Assessment of TD-DFT- and TD-HF-based approaches for the prediction of exciton coupling parameters, potential energy curves, and electronic characters of electronically excited aggregates
The reliability of linear response approaches such as time‐dependent Hartree–Fock (TD‐HF) and time‐dependent density functional theory (TD‐DFT) for the prediction of the excited state properties of 3,4;9,10‐tetracarboxylic‐perylene‐bisimide (PBI) aggregates is investigated. A dimer model of PBI is i...
Saved in:
Published in: | Journal of computational chemistry Vol. 32; no. 9; pp. 1971 - 1981 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
15-07-2011
Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The reliability of linear response approaches such as time‐dependent Hartree–Fock (TD‐HF) and time‐dependent density functional theory (TD‐DFT) for the prediction of the excited state properties of 3,4;9,10‐tetracarboxylic‐perylene‐bisimide (PBI) aggregates is investigated. A dimer model of PBI is investigated as a function of a torsional motion of the monomers, which was shown before to be an important intermolecular coordinate in these aggregates. The potential energy curves of the ground state and the two energetically lowest neutral excited and charge‐transfer (CT) states were obtained with the spin‐component scaling modification of the approximate coupled‐cluster singles‐and‐doubles (SCS‐CC2) method as a benchmark for dispersion corrected TD‐HF and a range of TD‐DFT approaches. The highly accurate SCS‐CC2 results are used to assess the other, computationally less demanding methods. TD‐HF predicts similar potential energy curves and transition dipole moments as SCS‐CC2, as well as the correct order of neutral and CT states. This supports an exciton trapping mechanism, which was found on the basis of TD‐HF data. However, the investigated TD‐DFT methods provide generally the opposite character for the excited states. As a consequence, these TD‐DFT results have unacceptably large errors for optical properties of these dye aggregates. © 2011 Wiley Periodicals, Inc. J Comput Chem 2011 |
---|---|
AbstractList | The reliability of linear response approaches such as time-dependent Hartree-Fock (TD-HF) and time-dependent density functional theory (TD-DFT) for the prediction of the excited state properties of 3,4;9,10-tetracarboxylic-perylene-bisimide (PBI) aggregates is investigated. A dimer model of PBI is investigated as a function of a torsional motion of the monomers, which was shown before to be an important intermolecular coordinate in these aggregates. The potential energy curves of the ground state and the two energetically lowest neutral excited and charge-transfer (CT) states were obtained with the spin-component scaling modification of the approximate coupled-cluster singles-and-doubles (SCS-CC2) method as a benchmark for dispersion corrected TD-HF and a range of TD-DFT approaches. The highly accurate SCS-CC2 results are used to assess the other, computationally less demanding methods. TD-HF predicts similar potential energy curves and transition dipole moments as SCS-CC2, as well as the correct order of neutral and CT states. This supports an exciton trapping mechanism, which was found on the basis of TD-HF data. However, the investigated TD-DFT methods provide generally the opposite character for the excited states. As a consequence, these TD-DFT results have unacceptably large errors for optical properties of these dye aggregates. The reliability of linear response approaches such as time‐dependent Hartree–Fock (TD‐HF) and time‐dependent density functional theory (TD‐DFT) for the prediction of the excited state properties of 3,4;9,10‐tetracarboxylic‐perylene‐bisimide (PBI) aggregates is investigated. A dimer model of PBI is investigated as a function of a torsional motion of the monomers, which was shown before to be an important intermolecular coordinate in these aggregates. The potential energy curves of the ground state and the two energetically lowest neutral excited and charge‐transfer (CT) states were obtained with the spin‐component scaling modification of the approximate coupled‐cluster singles‐and‐doubles (SCS‐CC2) method as a benchmark for dispersion corrected TD‐HF and a range of TD‐DFT approaches. The highly accurate SCS‐CC2 results are used to assess the other, computationally less demanding methods. TD‐HF predicts similar potential energy curves and transition dipole moments as SCS‐CC2, as well as the correct order of neutral and CT states. This supports an exciton trapping mechanism, which was found on the basis of TD‐HF data. However, the investigated TD‐DFT methods provide generally the opposite character for the excited states. As a consequence, these TD‐DFT results have unacceptably large errors for optical properties of these dye aggregates. © 2011 Wiley Periodicals, Inc. J Comput Chem 2011 The reliability of linear response approaches such as time-dependent Hartree-Fock (TD-HF) and time-dependent density functional theory (TD-DFT) for the prediction of the excited state properties of 3,4;9,10-tetracarboxylic-perylene-bisimide (PBI) aggregates is investigated. A dimer model of PBI is investigated as a function of a torsional motion of the monomers, which was shown before to be an important intermolecular coordinate in these aggregates. The potential energy curves of the ground state and the two energetically lowest neutral excited and charge-transfer (CT) states were obtained with the spin-component scaling modification of the approximate coupled-cluster singles-and-doubles (SCS-CC2) method as a benchmark for dispersion corrected TD-HF and a range of TD-DFT approaches. The highly accurate SCS-CC2 results are used to assess the other, computationally less demanding methods. TD-HF predicts similar potential energy curves and transition dipole moments as SCS-CC2, as well as the correct order of neutral and CT states. This supports an exciton trapping mechanism, which was found on the basis of TD-HF data. However, the investigated TD-DFT methods provide generally the opposite character for the excited states. As a consequence, these TD-DFT results have unacceptably large errors for optical properties of these dye aggregates. [PUBLICATION ABSTRACT] |
Author | Settels, Volker Liu, Wenlan Engels, Bernd Harbach, Philipp H. P. Dreuw, Andreas Fink, Reinhold F. |
Author_xml | – sequence: 1 givenname: Wenlan surname: Liu fullname: Liu, Wenlan organization: Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany – sequence: 2 givenname: Volker surname: Settels fullname: Settels, Volker organization: Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany – sequence: 3 givenname: Philipp H. P. surname: Harbach fullname: Harbach, Philipp H. P. organization: Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany – sequence: 4 givenname: Andreas surname: Dreuw fullname: Dreuw, Andreas organization: Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany – sequence: 5 givenname: Reinhold F. surname: Fink fullname: Fink, Reinhold F. organization: Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany – sequence: 6 givenname: Bernd surname: Engels fullname: Engels, Bernd email: bernd@chemie.uni-wuezburg.de organization: Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21484836$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kcFu1DAQhi1URLeFAy-ALC6oEmntOLGdY7Vlu1QVSGhRuVmOM8lmSeJgJ7T7bLwcTtPuAYnTjDTf_89o_hN01NkOEHpLyTklJL7YGXMeUyHpC7SgJONRJsWPI7QgNIsjyVN6jE683xFCWMqTV-g4polMJOML9OfSe_C-hW7AtsSbq-hqtYmw7oqpX6-iXHsosO57Z7XZgseldXjYAu4dFLUZattNQngw9RBaY8e-qbsK99rpFgZw_iPu7RD8a91g6MBVe2xG9xvCYFoDDZjB2a422GyDyEyaR8vDQDfNft4wnVJVDio9gH-NXpa68fDmqZ6i76tPm-U6uv16_Xl5eRuZJCM04iYmQhQpNUaakgkheZ6ImGguS01kSUEkIIxOirRISgI5K6RmWZbnKeWG5uwUfZh9ww9-jeAH1dbeQNPoDuzoleRM8CzlJJDv_yF3dnRdOC5ASZYlhLMAnc2QcdZ7B6XqXd1qt1eUqClPFfJUj3kG9t2T4Zi3UBzI5wADcDED93UD-_87qZvl8tkymhW1H-DhoNDup-KCiVTdfblWd2suv9GbTEn2F2hMvaU |
CODEN | JCCHDD |
CitedBy_id | crossref_primary_10_1063_5_0054377 crossref_primary_10_1002_qua_25337 crossref_primary_10_1063_1_4976625 crossref_primary_10_1021_acs_jpcc_0c09405 crossref_primary_10_1039_D0CP00648C crossref_primary_10_1021_jp310603z crossref_primary_10_1039_c1cp22793a crossref_primary_10_1002_cphc_202200252 crossref_primary_10_1021_ct501106d crossref_primary_10_1021_jp509011u crossref_primary_10_1063_1_4929352 crossref_primary_10_1007_s00214_018_2324_y crossref_primary_10_1021_jp3069706 crossref_primary_10_1021_ja4053174 crossref_primary_10_1002_cphc_201300062 crossref_primary_10_1002_zaac_201200518 crossref_primary_10_1016_j_physrep_2014_12_001 crossref_primary_10_1021_ja413115h crossref_primary_10_3390_molecules28010119 crossref_primary_10_1021_acs_jpca_5b10376 crossref_primary_10_1021_ct500014h crossref_primary_10_1021_jp3105419 crossref_primary_10_1039_C6CP07673D crossref_primary_10_1021_acs_jpca_0c08706 crossref_primary_10_1039_C2SC21178E crossref_primary_10_3390_molecules29020507 crossref_primary_10_1021_jacs_8b05490 crossref_primary_10_3390_computation10020018 crossref_primary_10_1021_acs_jctc_5b00619 crossref_primary_10_1063_1_4754508 crossref_primary_10_1039_C6CP02312F crossref_primary_10_1039_c1cp23021b crossref_primary_10_1021_jp412166a crossref_primary_10_1002_jcc_23778 crossref_primary_10_1039_c3cp51402a crossref_primary_10_1063_1_3674993 crossref_primary_10_1021_acs_jctc_6b00235 crossref_primary_10_1002_qua_24786 crossref_primary_10_1021_acsami_3c16293 crossref_primary_10_1002_adom_202002251 crossref_primary_10_1063_5_0028943 crossref_primary_10_1002_poc_3740 crossref_primary_10_1063_1_4938012 crossref_primary_10_1021_acs_jctc_5b00501 crossref_primary_10_1002_jcc_24376 crossref_primary_10_1063_5_0045913 crossref_primary_10_1002_jcc_26552 crossref_primary_10_1039_C7CP01599B crossref_primary_10_1063_1_3689858 crossref_primary_10_1021_jz4000752 crossref_primary_10_1063_1_3652759 crossref_primary_10_1002_chem_201103954 crossref_primary_10_1002_qua_24438 crossref_primary_10_1351_pac196511030371 crossref_primary_10_1021_jp405152h crossref_primary_10_1039_C9CP06419B crossref_primary_10_1063_1_4871658 crossref_primary_10_1021_jp3084293 crossref_primary_10_1063_1_4902883 crossref_primary_10_1021_acs_jpca_7b11543 crossref_primary_10_1002_jcc_25374 crossref_primary_10_1039_C6CP04898F crossref_primary_10_1002_ejoc_201200873 crossref_primary_10_1063_1_4858464 crossref_primary_10_3390_molecules26144245 crossref_primary_10_1002_jcc_22986 crossref_primary_10_1021_ct4000795 |
Cites_doi | 10.1038/35006603 10.1063/1.2953716 10.1021/jp904105p 10.1016/S0009-2614(98)00862-8 10.1016/0301-0104(96)00114-0 10.1021/ja804331b 10.1021/jp022507x 10.1063/1.2831900 10.1016/j.chemphys.2008.03.014 10.1002/(SICI)1521-4095(200002)12:3<227::AID-ADMA227>3.0.CO;2-U 10.1139/p80-159 10.1016/0009-2614(95)00841-Q 10.1063/1.447079 10.1063/1.1627293 10.1103/PhysRev.81.385 10.1063/1.481031 10.1063/1.2951991 10.1002/jcc.20078 10.1016/S0301-0104(00)00157-9 10.1021/ar800163d 10.1002/andp.19484370105 10.1016/j.cplett.2006.05.077 10.1016/j.cplett.2004.06.011 10.1021/ja0488784 10.1063/1.3245403 10.1063/1.124108 10.1021/ja0687724 10.1103/PhysRevE.65.031919 10.1002/9781119019572 10.1016/S0009-2614(97)00184-X 10.1103/PhysRevB.37.785 10.1002/1521-4095(200107)13:14<1053::AID-ADMA1053>3.0.CO;2-7 10.1103/PhysRevA.38.3098 10.1063/1.2783202 10.1063/1.1844492 10.1063/1.464913 10.1063/1.464304 10.1021/ar950110o 10.1016/0009-2614(80)80628-2 10.1021/jp055719d 10.1107/S0108768188010407 10.1039/b803727b 10.1021/jp710847q 10.1021/cm049654n 10.1021/ct700248k 10.1016/0009-2614(96)00440-X 10.1063/1.1506918 10.1098/rspa.1929.0094 10.1021/ja039556n 10.1039/B511865D 10.1002/anie.200500805 10.1103/PhysRevB.72.245208 10.1021/jp804068b 10.1038/357477a0 10.1016/j.cplett.2005.11.112 10.1103/PhysRevB.61.13659 10.1021/jp980969y 10.1063/1.444267 10.1063/1.1677527 10.1063/1.1544413 10.1002/adma.19960080517 10.1063/1.1290013 10.1021/ct700187z 10.1002/1616-3028(200110)11:5<374::AID-ADFM374>3.0.CO;2-W 10.1103/PhysRevB.81.155208 10.1021/cr941014o 10.1351/pac196511030371 10.1002/adfm.200600138 10.1063/1.467146 10.1016/0009-2614(95)00838-U 10.1021/cr040084k 10.1016/0301-0104(88)85065-1 10.1021/jp952557k 10.1021/ja902512e 10.1007/s002140050244 10.1016/B978-0-12-442690-0.50009-9 10.1063/1.1534621 |
ContentType | Journal Article |
Copyright | Copyright © 2011 Wiley Periodicals, Inc. Copyright John Wiley and Sons, Limited Jul 15, 2011 |
Copyright_xml | – notice: Copyright © 2011 Wiley Periodicals, Inc. – notice: Copyright John Wiley and Sons, Limited Jul 15, 2011 |
DBID | BSCLL NPM AAYXX CITATION JQ2 7X8 |
DOI | 10.1002/jcc.21781 |
DatabaseName | Istex PubMed CrossRef ProQuest Computer Science Collection MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef ProQuest Computer Science Collection MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef ProQuest Computer Science Collection PubMed |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1096-987X |
EndPage | 1981 |
ExternalDocumentID | 2338932911 10_1002_jcc_21781 21484836 JCC21781 ark_67375_WNG_WH68R1J9_8 |
Genre | article Journal Article Feature |
GrantInformation_xml | – fundername: China Scholarship Council – fundername: Deutsche Forschungsgemeinschaft funderid: GRK 1221 – fundername: Volkswagen Stiftung |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 36B 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RWK RX1 RYL SUPJJ TN5 UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YQT ZZTAW ~IA ~KM ~WT NPM AAMNL AAYXX CITATION JQ2 7X8 |
ID | FETCH-LOGICAL-c4901-6c2077d51cc8cf37786b4720a68fa08f1e74e7ca4d5d4f0eb3d8a399bb516c1b3 |
IEDL.DBID | 33P |
ISSN | 0192-8651 |
IngestDate | Tue Nov 19 05:07:39 EST 2024 Tue Nov 19 05:34:36 EST 2024 Thu Nov 21 22:18:31 EST 2024 Sat Sep 28 07:59:15 EDT 2024 Sat Aug 24 00:41:37 EDT 2024 Wed Oct 30 09:57:17 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | Copyright © 2011 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4901-6c2077d51cc8cf37786b4720a68fa08f1e74e7ca4d5d4f0eb3d8a399bb516c1b3 |
Notes | Deutsche Forschungsgemeinschaft - No. GRK 1221 China Scholarship Council istex:C17BE16F081CCED22EFA2BB957B7EB7CC2D7DF0A ark:/67375/WNG-WH68R1J9-8 Volkswagen Stiftung ArticleID:JCC21781 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jcc.21781 |
PMID | 21484836 |
PQID | 864994063 |
PQPubID | 48816 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_863769560 proquest_journals_864994063 crossref_primary_10_1002_jcc_21781 pubmed_primary_21484836 wiley_primary_10_1002_jcc_21781_JCC21781 istex_primary_ark_67375_WNG_WH68R1J9_8 |
PublicationCentury | 2000 |
PublicationDate | 15 July 2011 |
PublicationDateYYYYMMDD | 2011-07-15 |
PublicationDate_xml | – month: 07 year: 2011 text: 15 July 2011 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States – name: New York |
PublicationTitle | Journal of computational chemistry |
PublicationTitleAlternate | J. Comput. Chem |
PublicationYear | 2011 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley Subscription Services, Inc |
References | Shaheen, S. E.;Jabbour, G. E.;Kippelen, B.;Peyghambarian, N.;Anderson, J. D.;Marder, S. R.;Armstrong, N. R.;Bellmann, E.;Grubbs, R. H. Appl Phys Lett 1999, 74, 3212. Gomez, U.;Leonhardt, M.;Port, H.;Wolf, H. C. Chem Phys Lett 1997, 268, 1. Bulovic, V.;Burrows, P. E.;Forrest, S. R.;Cronin, J. A.;Thompson, M. E. Chem Phys 1996, 210, 1. Jacquemin, D.;Perpete, E. A.;Scuseria, G. E.;Ciofini, I.;Adamo, C. J Chem Theory Comput 2008, 4 123. Munoz-Losa, A.;Curutchet, C.;Fdez Galvan, I.;Mennucci, B. J Chem Phys 2008, 129, 034104. Gregg, B. A. J Phys Chem B 2003, 107, 4688. Förster, T. Ann Phys 1948, 2, 55. Hoffmann, M.;Schmidt, K.;Fritz, T.;Hasche, T.;Agranovich, V. M.;Leo, K. Chem Phys 2000, 258, 73. Hieringer, W.;Gorling, A. Chem Phys Lett 2006, 419, 557. Gao, F.;Liang, W. Z.;Zhao, Y. J Phys Chem A 2009, 113, 12847. Hattig, C.;Kohn, A. J Chem Phys 2002, 117, 6939. Gregg, B. A.;Hanna, M. C. J Appl Phys 2003, 93, 3605. Giaimo, J. M.;Lockard, J. V.;Sinks, L. E.;Scott, A. M.;Wilson, T. M.;Wasielewski, M. R. J Phys Chem A 2008, 112, 2322. Hennebicq, E.;Pourtois, G.;Scholes, G. D.;Herz, L. M.;Russell, D. M.;Silva, C.;Setayesh, S.;Grimsdale, A. C.;Mullen, K.;Bredas, J. L.;Beljonne, D. J Am Chem Soc 2005, 127, 4744. Helgaker, T.;Jorgensen, P.;Olsen, J. Molecular Electronic-Structure Theory; Wiley: Chichester, 2000. Tirado-Rives, J.;Jorgensen, W. L. J Chem Theory Comput 2008, 4, 297. Sancho-Garcia, J. C.;Perez-Jimenez, A. J. J Chem Phys 2008, 129, 024103. Dreuw, A.;Head-Gordon, M. Chem Phys Lett 2006, 426, 231. Scholz, R.;Kobitski, A. Y.;Zahn, D. R. T.;Schreiber, M. Phys Rev B 2005, 72, 245208. Gangilenka, V. R.;Titova, L. V.;Smith, L. M.;Wagner, H. P.;DeSilva, L. A. A.;Gisslen, L.;Scholz, R. Phys Rev B 2010, 81, 155208. Hadipour, A.;de Boer, B.;Wildeman, J.;Kooistra, F. B.;Hummelen, J. C.;Turbiez, M. G. R.;Wienk, M. M.;Janssen, R. A. J.;Blom, P. W. M. Adv Funct Mater 2006, 16, 1897. Dirac, P. A. M. Proc Royal Soc A 1929, 123, 714. Mukamel, S.;Franchi, D. S.;Loring, R. F. Chem Phys 1988, 128, 99. Grimme, S. J Comput Chem 2004, 25, 1463. Klebe, G.;Graser, F.;Hadicke, E.;Berndt, J. Acta Cryst B 1989, 45, 69. Hippius, C.;van Stokkum, I. H. M.;Zangrando, E.;Williams, R. M.;Wykes, M.;Beljonne, D.;Wurthner, F. J Phys Chem C 2008, 112, 14626. Pullerits, T.;Sundstrom, V. Acc Chem Res 1996, 29, 381. Becke, A. D. J Chem Phys 1993, 98, 1372. Dreuw, A.;Head-Gordon, M. J Am Chem Soc 2004, 126, 4007. Peach, M. J. G.;Benfield, P.;Helgaker, T.;Tozer, D. J. J Chem Phys 2008, 128, 044118. Bao, Z. N. Adv Mater 2000, 12, 227. Rim, S. B.;Fink, R. F.;Schoneboom, J. C.;Erk, P.;Peumans, P. Appl Phys Lett 2007, 91, 173504. Kasha, M.;Rawls, H. R.;Bayoumi, M. A. E. Pure Appl Chem 1965, 11, 371. Damjanovic, A.;Kosztin, I.;Kleinekathofer, U.;Schulten, K. Phys Rev E 2002, 65, 031919. Gregg, B. A. J Phys Chem 1996, 100, 852. Frisch, M. J.;Pople, J. A.;Binkley, J. S. J Chem Phys 1984, 80, 3265. Weigend, F.;Furche, F.;Ahlrichs, R. J Chem Phys 2003, 119, 12753. Bauernschmitt, R.;Ahlrichs, R. Chem Phys Lett 1996, 256, 454. Fink, R. F.;Pfister, J.;Zhao, H. M.;Engels, B. Chem Phys 2008, 346, 275. Zhao, H. M.;Pfister, J.;Settels, V.;Renz, M.;Kaupp, M.;Dehm, V. C.;Wurthner, F.;Fink, R. F.;Engels, B. J Am Chem Soc 2009, 131, 15660. Fink, R. F.;Seibt, J.;Engel, V.;Renz, M.;Kaupp, M.;Lochbrunner, S.;Zhao, H. M.;Pfister, J.;Wurthner, F.;Engels, B. J Am Chem Soc 2008, 130, 12858. Weigend, F.;Haser, M.;Patzelt, H.;Ahlrichs, R. Chem Phys Lett 1998, 294, 143. Lee, C. T.;Yang, W. T.;Parr, R. G. Phys Rev B 1988, 37, 785. Beljonne, D.;Cornil, J.;Silbey, R.;Millie, P.;Bredas, J. L. J Chem Phys 2000, 112, 4749. Peumans, P.;Yakimov, A.;Forrest, S. R. J Appl Phys 2003, 93, 3693. Hehre, W. J.;Ditchfie.RPople, J. A. J Chem Phys 1972, 56, 2257. Katz, H. E.;Lovinger, A. J.;Johnson, J.;Kloc, C.;Siegrist, T.;Li, W.;Lin, Y. Y.;Dodabalapur, A. Nature 2000, 404, 478. Burquel, A.;Lemaur, V.;Beljonne, D.;Lazzaroni, R.;Cornil, J. J Phys Chem A 2006, 110, 3447. Bredas, J. L.;Beljonne, D.;Coropceanu, V.;Cornil, J. Chem Rev 2004, 104, 4971. Coakley, K. M.;McGehee, M. D. J Chem Mater 2004, 16, 4533. Lefebvre-Brion, H.;Field, R. Perturbations in the Spectra of Diatomic Molecules; Academic Press, Inc.: Toronto, 1986. Jacquemin, D.;Perpete, E. A.;Ciofini, I.;Adamo, C. Acc Chem Res 2009, 42, 326. Cornil, J.;Beljonne, D.;Calbert, J. P.;Bredas, J. L. Adv Mater 2001, 13, 1053. Becke, A. D. Phys Rev A 1988, 38, 3098. Guthmuller, J.;Zutterman, F.;Champagne, B. J Chem Phys 2009, 131, 154302. Grimsdale, A. C.;Mullen, K. Angew Chem Int Ed 2005, 44, 5592. Hattig, C.;Weigend, F. J Chem Phys 2000, 113, 5154. May, V.;Kuehn, O. Charge and Energy Transfer Dynamics in Molecular Systems; Wiley-VCH: Weinheim, 2004. Clark, A. E.;Qin, C. Y.;Li, A. D. Q. J Am Chem Soc 2007, 129, 7586. Peach, M. J. G.;Helgaker, T.;Salek, P.;Keal, T. W.;Lutnaes, O. B.;Tozer, D. J.;Handy, N. C. PCCP 2006, 8, 558. Brabec, C. J.;Cravino, A.;Meissner, D.;Sariciftci, N. S.;Fromherz, T.;Rispens, M. T.;Sanchez, L.;Hummelen, J. C. Adv Funct Mater 2001, 11, 374. Scholz, R.;Kobitski, A. Y.;Kampen, T. U.;Schreiber, M.;Zahn, D. R. T.;Jungnickel, G.;Elstner, M.;Sternberg, M.;Frauenheim, T. Phys Rev B 2000, 61, 13659. Gustafsson, G.;Cao, Y.;Treacy, G. M.;Klavetter, F.;Colaneri, N.;Heeger, A. J. Nature 1992, 357, 477. Francl, M. M.;Pietro, W. J.;Hehre, W. J.;Binkley, J. S.;Gordon, M. S.;Defrees, D. J.;Pople, J. A. J Chem Phys 1982, 77, 3654. Hellweg, A.;Grun, S. A.;Hattig, C. PCCP 2008, 10, 4119. Rappoport, D.;Furche, F. J Chem Phys 2005, 122, 064105. Forrest, S. R. Chem Rev 1997, 97, 1793. Conboy, J. C.;Olson, E. J. C.;Adams, D. M.;Kerimo, J.;Zaban, A.;Gregg, B. A.;Barbara, P. F. J Phys Chem B 1998, 102, 4516. Eichkorn, K.;Treutler, O.;Ohm, H.;Haser, M.;Ahlrichs, R. Chem Phys Lett 1995, 242, 652. Fuckel, B.;Kohn, A.;Harding, M. E.;Diezemann, G.;Hinze, G.;Basche, T.;Gauss, J. J Chem Phys 2008, 128. Bredas, J. L.;Cornil, J.;Heeger, A. J. Adv Mater 1996, 8, 447. Eichkorn, K.;Weigend, F.;Treutler, O.;Ahlrichs, R. Theor Chem Acc 1997, 97, 119. Slater, J. C. Phys Rev 1951, 81, 385. Becke, A. D. J Chem Phys 1993, 98, 5648. Jensen, F. Introduction to Computational Chemistry; Wiley: Chichester, 2007. Gordon, M. S. Chem Phys Lett 1980, 76, 163. Vosko, S. H.;Wilk, L.;Nusair, M. Canadian J Phys 1980, 58, 1200. Christiansen, O.;Koch, H.;Jorgensen, P. Chem Phys Lett 1995, 243, 409. Yanai, T.;Tew, D. P.;Handy, N. C. Chem Phys Lett 2004, 393, 51. Foerster, T. Action of Light and Organic Crystals; Academic Press, Inc. New York, 1965. Schafer, A.;Huber, C.;Ahlrichs, R. J Chem Phys 1994, 100, 5829. 2003; 119 1965; 11 2004; 126 1989; 45 2006; 419 2009; 42 2000; 258 2004; 25 1988; 37 1988; 38 2002; 117 2009; 113 1996; 100 2008; 346 2008; 4 2003; 93 1997; 268 1994; 100 1996; 29 2000 2000; 12 1997; 97 2000; 404 1948; 2 1992; 357 1980; 76 2000; 61 1986 1996; 210 2005; 72 1995; 243 2001; 11 2008; 112 1995; 242 2001; 13 1972; 56 1996; 256 1996; 8 2007; 129 2004; 104 1984; 80 2000; 113 2006; 16 1982; 77 2009 2008 2006; 8 2008; 129 2007; 91 2006; 110 2007 2008; 128 2008; 10 2004 2009; 131 2000; 112 2010; 81 1951; 81 2005; 44 1998; 294 1988; 128 1980; 58 2003; 107 2005; 122 2004; 16 2004; 393 1993; 98 2002; 65 2005; 127 1965 1999; 74 1929; 123 1998; 102 2006; 426 2008; 130 Foerster T. (e_1_2_4_21_2) 1965 e_1_2_4_82_2 e_1_2_4_40_2 e_1_2_4_61_2 Fuckel B. (e_1_2_4_36_2) 2008 e_1_2_4_80_2 e_1_2_4_44_2 e_1_2_4_65_2 e_1_2_4_42_2 e_1_2_4_63_2 e_1_2_4_23_2 e_1_2_4_48_2 e_1_2_4_69_2 e_1_2_4_25_2 e_1_2_4_46_2 e_1_2_4_67_2 e_1_2_4_27_2 e_1_2_4_29_2 e_1_2_4_3_2 e_1_2_4_5_2 e_1_2_4_7_2 e_1_2_4_73_2 e_1_2_4_9_2 Peach M. J. G. (e_1_2_4_50_2) 2006; 8 e_1_2_4_71_2 e_1_2_4_31_2 e_1_2_4_54_2 e_1_2_4_77_2 e_1_2_4_10_2 e_1_2_4_33_2 e_1_2_4_52_2 e_1_2_4_75_2 e_1_2_4_12_2 e_1_2_4_35_2 e_1_2_4_58_2 e_1_2_4_14_2 e_1_2_4_37_2 e_1_2_4_56_2 e_1_2_4_79_2 e_1_2_4_39_2 e_1_2_4_16_2 e_1_2_4_18_2 e_1_2_4_81_2 e_1_2_4_83_2 e_1_2_4_62_2 e_1_2_4_60_2 e_1_2_4_20_2 e_1_2_4_43_2 e_1_2_4_66_2 e_1_2_4_22_2 e_1_2_4_41_2 e_1_2_4_64_2 Jensen F. (e_1_2_4_78_2) 2007 e_1_2_4_47_2 e_1_2_4_26_2 e_1_2_4_45_2 e_1_2_4_68_2 e_1_2_4_28_2 e_1_2_4_49_2 May V. (e_1_2_4_24_2) 2004 e_1_2_4_2_2 e_1_2_4_4_2 e_1_2_4_6_2 e_1_2_4_8_2 e_1_2_4_51_2 e_1_2_4_72_2 e_1_2_4_70_2 e_1_2_4_30_2 e_1_2_4_55_2 e_1_2_4_76_2 e_1_2_4_11_2 e_1_2_4_32_2 e_1_2_4_53_2 e_1_2_4_74_2 e_1_2_4_13_2 e_1_2_4_34_2 e_1_2_4_59_2 e_1_2_4_15_2 e_1_2_4_57_2 e_1_2_4_17_2 e_1_2_4_38_2 e_1_2_4_19_2 |
References_xml | – volume: 346 start-page: 275 year: 2008 publication-title: Chem Phys – year: 2009 – volume: 2 start-page: 55 year: 1948 publication-title: Ann Phys – volume: 81 start-page: 385 year: 1951 publication-title: Phys Rev – volume: 242 start-page: 652 year: 1995 publication-title: Chem Phys Lett – volume: 65 start-page: 031919 year: 2002 publication-title: Phys Rev E – volume: 44 start-page: 5592 year: 2005 publication-title: Angew Chem Int Ed – volume: 58 start-page: 1200 year: 1980 publication-title: Canadian J Phys – volume: 419 start-page: 557 year: 2006 publication-title: Chem Phys Lett – volume: 72 start-page: 245208 year: 2005 publication-title: Phys Rev B – volume: 426 start-page: 231 year: 2006 publication-title: Chem Phys Lett – volume: 123 start-page: 714 year: 1929 publication-title: Proc Royal Soc A – volume: 93 start-page: 3693 year: 2003 publication-title: J Appl Phys – volume: 4 start-page: 123 year: 2008 publication-title: J Chem Theory Comput – volume: 37 start-page: 785 year: 1988 publication-title: Phys Rev B – volume: 104 start-page: 4971 year: 2004 publication-title: Chem Rev – volume: 130 start-page: 12858 year: 2008 publication-title: J Am Chem Soc – volume: 25 start-page: 1463 year: 2004 publication-title: J Comput Chem – volume: 38 start-page: 3098 year: 1988 publication-title: Phys Rev A – volume: 113 start-page: 12847 year: 2009 publication-title: J Phys Chem A – volume: 4 start-page: 297 year: 2008 publication-title: J Chem Theory Comput – volume: 16 start-page: 4533 year: 2004 publication-title: J Chem Mater – volume: 110 start-page: 3447 year: 2006 publication-title: J Phys Chem A – volume: 119 start-page: 12753 year: 2003 publication-title: J Chem Phys – year: 1986 – volume: 12 start-page: 227 year: 2000 publication-title: Adv Mater – volume: 256 start-page: 454 year: 1996 publication-title: Chem Phys Lett – volume: 258 start-page: 73 year: 2000 publication-title: Chem Phys – volume: 100 start-page: 852 year: 1996 publication-title: J Phys Chem – volume: 404 start-page: 478 year: 2000 publication-title: Nature – volume: 127 start-page: 4744 year: 2005 publication-title: J Am Chem Soc – volume: 128 start-page: 044118 year: 2008 publication-title: J Chem Phys – year: 1965 – volume: 100 start-page: 5829 year: 1994 publication-title: J Chem Phys – volume: 112 start-page: 14626 year: 2008 publication-title: J Phys Chem C – volume: 112 start-page: 4749 year: 2000 publication-title: J Chem Phys – volume: 16 start-page: 1897 year: 2006 publication-title: Adv Funct Mater – volume: 97 start-page: 1793 year: 1997 publication-title: Chem Rev – year: 2004 – volume: 80 start-page: 3265 year: 1984 publication-title: J Chem Phys – volume: 56 start-page: 2257 year: 1972 publication-title: J Chem Phys – volume: 107 start-page: 4688 year: 2003 publication-title: J Phys Chem B – volume: 13 start-page: 1053 year: 2001 publication-title: Adv Mater – volume: 268 start-page: 1 year: 1997 publication-title: Chem Phys Lett – start-page: 128 year: 2008 publication-title: J Chem Phys – volume: 42 start-page: 326 year: 2009 publication-title: Acc Chem Res – volume: 61 start-page: 13659 year: 2000 publication-title: Phys Rev B – volume: 97 start-page: 119 year: 1997 publication-title: Theor Chem Acc – volume: 117 start-page: 6939 year: 2002 publication-title: J Chem Phys – volume: 76 start-page: 163 year: 1980 publication-title: Chem Phys Lett – volume: 11 start-page: 371 year: 1965 publication-title: Pure Appl Chem – volume: 129 start-page: 024103 year: 2008 publication-title: J Chem Phys – volume: 210 start-page: 1 year: 1996 publication-title: Chem Phys – volume: 8 start-page: 558 year: 2006 publication-title: PCCP – volume: 11 start-page: 374 year: 2001 publication-title: Adv Funct Mater – year: 2007 – volume: 102 start-page: 4516 year: 1998 publication-title: J Phys Chem B – volume: 29 start-page: 381 year: 1996 publication-title: Acc Chem Res – year: 2000 – volume: 93 start-page: 3605 year: 2003 publication-title: J Appl Phys – volume: 122 start-page: 064105 year: 2005 publication-title: J Chem Phys – volume: 98 start-page: 1372 year: 1993 publication-title: J Chem Phys – volume: 243 start-page: 409 year: 1995 publication-title: Chem Phys Lett – volume: 357 start-page: 477 year: 1992 publication-title: Nature – volume: 294 start-page: 143 year: 1998 publication-title: Chem Phys Lett – volume: 393 start-page: 51 year: 2004 publication-title: Chem Phys Lett – volume: 74 start-page: 3212 year: 1999 publication-title: Appl Phys Lett – volume: 129 start-page: 034104 year: 2008 publication-title: J Chem Phys – volume: 91 start-page: 173504 year: 2007 publication-title: Appl Phys Lett – volume: 112 start-page: 2322 year: 2008 publication-title: J Phys Chem A – volume: 45 start-page: 69 year: 1989 publication-title: Acta Cryst B – volume: 81 start-page: 155208 year: 2010 publication-title: Phys Rev B – volume: 128 start-page: 99 year: 1988 publication-title: Chem Phys – volume: 129 start-page: 7586 year: 2007 publication-title: J Am Chem Soc – volume: 113 start-page: 5154 year: 2000 publication-title: J Chem Phys – volume: 8 start-page: 447 year: 1996 publication-title: Adv Mater – volume: 126 start-page: 4007 year: 2004 publication-title: J Am Chem Soc – volume: 10 start-page: 4119 year: 2008 publication-title: PCCP – volume: 77 start-page: 3654 year: 1982 publication-title: J Chem Phys – volume: 131 start-page: 15660 year: 2009 publication-title: J Am Chem Soc – volume: 131 start-page: 154302 year: 2009 publication-title: J Chem Phys – volume: 98 start-page: 5648 year: 1993 publication-title: J Chem Phys – ident: e_1_2_4_3_2 doi: 10.1038/35006603 – ident: e_1_2_4_37_2 doi: 10.1063/1.2953716 – ident: e_1_2_4_39_2 doi: 10.1021/jp904105p – ident: e_1_2_4_53_2 doi: 10.1016/S0009-2614(98)00862-8 – ident: e_1_2_4_26_2 doi: 10.1016/0301-0104(96)00114-0 – ident: e_1_2_4_41_2 doi: 10.1021/ja804331b – ident: e_1_2_4_28_2 doi: 10.1021/jp022507x – ident: e_1_2_4_49_2 doi: 10.1063/1.2831900 – ident: e_1_2_4_76_2 doi: 10.1016/j.chemphys.2008.03.014 – ident: e_1_2_4_4_2 doi: 10.1002/(SICI)1521-4095(200002)12:3<227::AID-ADMA227>3.0.CO;2-U – ident: e_1_2_4_52_2 – ident: e_1_2_4_59_2 doi: 10.1139/p80-159 – ident: e_1_2_4_61_2 doi: 10.1016/0009-2614(95)00841-Q – ident: e_1_2_4_67_2 doi: 10.1063/1.447079 – ident: e_1_2_4_72_2 doi: 10.1063/1.1627293 – ident: e_1_2_4_55_2 doi: 10.1103/PhysRev.81.385 – ident: e_1_2_4_75_2 doi: 10.1063/1.481031 – ident: e_1_2_4_10_2 doi: 10.1063/1.2951991 – ident: e_1_2_4_71_2 doi: 10.1002/jcc.20078 – ident: e_1_2_4_33_2 doi: 10.1016/S0301-0104(00)00157-9 – ident: e_1_2_4_79_2 doi: 10.1021/ar800163d – ident: e_1_2_4_25_2 doi: 10.1002/andp.19484370105 – start-page: 128 year: 2008 ident: e_1_2_4_36_2 publication-title: J Chem Phys contributor: fullname: Fuckel B. – ident: e_1_2_4_43_2 doi: 10.1016/j.cplett.2006.05.077 – ident: e_1_2_4_48_2 doi: 10.1016/j.cplett.2004.06.011 – ident: e_1_2_4_23_2 doi: 10.1021/ja0488784 – ident: e_1_2_4_40_2 doi: 10.1063/1.3245403 – ident: e_1_2_4_2_2 doi: 10.1063/1.124108 – ident: e_1_2_4_45_2 doi: 10.1021/ja0687724 – ident: e_1_2_4_11_2 doi: 10.1103/PhysRevE.65.031919 – ident: e_1_2_4_77_2 doi: 10.1002/9781119019572 – volume-title: Charge and Energy Transfer Dynamics in Molecular Systems year: 2004 ident: e_1_2_4_24_2 contributor: fullname: May V. – ident: e_1_2_4_31_2 doi: 10.1016/S0009-2614(97)00184-X – ident: e_1_2_4_56_2 doi: 10.1103/PhysRevB.37.785 – ident: e_1_2_4_6_2 doi: 10.1002/1521-4095(200107)13:14<1053::AID-ADMA1053>3.0.CO;2-7 – ident: e_1_2_4_58_2 doi: 10.1103/PhysRevA.38.3098 – ident: e_1_2_4_18_2 doi: 10.1063/1.2783202 – ident: e_1_2_4_73_2 doi: 10.1063/1.1844492 – ident: e_1_2_4_57_2 doi: 10.1063/1.464913 – ident: e_1_2_4_60_2 doi: 10.1063/1.464304 – ident: e_1_2_4_8_2 doi: 10.1021/ar950110o – ident: e_1_2_4_68_2 doi: 10.1016/0009-2614(80)80628-2 – ident: e_1_2_4_20_2 doi: 10.1021/jp055719d – ident: e_1_2_4_46_2 doi: 10.1107/S0108768188010407 – ident: e_1_2_4_47_2 doi: 10.1039/b803727b – ident: e_1_2_4_34_2 doi: 10.1021/jp710847q – ident: e_1_2_4_15_2 doi: 10.1021/cm049654n – ident: e_1_2_4_80_2 doi: 10.1021/ct700248k – ident: e_1_2_4_74_2 doi: 10.1016/0009-2614(96)00440-X – ident: e_1_2_4_62_2 doi: 10.1063/1.1506918 – ident: e_1_2_4_54_2 doi: 10.1098/rspa.1929.0094 – ident: e_1_2_4_42_2 doi: 10.1021/ja039556n – volume: 8 start-page: 558 year: 2006 ident: e_1_2_4_50_2 publication-title: PCCP doi: 10.1039/B511865D contributor: fullname: Peach M. J. G. – ident: e_1_2_4_9_2 doi: 10.1002/anie.200500805 – ident: e_1_2_4_32_2 doi: 10.1103/PhysRevB.72.245208 – ident: e_1_2_4_19_2 doi: 10.1021/jp804068b – ident: e_1_2_4_13_2 doi: 10.1038/357477a0 – ident: e_1_2_4_44_2 doi: 10.1016/j.cplett.2005.11.112 – ident: e_1_2_4_35_2 doi: 10.1103/PhysRevB.61.13659 – ident: e_1_2_4_27_2 doi: 10.1021/jp980969y – ident: e_1_2_4_69_2 doi: 10.1063/1.444267 – volume-title: Introduction to Computational Chemistry year: 2007 ident: e_1_2_4_78_2 contributor: fullname: Jensen F. – ident: e_1_2_4_70_2 doi: 10.1063/1.1677527 – ident: e_1_2_4_30_2 doi: 10.1063/1.1544413 – ident: e_1_2_4_7_2 doi: 10.1002/adma.19960080517 – ident: e_1_2_4_63_2 doi: 10.1063/1.1290013 – ident: e_1_2_4_51_2 doi: 10.1021/ct700187z – ident: e_1_2_4_14_2 doi: 10.1002/1616-3028(200110)11:5<374::AID-ADFM374>3.0.CO;2-W – ident: e_1_2_4_83_2 doi: 10.1103/PhysRevB.81.155208 – ident: e_1_2_4_16_2 doi: 10.1021/cr941014o – ident: e_1_2_4_81_2 doi: 10.1351/pac196511030371 – ident: e_1_2_4_12_2 doi: 10.1002/adfm.200600138 – ident: e_1_2_4_64_2 doi: 10.1063/1.467146 – ident: e_1_2_4_66_2 doi: 10.1016/0009-2614(95)00838-U – ident: e_1_2_4_5_2 doi: 10.1021/cr040084k – ident: e_1_2_4_22_2 doi: 10.1016/0301-0104(88)85065-1 – ident: e_1_2_4_29_2 doi: 10.1021/jp952557k – ident: e_1_2_4_38_2 doi: 10.1021/ja902512e – ident: e_1_2_4_65_2 doi: 10.1007/s002140050244 – ident: e_1_2_4_82_2 doi: 10.1016/B978-0-12-442690-0.50009-9 – ident: e_1_2_4_17_2 doi: 10.1063/1.1534621 – volume-title: Action of Light and Organic Crystals year: 1965 ident: e_1_2_4_21_2 contributor: fullname: Foerster T. |
SSID | ssj0003564 |
Score | 2.3431942 |
Snippet | The reliability of linear response approaches such as time‐dependent Hartree–Fock (TD‐HF) and time‐dependent density functional theory (TD‐DFT) for the... The reliability of linear response approaches such as time-dependent Hartree-Fock (TD-HF) and time-dependent density functional theory (TD-DFT) for the... |
SourceID | proquest crossref pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1971 |
SubjectTerms | charge-transfer state electronic-coupling matrix-element exciton energy transfer exciton trapping mechanism Molecular chemistry neutral excited state Optical properties perylene bisimide Quantum physics Reliability SCS-CC2 TD-DFT TD-HF |
Title | Assessment of TD-DFT- and TD-HF-based approaches for the prediction of exciton coupling parameters, potential energy curves, and electronic characters of electronically excited aggregates |
URI | https://api.istex.fr/ark:/67375/WNG-WH68R1J9-8/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcc.21781 https://www.ncbi.nlm.nih.gov/pubmed/21484836 https://www.proquest.com/docview/864994063 https://search.proquest.com/docview/863769560 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagHODC_08oIAshxIHQJHZiR5yq3S6rHioEi8rNsh17JSjJKmlQufEIvBNvwpMw42xSVQIJiYuVyI5tZcb2N2PPZ0KepcKXzANy447nMbeljU3BWFwyx0oGKwiz6NNdvhdHH-X8AGlyXo-xMAM_xORww5ER5msc4Np0e-ekoZ-sfQV4OoRdg5UQwjfY22kWZvlAHQUIJpZFno6sQkm2N315YS26gr_17E9A8yJuDQvP4sZ_dfkmub7Fm3R_UJBb5JKrb5Ors_Gatzvk5_7EzUkbT1fzX99_zBcrSKmuq-F9uYAE17uKjhzkrqMAdynAR7ppcbMHBYwVuDMLk0RNbdNjsO-aIrn4Fzx0072km-YUTydBh1yIOaS2b786yMCmzm_koXakke5ClVOGPjn5NrSAXVmvW4dewO4u-bA4WM2W8fZmh9hyACBxYbNEiCpPrZXWM-SwM1xkiS6k14n0qRPcCat5lVfcJ2DwV1IDlDImTwubGnaP7NRN7R4QagHT6Mxr64qcey8MlyZHM9T4RJjCReTpKGO1GQg81EDVnCmQhwryiMjzIP2phG4_44k3kavjozfqeFnId-lhqWREdkf1UNvB3ilZgNmIah0ROuWCFHHrRdeu6bEITORoikbk_qBUU1MZGKRcsiIiL4Lu_L2X6nA2Cw8P_73oLrk2eMFFnOaPyM5p27vH5HJX9U_CePkNOdcczw |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagPZQL_z-h_FgIIQ6EJrFjOxKXardLKGWFYFG5WYljr0TbZJU0qNx4BN6JN-FJmEk2qSqBhMTFSmTHtjJj-5ux5zMhT0PpEuYAuXHLY5-bxPi5YMxPmGUJgxWEGfTpph_l_LOa7iFNzqshFqbnhxgdbjgyuvkaBzg6pHfOWUO_GPMSADXGXW9yAYqIARzs_TgPs7gnjwIM4ysRhwOvUBDtjJ9eWI028cee_QlqXkSu3dIzu_Z_nb5Orq4hJ93tdeQGuWTLm2RrMtz0dov83B3pOWnl6GL66_uP6WwBKc3Kon9PZ5DgklfQgYbcNhQQLwUESVc17vegjLECe2ZgniipqVqM911S5Bc_wXM3zQu6qk7xgBJ0yHZhh9S09VcLGdjU-aU81AxM0k1X5ZiRHR9_61vAriyXtUVHYHObfJrtLSapv77cwTccMIgvTBRIWcShMco4hjR2OZdRkAnlskC50Epupcl4ERfcBWDzFyoDNJXncShMmLM7ZKOsSnuPUAOwJotcZqyIuXMy5yqP0RLNXSBzYT3yZBCyXvUcHrpna440yEN38vDIs078Y4msPsJDbzLWh_PX-jAV6kO4n2jlke1BP_R6vDdaCbAcUbM9QsdckCLuvmSlrVosAnM5WqMeudtr1dhUBDYpV0x45HmnPH_vpd6fTLqH-_9e9DHZShfvDvTBm_nbbXKld4pLP4wfkI3TurUPyeWmaB91g-c3CnUg9w |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaglYAL_z-h_FgIIQ6EJrFjO-JU7TYsBa0qWNTerMSxV2pLskoaVG48Au_Em_AkzCSbVJVAQuJiJbJjW5kZ-xvb85mQ56F0CXOA3Ljlsc9NYvxcMOYnzLKEwQzCDK7pzj7J-aGa7iJNzpshFqbnhxgX3NAyuvEaDXxVuO1z0tAjY14Dnsaw600OMByJ8xnbH4dhFvfcUQBhfCXicKAVCqLt8dMLk9Em_tezPyHNi8C1m3nSG__V55vk-hpw0p1eQ26RS7a8Ta5Ohnve7pCfOyM5J60cXUx_ff8xTReQ0qws-vdZCglOeAUdSMhtQwHvUsCPdFXjbg9KGCuwZwZGiZKaqsVo3yVFdvEveOqmeUVX1SkeT4IO2S7okJq2_mohA5s6v5KHmoFHuumqHDOyk5NvfQvYleWytrgM2Nwln9PdxWTmr6928A0HBOILEwVSFnFojDKOIYldzmUUZEK5LFAutJJbaTJexAV3AXj8hcoAS-V5HAoT5uwe2Sir0j4g1ACoySKXGSti7pzMucpj9ENzF8hcWI88G2SsVz2Dh-65miMN8tCdPDzyopP-WCKrj_HIm4z1wfytPpgJ9THcS7TyyNagHnpt7Y1WAvxG1GuP0DEXpIh7L1lpqxaLwEiOvqhH7vdKNTYVgUfKFRMeednpzt97qfcmk-7h4b8XfUqu7E9T_eHd_P0WudaviEs_jB-RjdO6tY_J5aZon3Sm8xt_zh-d |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+TD%E2%80%90DFT%E2%80%90+and+TD%E2%80%90HF%E2%80%90based+approaches+for+the+prediction+of+exciton+coupling+parameters%2C+potential+energy+curves%2C+and+electronic+characters+of+electronically+excited+aggregates&rft.jtitle=Journal+of+computational+chemistry&rft.au=Liu%2C+Wenlan&rft.au=Settels%2C+Volker&rft.au=Harbach%2C+Philipp+H.+P.&rft.au=Dreuw%2C+Andreas&rft.date=2011-07-15&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0192-8651&rft.eissn=1096-987X&rft.volume=32&rft.issue=9&rft.spage=1971&rft.epage=1981&rft_id=info:doi/10.1002%2Fjcc.21781&rft.externalDBID=10.1002%252Fjcc.21781&rft.externalDocID=JCC21781 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0192-8651&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0192-8651&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0192-8651&client=summon |