYMMDD 2011-03-01
PublicationDate_xml – month: 03
  year: 2011
  text: March 2011
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
– name: Chichester
PublicationTitle Geobiology
PublicationTitleAlternate Geobiology
PublicationYear 2011
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Hinrichs KU (2002) Microbial fixation of methane carbon at 2.7 Ga: was an anaerobic mechanism possible? Geochemistry, Geophysics, Geosystems 3, 1.
Raghoebarsing A, Pol A, van de Pas-Schoonen KT, Smolders AJ, Ettwig KF, Rijpstra WI, Schouten S, Damsté JS, Op den Camp HJ, Jetten MS, Strous M (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440, 918-921.
Hinrichs KU, Summons RE, Orphan VJ, Sylva SP, Hayes JM (2000) Molecular and isotopic analysis of anaerobic methane-oxidizing communities in marine sediments. Organic Geochemistry 31, 1685.
Eller G, Kanel L, Kruger M (2005) Cooccurrence of aerobic and anaerobic methane oxidation in the water column of Lake Plußsee. Applied and Environmental Microbiology 71, 8925.
Catling DC, Claire MW, Zahnle KJ (2007) Anaerobic methanotrophy and the rise of oxygen. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences 365, 1867-1888.
Smemo K, Yavitt JB (2007) Evidence for anaerobic CH4 oxidation in freshwater peatlands. Geomicrobiology Journal 24, 583.
Moran JJ, House CH, Freeman KH, Ferry JG (2005) Trace methane oxidation studied in several Euryarchaeota under diverse conditions. Archaea 1, 303-309.
Ettwig KF, Shima S, Pas-Schoonen KTvd, Kahnt J, Medema MH, Camp HJMod, Jetten MSM, Strous M (2008) Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea. Environmental Microbiology 10, 3164-3173.
Wetzel RG (1983) Limnology, 2nd edn. W. B. Saunders, Philadelphia, PA.
Ettwig KF, van Alen T, van de Pas-Schoonen KT, Jetten MSM, Strous M (2009) Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum. Applied and Environmental Microbiology 75, 3656-3662.
Hallam SJ, Putnam N, Preston CM, Detter JC, Rokhsar D, Richardson PM, DeLong EF (2004) Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305, 1457-1462.
Harder J (1997) Anaerobic methane oxidation by bacteria employing 14C-methane uncontaminated with 14C-carbon monoxide. Marine Geology 137, 13-23.
Thomsen TR (2001) Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment. Applied and Environmental Microbiology 67, 1646.
Hinrichs KU, Hayes JM, Sylva SP, Brewer PG, DeLong EF (1999) Methane-consuming archaebacteria in marine sediments. Nature 398, 802-805.
Orphan VJ, House CH, Hinrichs K-U, McKeegan KD, DeLong EF (2002) From the cover: multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proceedings of the National Academy of Sciences of the USA 99, 7663-7668.
Habicht KS, Gade M, Thamdrup B, Berg P, Canfield DE (2002) Calibration of sulfate levels in the Archean Ocean. Science 298, 2372.
Moran JJ, Beal EJ, Vrentas JM, Orphan VJ, Freeman KH, H HC (2008) Methyl sulfides as intermediates in the anaerobic oxidation of methane. Environmental Microbiology 10, 162.
Hoehler TM (1994) Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium. Global Biogeochemical Cycles 8, 451.
Nauhaus K, Treude T, Boetius AA, Krüger M (2005) Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities. Environmental Microbiology 7, 98.
Alperin MJ, Reeburgh WS (1985) Inhibition experiments on anaerobic methane oxidation. Applied and Environmental Microbiology 50, 940-945.
Nauhaus K, Albrecht M, Elvert M, Boetius A, Widdel F (2007) In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate. Environmental Microbiology 9, 187.
Girguis PR (2004) Growth and population dynamics of anaerobic methane-oxidizing archaea and sulfate-reducing bacteria in a continuous-flow bioreactor. Applied and Environmental Microbiology 71, 3725.
Girguis PR, Orphan VJ, Hallam SJ, DeLong EF (2003) Growth and methane oxidation rates of anaerobic methanotrophic archaea in a continuous-flow bioreactor. Applied and Environmental Microbiology 69, 5472.
Joye SB, Boetius A, Orcutt BN, Montoya JP, Schulz HN, Erickson MJ, Lugo SK (2004) The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps. Chemical Geology 205, 219-238.
Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MMM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels HJCT, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT, Op den Camp HJM, Janssen-Megens EM, Francoijs K-J, Stunnenberg H, Weissenbach J, Jetten MSM, Strous M (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464, 543-548.
Iversen N, Jorgensen BB (1985) Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark). Limnology and Oceanography 30, 944-955.
Orcutt BN, Samarkin V, Boetius A, Samantha J (2008) On the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico. Environmental Microbiology 10, 1108-1117.
Claire M, Catling D, Zahnle K (2008) First results from a 1D time-dependent photochemical model. Astrobiology 8, 423.
Beal EJ, House CH, Orphan VJ (2009) Manganese- and iron-dependent marine methane oxidation. Science 325, 184.
Orphan VJ, House CH, Hinrichs KU, McKeegen KD, DeLong EF (2001b) Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293, 484.
Devol AH, Anderson JJ, Kuivila K, Murray JW (1984) A model for coupled sulfate reduction and methane oxidation in the sediments of Saanich Inlet. Geochimica et Cosmochimica Acta 48, 993-1004.
Reeburgh WS (1976) Methane consumption in Cariaco Trench waters and sediments. Earth and Planetary Science Letters 28, 337.
Knittel K, Loesekann T, Boetius A, Kort R, Amann R (2005) Diversity and distribution of methanotrophic archaea at cold seeps. Applied and Environmental Microbiology 71, 467.
Zehnder AJ, Brock TD (1979) Methane formation and methane oxidation by methanogenic bacteria. Journal of Bacteriology 137, 420-432.
Canfield DE, Habicht KS, Thamdrup B (2000) The Archean sulfur cycle and the early history of atmospheric oxygen. Science 288, 658-661.
Martens CS, Berner RA (1977) Interstitial water chemistry of anoxic Long Island Sound sediments. 1. Dissolved gases. Limnology and Oceanography 22, 10-25.
Nauhaus K, Boetius A, Kruger M, Widdel F (2002) In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Environmental Microbiology 4, 296-305.
Lyman J, Fleming RH (1940) Composition of sea water. Journal of Marine Research 3, 134-167.
Orphan VJ, Turk KA, Green AM, House CH (2009) Patterns of 15N assimilation and growth of methanotrophic ANME-2 archaea and sulfate-reducing bacteria within structured syntrophic consortia revealed by FISH-SIMS. Environmental Microbiology 11, 1777-1791.
Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen B, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407, 623-626.
Orphan VJ, Hinrichs KU, Ussler W III, Paull CK, Taylor LT, Sylva SP, Hayes JM, Delong EF (2001a) Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Applied and Environmental Microbiology 67, 1922-1934.
Barnes RO, Goldberg ED (1976) Methane production and consumption in anoxic marine sediments. Geology 4, 297.
2007; 365
1997; 137
2001b; 293
1984; 48
2010; 464
2002; 298
2002; 99
2002; 3
2008; 8
2002; 4
2008; 10
1977; 22
2001a; 67
1976; 28
2001; 67
2004; 305
2004; 205
1976; 4
2000; 407
1994; 8
2009; 11
1940; 3
1979; 137
2009; 75
2004; 71
2000; 31
2003; 69
2007; 9
2005; 7
2006; 440
1983
2005; 1
1985; 30
2005; 71
1985; 50
2000; 288
1999; 398
2007; 24
2009; 325
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
Hayes JM (e_1_2_5_19_1) 1983
e_1_2_5_24_1
e_1_2_5_21_1
Lyman J (e_1_2_5_27_1) 1940; 3
e_1_2_5_44_1
e_1_2_5_22_1
Claire M (e_1_2_5_8_1) 2008; 8
e_1_2_5_29_1
e_1_2_5_42_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_40_1
Wetzel RG (e_1_2_5_43_1) 1983
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_39_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_18_1
Girguis PR (e_1_2_5_14_1) 2004; 71
e_1_2_5_30_1
e_1_2_5_31_1
References_xml – volume: 8
  year: 1994
  article-title: Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen‐sulfate reducer consortium
  publication-title: Global Biogeochemical Cycles
– year: 1983
– volume: 298
  year: 2002
  article-title: Calibration of sulfate levels in the Archean Ocean
  publication-title: Science
– volume: 11
  start-page: 1777
  year: 2009
  end-page: 1791
  article-title: Patterns of 15N assimilation and growth of methanotrophic ANME‐2 archaea and sulfate‐reducing bacteria within structured syntrophic consortia revealed by FISH‐SIMS
  publication-title: Environmental Microbiology
– volume: 48
  start-page: 993
  year: 1984
  end-page: 1004
  article-title: A model for coupled sulfate reduction and methane oxidation in the sediments of Saanich Inlet
  publication-title: Geochimica et Cosmochimica Acta
– volume: 99
  start-page: 7663
  year: 2002
  end-page: 7668
  article-title: From the cover: multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments
  publication-title: Proceedings of the National Academy of Sciences of the USA
– volume: 9
  year: 2007
  article-title: In vitro cell growth of marine archaeal‐bacterial consortia during anaerobic oxidation of methane with sulfate
  publication-title: Environmental Microbiology
– volume: 67
  year: 2001
  article-title: Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment
  publication-title: Applied and Environmental Microbiology
– volume: 71
  year: 2005
  article-title: Cooccurrence of aerobic and anaerobic methane oxidation in the water column of Lake Plußsee
  publication-title: Applied and Environmental Microbiology
– volume: 407
  start-page: 623
  year: 2000
  end-page: 626
  article-title: A marine microbial consortium apparently mediating anaerobic oxidation of methane
  publication-title: Nature
– volume: 365
  start-page: 1867
  year: 2007
  end-page: 1888
  article-title: Anaerobic methanotrophy and the rise of oxygen
  publication-title: Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences
– volume: 137
  start-page: 420
  year: 1979
  end-page: 432
  article-title: Methane formation and methane oxidation by methanogenic bacteria
  publication-title: Journal of Bacteriology
– volume: 4
  start-page: 296
  year: 2002
  end-page: 305
  article-title: In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area
  publication-title: Environmental Microbiology
– volume: 24
  year: 2007
  article-title: Evidence for anaerobic CH4 oxidation in freshwater peatlands
  publication-title: Geomicrobiology Journal
– volume: 288
  start-page: 658
  year: 2000
  end-page: 661
  article-title: The Archean sulfur cycle and the early history of atmospheric oxygen
  publication-title: Science
– volume: 325
  start-page: 184
  year: 2009
  article-title: Manganese‐ and iron‐dependent marine methane oxidation
  publication-title: Science
– volume: 31
  year: 2000
  article-title: Molecular and isotopic analysis of anaerobic methane‐oxidizing communities in marine sediments
  publication-title: Organic Geochemistry
– volume: 3
  year: 2002
  article-title: Microbial fixation of methane carbon at 2.7 Ga: was an anaerobic mechanism possible?
  publication-title: Geochemistry, Geophysics, Geosystems
– volume: 293
  year: 2001b
  article-title: Methane‐consuming archaea revealed by directly coupled isotopic and phylogenetic analysis
  publication-title: Science
– volume: 75
  start-page: 3656
  year: 2009
  end-page: 3662
  article-title: Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum
  publication-title: Applied and Environmental Microbiology
– volume: 205
  start-page: 219
  year: 2004
  end-page: 238
  article-title: The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps
  publication-title: Chemical Geology
– volume: 8
  start-page: 423
  year: 2008
  article-title: First results from a 1D time‐dependent photochemical model
  publication-title: Astrobiology
– volume: 305
  start-page: 1457
  year: 2004
  end-page: 1462
  article-title: Reverse methanogenesis: testing the hypothesis with environmental genomics
  publication-title: Science
– volume: 398
  start-page: 802
  year: 1999
  end-page: 805
  article-title: Methane‐consuming archaebacteria in marine sediments
  publication-title: Nature
– volume: 71
  year: 2004
  article-title: Growth and population dynamics of anaerobic methane‐oxidizing archaea and sulfate‐reducing bacteria in a continuous‐flow bioreactor
  publication-title: Applied and Environmental Microbiology
– volume: 69
  year: 2003
  article-title: Growth and methane oxidation rates of anaerobic methanotrophic archaea in a continuous‐flow bioreactor
  publication-title: Applied and Environmental Microbiology
– volume: 440
  start-page: 918
  year: 2006
  end-page: 921
  article-title: A microbial consortium couples anaerobic methane oxidation to denitrification
  publication-title: Nature
– volume: 10
  start-page: 1108
  year: 2008
  end-page: 1117
  article-title: On the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico
  publication-title: Environmental Microbiology
– volume: 28
  year: 1976
  article-title: Methane consumption in Cariaco Trench waters and sediments
  publication-title: Earth and Planetary Science Letters
– volume: 50
  start-page: 940
  year: 1985
  end-page: 945
  article-title: Inhibition experiments on anaerobic methane oxidation
  publication-title: Applied and Environmental Microbiology
– volume: 1
  start-page: 303
  year: 2005
  end-page: 309
  article-title: Trace methane oxidation studied in several Euryarchaeota under diverse conditions
  publication-title: Archaea
– volume: 71
  year: 2005
  article-title: Diversity and distribution of methanotrophic archaea at cold seeps
  publication-title: Applied and Environmental Microbiology
– volume: 22
  start-page: 10
  year: 1977
  end-page: 25
  article-title: Interstitial water chemistry of anoxic Long Island Sound sediments. 1. Dissolved gases
  publication-title: Limnology and Oceanography
– volume: 10
  start-page: 3164
  year: 2008
  end-page: 3173
  article-title: Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea
  publication-title: Environmental Microbiology
– volume: 30
  start-page: 944
  year: 1985
  end-page: 955
  article-title: Anaerobic methane oxidation rates at the sulfate‐methane transition in marine sediments from Kattegat and Skagerrak (Denmark)
  publication-title: Limnology and Oceanography
– volume: 464
  start-page: 543
  year: 2010
  end-page: 548
  article-title: Nitrite‐driven anaerobic methane oxidation by oxygenic bacteria
  publication-title: Nature
– start-page: 291
  year: 1983
  end-page: 301
– volume: 7
  year: 2005
  article-title: Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME‐I and ANME‐II communities
  publication-title: Environmental Microbiology
– volume: 3
  start-page: 134
  year: 1940
  end-page: 167
  article-title: Composition of sea water
  publication-title: Journal of Marine Research
– volume: 4
  start-page: 297
  year: 1976
  article-title: Methane production and consumption in anoxic marine sediments
  publication-title: Geology
– volume: 67
  start-page: 1922
  year: 2001a
  end-page: 1934
  article-title: Comparative analysis of methane‐oxidizing archaea and sulfate‐reducing bacteria in anoxic marine sediments
  publication-title: Applied and Environmental Microbiology
– volume: 10
  start-page: 162
  year: 2008
  article-title: Methyl sulfides as intermediates in the anaerobic oxidation of methane
  publication-title: Environmental Microbiology
– volume: 137
  start-page: 13
  year: 1997
  end-page: 23
  article-title: Anaerobic methane oxidation by bacteria employing 14C‐methane uncontaminated with 14C‐carbon monoxide
  publication-title: Marine Geology
– ident: e_1_2_5_28_1
  doi: 10.4319/lo.1977.22.1.0010
– ident: e_1_2_5_38_1
  doi: 10.1111/j.1462-2920.2009.01903.x
– ident: e_1_2_5_17_1
  doi: 10.1126/science.1100025
– ident: e_1_2_5_25_1
  doi: 10.1016/j.chemgeo.2003.12.019
– ident: e_1_2_5_7_1
  doi: 10.1098/rsta.2007.2047
– ident: e_1_2_5_30_1
  doi: 10.1111/j.1462-2920.2007.01441.x
– start-page: 291
  volume-title: Earth’s Earliest Biosphere: Its Origin and Evolution
  year: 1983
  ident: e_1_2_5_19_1
  contributor:
    fullname: Hayes JM
– ident: e_1_2_5_26_1
  doi: 10.1128/AEM.71.1.467-479.2005
– ident: e_1_2_5_33_1
  doi: 10.1111/j.1462-2920.2006.01127.x
– ident: e_1_2_5_11_1
  doi: 10.1111/j.1462-2920.2008.01724.x
– ident: e_1_2_5_40_1
  doi: 10.1016/0012-821X(76)90195-3
– ident: e_1_2_5_32_1
  doi: 10.1111/j.1462-2920.2004.00669.x
– ident: e_1_2_5_44_1
  doi: 10.1128/jb.137.1.420-432.1979
– ident: e_1_2_5_15_1
  doi: 10.1128/AEM.69.9.5472-5482.2003
– volume: 8
  start-page: 423
  year: 2008
  ident: e_1_2_5_8_1
  article-title: First results from a 1D time‐dependent photochemical model
  publication-title: Astrobiology
  contributor:
    fullname: Claire M
– ident: e_1_2_5_13_1
  doi: 10.1038/nature08883
– ident: e_1_2_5_41_1
  doi: 10.1080/01490450701672083
– ident: e_1_2_5_16_1
  doi: 10.1126/science.1078265
– ident: e_1_2_5_36_1
  doi: 10.1126/science.1061338
– ident: e_1_2_5_18_1
  doi: 10.1016/S0025-3227(96)00075-8
– ident: e_1_2_5_10_1
  doi: 10.1128/AEM.71.12.8925-8928.2005
– volume: 71
  year: 2004
  ident: e_1_2_5_14_1
  article-title: Growth and population dynamics of anaerobic methane‐oxidizing archaea and sulfate‐reducing bacteria in a continuous‐flow bioreactor
  publication-title: Applied and Environmental Microbiology
  contributor:
    fullname: Girguis PR
– ident: e_1_2_5_2_1
  doi: 10.1128/aem.50.4.940-945.1985
– ident: e_1_2_5_24_1
  doi: 10.4319/lo.1985.30.5.0944
– ident: e_1_2_5_5_1
  doi: 10.1038/35036572
– ident: e_1_2_5_34_1
  doi: 10.1111/j.1462-2920.2007.01526.x
– ident: e_1_2_5_4_1
  doi: 10.1126/science.1169984
– volume: 3
  start-page: 134
  year: 1940
  ident: e_1_2_5_27_1
  article-title: Composition of sea water
  publication-title: Journal of Marine Research
  contributor:
    fullname: Lyman J
– ident: e_1_2_5_29_1
  doi: 10.1155/2005/650670
– ident: e_1_2_5_42_1
  doi: 10.1128/AEM.67.4.1646-1656.2001
– ident: e_1_2_5_22_1
  doi: 10.1016/S0146-6380(00)00106-6
– ident: e_1_2_5_6_1
  doi: 10.1126/science.288.5466.658
– ident: e_1_2_5_12_1
  doi: 10.1128/AEM.00067-09
– ident: e_1_2_5_31_1
  doi: 10.1046/j.1462-2920.2002.00299.x
– ident: e_1_2_5_35_1
  doi: 10.1128/AEM.67.4.1922-1934.2001
– ident: e_1_2_5_9_1
  doi: 10.1016/0016-7037(84)90191-1
– ident: e_1_2_5_39_1
  doi: 10.1038/nature04617
– ident: e_1_2_5_3_1
  doi: 10.1130/0091-7613(1976)4<297:MPACIA>2.0.CO;2
– ident: e_1_2_5_21_1
  doi: 10.1046/j.1462-2920.2003.00418.x
– volume-title: Limnology
  year: 1983
  ident: e_1_2_5_43_1
  contributor:
    fullname: Wetzel RG
– ident: e_1_2_5_23_1
  doi: 10.1029/94GB01800
– ident: e_1_2_5_37_1
  doi: 10.1073/pnas.072210299
– ident: e_1_2_5_20_1
  doi: 10.1029/2001GC000286
SSID ssj0024531
Score 2.1989424
Snippet Despite the importance of the anaerobic oxidation of methane (AOM) to global biogeochemical cycles, the relationship between sulfate concentration and the rate...
Abstract Despite the importance of the anaerobic oxidation of methane (AOM) to global biogeochemical cycles, the relationship between sulfate concentration and...
SourceID proquest
crossref
pubmed
wiley
istex
fao
SourceType Aggregation Database
Index Database
Publisher
StartPage 131
SubjectTerms Anaerobiosis
Archaea - metabolism
Bacteria - metabolism
Biogeochemical cycle
Biogeochemical cycles
California
Carbon dioxide
Carbon Dioxide - metabolism
Carbon Isotopes - metabolism
Fluvial sediments
Fresh Water
Freshwater
Freshwater environments
Freshwater lakes
Geologic Sediments
Inland water environment
Lakes
Methane
Methane - metabolism
Oceans
Oxidation
Oxidation-Reduction
Pacific Ocean
Paleontology
Rivers
Sediments
Sulfate reduction
Sulfates
Sulfates - metabolism
Sulphate reduction
Title High rates of anaerobic methanotrophy at low sulfate concentrations with implications for past and present methane levels
URI https://api.istex.fr/ark:/67375/WNG-CDQN5GW4-7/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1472-4669.2010.00267.x
https://www.ncbi.nlm.nih.gov/pubmed/21231994
https://www.proquest.com/docview/2805810120
https://search.proquest.com/docview/1412559119
https://search.proquest.com/docview/851477958
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7RShx5Q0MLMhLiFpR4HTs-Qh9bOKxApSo3y4lthFglq82u2v57Zpxk6aIiIcQtUexRPPbY39jjbwBe14XjKlMhDd7bVFjEcFaIOq106XVWl1LHXASnZ2r2tTw6Jpqcj-NdmJ4fYrPhRpYR52sycFt1vxm54qmQUo8RWlyqt4Qn0WmItzkmn37R7hUxNeFQRantoJ5bBW2tVDvBtohfSfVXt4HRbWwbF6eT-_-zWQ_g3gBR2bt-TD2EO755BHf7pJXXj-GaQkMYMUx0rA3MNtYTl1PNKBm1bdrVssWuY3bF5u0l69bzgEVZTdcjm4Gjt2O0_cu-34hmZwie2cJ2KxTo2KK_FDWI9GxOoU3dEzg_Of5yeJoOCRzSWqDTnbpcciWVzlwlXUUHgs5yX3AbAheln3gehND44p0Lkd1OZCKIGr3WgDNxPXkKu03b-D1gHCdmiaJCLaUIytmJqNBTdDZXrkQYk0A-dpZZ9Dwd5qZ_o7ghlRpSqYkqNVcJ7GGvGvsNp1NzfsbpEDfXgistE3gTu3ojyy5_UAicKszFbGoOjz7PiumFMCqBg3EsmMH6O8PLrIjEaVkCrzaf0W7pMAa11q47_KWcvLk81wmwP5RBNCyU0kWZwLN-mG3-hxAH0TonUMTR9NeNNtP3H_Dh-T_W26eNjTEK7wB2V8u1fwE7nVu_jAb3E4gqJNQ
link.rule.ids 315,782,786,1408,27935,27936,46066,46490
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-xIcRe-GYLDDAS4i0ocRw7foR9tNNGBdqm8Wa5sY0QVVI1rdj-e-6StKxoSAjxlijxKbnznX-2z78DeFPmjqtEhTh4b2NhEcNZIcp4rAuvk7KQuq1FMDxVoy_F_gHR5Bwvz8J0_BCrBTfyjDZek4PTgvRvXq54LKTUyxQtLtU7BJS3hRSa6jhk2adfxHt5W5ywb6PUelrPjZLWxqqNYGtEsKT8y5vg6Dq6bYenw_v_9ccewL0epbL3Xbd6CLd89QjudHUrrx7DFWWHMCKZaFgdmK2sJzqnklE9alvV81mN1mN2zib1D9YsJgFfZSWdkKx6mt6G0Qow-3YtoZ0hfmZT28xRoGPT7lxUL9KzCWU3NU_g_PDgbG8Y9zUc4hJNoGKXSq6k0okbSzemPUFnuc-5DYGLwmeeByE03njnQktwJxIRRIkT14DBuMyewmZVV34HGMfYLFFUKKUUQTmbiTFOFp1NlSsQyUSQLq1lph1Vh7k-xVHckEoNqdS0KjWXEeygWY39ihHVnJ9y2sdNteBKywjetrZeybKz75QFp3JzMRqYvf3Po3xwIYyKYHfZGUwfABrDiyRvudOSCF6vHqPr0n4Maq1eNPhJKU3o0lRHwP7wDgJioZTOiwi2u362-h4CHcTsHEHedqe__mkz-HCEF8_-sd0ruDs8-3hiTo5Gx89hq1tkp6S8Xdiczxb-BWw0bvGy9b6f-8Io-A
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED6xIRAv_IYFBhgJ8RaUuI4dP8K6bgNUDY1pvFlubCNElVRNK7b_njsnLSsaEkK8JYp9is8--zv7_B3Aq6pwXGUqpMF7mwqLGM4KUaUTXXqdVaXUMRfB4YkafymH-0ST8351F6bjh1hvuJFlxPmaDHzmwm9GrngqpNSrCC0u1RvEk9cFoXK6zjE4_sW7V8TchH0dpTajeq6UtLFUbQXbIIAl3Z9fhUY3wW1cnUZ3_me77sLtHqOyt92gugfXfH0fbnRZKy8ewAXFhjCimGhZE5itrScyp4pRNmpbN4t5g33H7IJNmx-sXU4DFmUV3Y-se5LeltH-L_t2KZydIXpmM9suUKBjs-5WVC_SsynFNrUP4XS0_3nvMO0zOKSVQK87dbnkSiqduYl0EzoRdJb7gtsQuCj9wPMghMYX71yI9HYiE0FU6LYGnIqrwSPYrpva7wDjODNLFBUqKUVQzg7EBF1FZ3PlSsQxCeSrzjKzjqjDXHZwFDekUkMqNVGl5jyBHexVY7_ifGpOTzid4uZacKVlAq9jV69l2fl3ioFThTkbH5i94adxcXAmjEpgdzUWTG_-reFlVkTmtCyBl-vPaLh0GoNaa5Yt_lJO7lye6wTYH8ogHBZK6aJM4HE3zNb_Q5CDeJ0TKOJo-utGm4N3R_jw5B_rvYCbx8OR-Xg0_vAUbnU77BSRtwvbi_nSP4Ot1i2fR9v7CUIyJ6c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+rates+of+anaerobic+methanotrophy+at+low+sulfate+concentrations+with+implications+for+past+and+present+methane+levels&rft.jtitle=Geobiology&rft.au=BEAL%2C+E.+J.&rft.au=CLAIRE%2C+M.+W.&rft.au=HOUSE%2C+C.+H.&rft.date=2011-03-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1472-4677&rft.eissn=1472-4669&rft.volume=9&rft.issue=2&rft.spage=131&rft.epage=139&rft_id=info:doi/10.1111%2Fj.1472-4669.2010.00267.x&rft.externalDBID=10.1111%252Fj.1472-4669.2010.00267.x&rft.externalDocID=GBI267
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1472-4677&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1472-4677&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1472-4677&client=summon