Targeting Xcr1 on Dendritic Cells Rapidly Induce Th1-Associated Immune Responses That Contribute to Protection Against Influenza Infection
Targeting antigen to conventional dendritic cells (cDCs) can improve antigen-specific immune responses and additionally be used to influence the polarization of the immune responses. However, the mechanisms by which this is achieved are less clear. To improve our understanding, we here evaluate mole...
Saved in:
Published in: | Frontiers in immunology Vol. 13; p. 752714 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Switzerland
Frontiers Media S.A
28-02-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Targeting antigen to conventional dendritic cells (cDCs) can improve antigen-specific immune responses and additionally be used to influence the polarization of the immune responses. However, the mechanisms by which this is achieved are less clear. To improve our understanding, we here evaluate molecular and cellular requirements for CD4
T cell and antibody polarization after immunization with Xcl1-fusion vaccines that specifically target cDC1s. Xcl1-fusion vaccines induced an IgG2a/IgG2b-dominated antibody response and rapid polarization of Th1 cells both
and
. For comparison, we included fliC-fusion vaccines that almost exclusively induced IgG1, despite inducing a more mixed polarization of T cells. Th1 polarization and IgG2a induction with Xcl1-fusion vaccines required IL-12 secretion but were nevertheless maintained in BATF3
mice which lack IL-12-secreting migratory DCs. Interestingly, induction of IgG2a-dominated responses was highly dependent on the early kinetics of Th1 induction and was important for optimal protection in an influenza infection model. Early Th1 induction was dominant, since a combined Xcl1- and fliC-fusion vaccine induced IgG2a/IgG2b polarized antibody responses similar to Xcl1-fusion vaccines alone. In summary, our results demonstrate that targeting antigen to Xcr1
cDC1s is an efficient strategy for enhancing IgG2a antibody responses through rapid Th1 induction, which can be utilized for improved vaccine design. |
---|---|
AbstractList | Targeting antigen to conventional dendritic cells (cDCs) can improve antigen-specific immune responses and additionally be used to influence the polarization of the immune responses. However, the mechanisms by which this is achieved are less clear. To improve our understanding, we here evaluate molecular and cellular requirements for CD4
+
T cell and antibody polarization after immunization with Xcl1-fusion vaccines that specifically target cDC1s. Xcl1-fusion vaccines induced an IgG2a/IgG2b-dominated antibody response and rapid polarization of Th1 cells both
in vitro
and
in vivo
. For comparison, we included fliC-fusion vaccines that almost exclusively induced IgG1, despite inducing a more mixed polarization of T cells. Th1 polarization and IgG2a induction with Xcl1-fusion vaccines required IL-12 secretion but were nevertheless maintained in BATF3
-/-
mice which lack IL-12-secreting migratory DCs. Interestingly, induction of IgG2a-dominated responses was highly dependent on the early kinetics of Th1 induction and was important for optimal protection in an influenza infection model. Early Th1 induction was dominant, since a combined Xcl1- and fliC-fusion vaccine induced IgG2a/IgG2b polarized antibody responses similar to Xcl1-fusion vaccines alone. In summary, our results demonstrate that targeting antigen to Xcr1
+
cDC1s is an efficient strategy for enhancing IgG2a antibody responses through rapid Th1 induction, which can be utilized for improved vaccine design. Targeting antigen to conventional dendritic cells (cDCs) can improve antigen-specific immune responses and additionally be used to influence the polarization of the immune responses. However, the mechanisms by which this is achieved are less clear. To improve our understanding, we here evaluate molecular and cellular requirements for CD4+ T cell and antibody polarization after immunization with Xcl1-fusion vaccines that specifically target cDC1s. Xcl1-fusion vaccines induced an IgG2a/IgG2b-dominated antibody response and rapid polarization of Th1 cells both in vitro and in vivo. For comparison, we included fliC-fusion vaccines that almost exclusively induced IgG1, despite inducing a more mixed polarization of T cells. Th1 polarization and IgG2a induction with Xcl1-fusion vaccines required IL-12 secretion but were nevertheless maintained in BATF3-/- mice which lack IL-12-secreting migratory DCs. Interestingly, induction of IgG2a-dominated responses was highly dependent on the early kinetics of Th1 induction and was important for optimal protection in an influenza infection model. Early Th1 induction was dominant, since a combined Xcl1- and fliC-fusion vaccine induced IgG2a/IgG2b polarized antibody responses similar to Xcl1-fusion vaccines alone. In summary, our results demonstrate that targeting antigen to Xcr1+ cDC1s is an efficient strategy for enhancing IgG2a antibody responses through rapid Th1 induction, which can be utilized for improved vaccine design. Targeting antigen to conventional dendritic cells (cDCs) can improve antigen-specific immune responses and additionally be used to influence the polarization of the immune responses. However, the mechanisms by which this is achieved are less clear. To improve our understanding, we here evaluate molecular and cellular requirements for CD4 T cell and antibody polarization after immunization with Xcl1-fusion vaccines that specifically target cDC1s. Xcl1-fusion vaccines induced an IgG2a/IgG2b-dominated antibody response and rapid polarization of Th1 cells both and . For comparison, we included fliC-fusion vaccines that almost exclusively induced IgG1, despite inducing a more mixed polarization of T cells. Th1 polarization and IgG2a induction with Xcl1-fusion vaccines required IL-12 secretion but were nevertheless maintained in BATF3 mice which lack IL-12-secreting migratory DCs. Interestingly, induction of IgG2a-dominated responses was highly dependent on the early kinetics of Th1 induction and was important for optimal protection in an influenza infection model. Early Th1 induction was dominant, since a combined Xcl1- and fliC-fusion vaccine induced IgG2a/IgG2b polarized antibody responses similar to Xcl1-fusion vaccines alone. In summary, our results demonstrate that targeting antigen to Xcr1 cDC1s is an efficient strategy for enhancing IgG2a antibody responses through rapid Th1 induction, which can be utilized for improved vaccine design. |
Author | Tesfaye, Demo Yemane Bogen, Bjarne Braathen, Ranveig Bobic, Sonja Huszthy, Peter Csaba Gudjonsson, Arnar Fossum, Even Lysén, Anna |
AuthorAffiliation | 2 Kristian Gerhard Jebsen Center for Research on Influenza Vaccines, University of Oslo and Oslo University Hospital , Oslo , Norway 1 Department of Immunology, Division of Laboratory Medicine, Oslo University Hospital , Oslo , Norway 3 Center for Immune Regulation, Institute of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet , Oslo , Norway |
AuthorAffiliation_xml | – name: 3 Center for Immune Regulation, Institute of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet , Oslo , Norway – name: 2 Kristian Gerhard Jebsen Center for Research on Influenza Vaccines, University of Oslo and Oslo University Hospital , Oslo , Norway – name: 1 Department of Immunology, Division of Laboratory Medicine, Oslo University Hospital , Oslo , Norway |
Author_xml | – sequence: 1 givenname: Demo Yemane surname: Tesfaye fullname: Tesfaye, Demo Yemane organization: Kristian Gerhard Jebsen Center for Research on Influenza Vaccines, University of Oslo and Oslo University Hospital, Oslo, Norway – sequence: 2 givenname: Sonja surname: Bobic fullname: Bobic, Sonja organization: Kristian Gerhard Jebsen Center for Research on Influenza Vaccines, University of Oslo and Oslo University Hospital, Oslo, Norway – sequence: 3 givenname: Anna surname: Lysén fullname: Lysén, Anna organization: Kristian Gerhard Jebsen Center for Research on Influenza Vaccines, University of Oslo and Oslo University Hospital, Oslo, Norway – sequence: 4 givenname: Peter Csaba surname: Huszthy fullname: Huszthy, Peter Csaba organization: Center for Immune Regulation, Institute of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway – sequence: 5 givenname: Arnar surname: Gudjonsson fullname: Gudjonsson, Arnar organization: Kristian Gerhard Jebsen Center for Research on Influenza Vaccines, University of Oslo and Oslo University Hospital, Oslo, Norway – sequence: 6 givenname: Ranveig surname: Braathen fullname: Braathen, Ranveig organization: Kristian Gerhard Jebsen Center for Research on Influenza Vaccines, University of Oslo and Oslo University Hospital, Oslo, Norway – sequence: 7 givenname: Bjarne surname: Bogen fullname: Bogen, Bjarne organization: Center for Immune Regulation, Institute of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway – sequence: 8 givenname: Even surname: Fossum fullname: Fossum, Even organization: Kristian Gerhard Jebsen Center for Research on Influenza Vaccines, University of Oslo and Oslo University Hospital, Oslo, Norway |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35296089$$D View this record in MEDLINE/PubMed |
BookMark | eNpVks1qGzEQx5eS0qRpHqCXVsde7Oprd6VLwbhfhkBLcKE3oZVGjsJaciVtIH2EPHXkOAmJLho0M7-Z0fzfNkchBmia9wTPGRPys_Pb7TSnmNJ539Ke8FfNCek6PmOU8qNn9nFzlvMVrodLxlj7pjlmLZUdFvKkuV3rtIHiwwb9NYmgGNBXCDb54g1awjhmdKF33o43aBXsZACtL8lskXM0XhewaFW7CIAuIO9iyJCrXxe0jKEkP0wFUInod4oFTPEVvthoH3KpMDdOEP7rvXXwvWteOz1mOHu4T5s_37-tlz9n579-rJaL85nhQpaZk9L0VLday74lAAMGOhBuzcBxD7pjwmFr5TDIgTjbUnBcDk5Q0Q31s7Bgp83qwLVRX6ld8ludblTUXt0_xLRROtXxR1AtbxmhBAvqDK8k0THOe2cIlVhbgyvry4G1m4YtWAN1bD2-gL70BH-pNvFaCUkE7_eAjweAST7XNagQk1a1YkuV7Dq2j_j0UCLFfxPkorY-m7oZHSBOWdGOY0YF5qyGkkdYzDmBe2qEYLUXjboXjdqLRh1EU3M-PJ_gKeNRIuwOD6vBLA |
CitedBy_id | crossref_primary_10_1016_j_smim_2023_101762 crossref_primary_10_1016_j_heliyon_2024_e31712 crossref_primary_10_3389_fimmu_2023_1221008 crossref_primary_10_1016_j_celrep_2023_113294 crossref_primary_10_14336_AD_2022_1102 |
Cites_doi | 10.1016/j.it.2011.10.007 10.4049/jimmunol.1500564 10.1016/j.ymthe.2005.10.019 10.4049/jimmunol.160.8.3958 10.1016/j.dci.2016.06.015 10.4049/immunohorizons.1700038 10.1182/blood-2013-04-495424 10.1002/eji.201445127 10.1002/eji.200323797 10.1172/JCI84428 10.1084/jem.20070176 10.1073/pnas.092141999 10.1016/S0092-8674(00)00078-7 10.4049/jimmunol.1101717 10.1038/35074106 10.4049/jimmunol.1901119 10.1155/2016/3605643 10.3389/fimmu.2019.01529 10.1038/nri3712 10.1002/eji.201545564 10.1016/j.immuni.2016.08.015 10.3389/fimmu.2012.00214 10.1084/jem.189.3.587 10.1084/jem.20032220 10.1182/blood-2006-06-032938 10.3389/fimmu.2018.02990 10.4049/jimmunol.172.11.6922 10.1002/eji.201041089 10.1016/j.immuni.2009.08.027 10.1002/eji.201445080 10.1002/eji.201444651 10.1002/eji.200425403 10.1371/journal.pone.0000863 10.4049/jimmunol.1302448 10.1038/s41598-017-07372-9 10.1038/ni.1724 10.1038/nri3727 10.1038/s41598-018-38080-7 10.1073/pnas.96.3.1036 10.1038/s41590-020-0786-2 10.4049/jimmunol.166.9.5327 10.1016/j.immuni.2019.07.001 10.3389/fimmu.2014.00326 10.4049/jimmunol.133.4.2067 10.4049/jimmunol.2000228 10.1038/srep24199 10.4049/jimmunol.1401903 10.4049/jimmunol.1601881 10.1084/jem.20100223 10.1093/intimm/dxs068 |
ContentType | Journal Article |
Copyright | Copyright © 2022 Tesfaye, Bobic, Lysén, Huszthy, Gudjonsson, Braathen, Bogen and Fossum. info:eu-repo/semantics/openAccess Copyright © 2022 Tesfaye, Bobic, Lysén, Huszthy, Gudjonsson, Braathen, Bogen and Fossum 2022 Tesfaye, Bobic, Lysén, Huszthy, Gudjonsson, Braathen, Bogen and Fossum |
Copyright_xml | – notice: Copyright © 2022 Tesfaye, Bobic, Lysén, Huszthy, Gudjonsson, Braathen, Bogen and Fossum. – notice: info:eu-repo/semantics/openAccess – notice: Copyright © 2022 Tesfaye, Bobic, Lysén, Huszthy, Gudjonsson, Braathen, Bogen and Fossum 2022 Tesfaye, Bobic, Lysén, Huszthy, Gudjonsson, Braathen, Bogen and Fossum |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 3HK 5PM DOA |
DOI | 10.3389/fimmu.2022.752714 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic NORA - Norwegian Open Research Archives PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1664-3224 |
EndPage | 752714 |
ExternalDocumentID | oai_doaj_org_article_5453121082fc42ef863447fc1290adc0 10852_96630 10_3389_fimmu_2022_752714 35296089 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CGR CUY CVF DIK EBS ECM EIF EMOBN GROUPED_DOAJ GX1 HYE IAO IEA IHR IHW IPNFZ KQ8 M48 M~E NPM OK1 PGMZT RIG RNS RPM AAYXX CITATION 7X8 3HK ABPTK ITC 5PM |
ID | FETCH-LOGICAL-c489t-f99c72a5aa9751eeb0e2b14dcb407ea638f0dd9bb9b1fd52ef49bf8286b202083 |
IEDL.DBID | RPM |
ISSN | 1664-3224 |
IngestDate | Tue Oct 22 15:16:12 EDT 2024 Tue Sep 17 21:27:22 EDT 2024 Sat Apr 29 05:42:54 EDT 2023 Sat Oct 26 00:23:12 EDT 2024 Thu Sep 26 17:39:29 EDT 2024 Sat Sep 28 08:19:54 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | targeting XCR1 dendritic cells IgG2a Th1 |
Language | English |
License | Copyright © 2022 Tesfaye, Bobic, Lysén, Huszthy, Gudjonsson, Braathen, Bogen and Fossum. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c489t-f99c72a5aa9751eeb0e2b14dcb407ea638f0dd9bb9b1fd52ef49bf8286b202083 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 NFR/250884 This article was submitted to Antigen Presenting Cell Biology, a section of the journal Frontiers in Immunology Edited by: Maud Plantinga, University Medical Center Utrecht, Netherlands These authors have contributed equally to this work Reviewed by: Tsuneyasu Kaisho, Wakayama Medical University, Japan; Kohtaro Fujihashi, The University of Tokyo, Japan |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8918470/ |
PMID | 35296089 |
PQID | 2640328043 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5453121082fc42ef863447fc1290adc0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8918470 cristin_nora_10852_96630 proquest_miscellaneous_2640328043 crossref_primary_10_3389_fimmu_2022_752714 pubmed_primary_35296089 |
PublicationCentury | 2000 |
PublicationDate | 2022-02-28 |
PublicationDateYYYYMMDD | 2022-02-28 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in immunology |
PublicationTitleAlternate | Front Immunol |
PublicationYear | 2022 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Qiu (B41) 2020; 205 Fredriksen (B32) 2007; 110 Dutertre (B42) 2014; 192 Gudjonsson (B29) 2017; 198 Roco (B38) 2019; 51 Hayashi (B27) 2001; 410 Fossum (B13) 2015; 45 Hartung (B18) 2015; 194 Becker (B7) 2014; 5 Sittig (B45) 2016; 2016 Crozat (B44) 2010; 207 Fredriksen (B28) 2006; 13 Wylie (B24) 2018; 9 Bonifaz (B15) 2004; 199 Muramatsu (B37) 2000; 102 Didierlaurent (B21) 2004; 172 Deloizy (B16) 2017; 7 Bedoui (B4) 2009; 10 Braathen R (B22) 2018; 2 Lin (B26) 2016; 6 DiLillo (B50) 2016; 126 Terhorst (B14) 2015; 194 Lysen (B31) 2019; 9 Crozat (B6) 2011; 187 Ataide (B40) 2020; 21 Guilliams (B8) 2016; 45 Schijns (B39) 1998; 160 Tesfaye (B1) 2019; 10 Shimonkevitz (B33) 1984; 133 Soares (B34) 2007; 204 Nizzoli (B46) 2013; 122 Shibata (B23) 2012; 24 Fossum (B19) 2020; 205 Dorner (B5) 2009; 31 Deloizy (B43) 2016; 65 Pulendran (B10) 1999; 96 Caminschi (B12) 2012; 33 Bachem (B35) 2012; 3 Dorner (B20) 2002; 99 Flores-Langarica (B36) 2015; 45 Cunningham (B47) 2004; 34 Guilliams (B2) 2014; 14 Maldonado-Lopez (B9) 1999; 189 Martinez-Lopez (B30) 2015; 45 Gururajan (B49) 2007; 2 Bobat (B48) 2011; 41 Kastenmuller (B11) 2014; 14 Li (B17) 2015; 45 Pooley (B3) 2001; 166 Edwards (B25) 2003; 33 |
References_xml | – volume: 33 year: 2012 ident: B12 article-title: Boosting Antibody Responses by Targeting Antigens to Dendritic Cells publication-title: Trends Immunol doi: 10.1016/j.it.2011.10.007 contributor: fullname: Caminschi – volume: 194 year: 2015 ident: B14 article-title: Laser-Assisted Intradermal Delivery of Adjuvant-Free Vaccines Targeting XCR1+ Dendritic Cells Induces Potent Antitumoral Responses publication-title: J Immunol doi: 10.4049/jimmunol.1500564 contributor: fullname: Terhorst – volume: 13 year: 2006 ident: B28 article-title: DNA Vaccines Increase Immunogenicity of Idiotypic Tumor Antigen by Targeting Novel Fusion Proteins to Antigen-Presenting Cells publication-title: Mol Ther doi: 10.1016/j.ymthe.2005.10.019 contributor: fullname: Fredriksen – volume: 160 year: 1998 ident: B39 article-title: Mice Lacking IL-12 Develop Polarized Th1 Cells During Viral Infection publication-title: J Immunol doi: 10.4049/jimmunol.160.8.3958 contributor: fullname: Schijns – volume: 65 start-page: 31 year: 2016 ident: B43 article-title: Expanding the Tools for Identifying Mononuclear Phagocyte Subsets in Swine: Reagents to Porcine CD11c and XCR1 publication-title: Dev Comp Immunol doi: 10.1016/j.dci.2016.06.015 contributor: fullname: Deloizy – volume: 2 start-page: 38 year: 2018 ident: B22 article-title: The Magnitude and IgG Subclass of Antibodies Elicited by Targeted DNA Vaccines Are Influenced by Specificity for APC Surface Molecules publication-title: ImmunoHorizons doi: 10.4049/immunohorizons.1700038 contributor: fullname: Braathen R – volume: 122 year: 2013 ident: B46 article-title: Human CD1c+ Dendritic Cells Secrete High Levels of IL-12 and Potently Prime Cytotoxic T-Cell Responses publication-title: Blood doi: 10.1182/blood-2013-04-495424 contributor: fullname: Nizzoli – volume: 45 year: 2015 ident: B17 article-title: Antibodies Targeting Clec9A Promote Strong Humoral Immunity Without Adjuvant in Mice and Non-Human Primates publication-title: Eur J Immunol doi: 10.1002/eji.201445127 contributor: fullname: Li – volume: 33 year: 2003 ident: B25 article-title: Toll-Like Receptor Expression in Murine DC Subsets: Lack of TLR7 Expression by CD8 Alpha+ DC Correlates With Unresponsiveness to Imidazoquinolines publication-title: Eur J Immunol doi: 10.1002/eji.200323797 contributor: fullname: Edwards – volume: 126 year: 2016 ident: B50 article-title: Broadly Neutralizing Anti-Influenza Antibodies Require Fc Receptor Engagement for In Vivo Protection publication-title: J Clin Invest doi: 10.1172/JCI84428 contributor: fullname: DiLillo – volume: 204 year: 2007 ident: B34 article-title: A Subset of Dendritic Cells Induces CD4+ T Cells to Produce IFN-Gamma by an IL-12-Independent But CD70-Dependent Mechanism In Vivo publication-title: J Exp Med doi: 10.1084/jem.20070176 contributor: fullname: Soares – volume: 99 year: 2002 ident: B20 article-title: MIP-1alpha, MIP-1beta, RANTES, and ATAC/lymphotactin Function Together With IFN-Gamma as Type 1 Cytokines publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.092141999 contributor: fullname: Dorner – volume: 102 year: 2000 ident: B37 article-title: Class Switch Recombination and Hypermutation Require Activation-Induced Cytidine Deaminase (AID), a Potential RNA Editing Enzyme publication-title: Cell doi: 10.1016/S0092-8674(00)00078-7 contributor: fullname: Muramatsu – volume: 187 year: 2011 ident: B6 article-title: Cutting Edge: Expression of XCR1 Defines Mouse Lymphoid-Tissue Resident and Migratory Dendritic Cells of the CD8{alpha}+ Type publication-title: J Immunol doi: 10.4049/jimmunol.1101717 contributor: fullname: Crozat – volume: 410 year: 2001 ident: B27 article-title: The Innate Immune Response to Bacterial Flagellin Is Mediated by Toll-Like Receptor 5 publication-title: Nature doi: 10.1038/35074106 contributor: fullname: Hayashi – volume: 205 year: 2020 ident: B19 article-title: Targeting Antigens to Different Receptors on Conventional Type 1 Dendritic Cells Impacts the Immune Response publication-title: J Immunol doi: 10.4049/jimmunol.1901119 contributor: fullname: Fossum – volume: 2016 start-page: 3605643 year: 2016 ident: B45 article-title: A Comparative Study of the T Cell Stimulatory and Polarizing Capacity of Human Primary Blood Dendritic Cell Subsets publication-title: Mediators Inflamm doi: 10.1155/2016/3605643 contributor: fullname: Sittig – volume: 10 year: 2019 ident: B1 article-title: Targeting Conventional Dendritic Cells to Fine-Tune Antibody Responses publication-title: Front Immunol doi: 10.3389/fimmu.2019.01529 contributor: fullname: Tesfaye – volume: 14 year: 2014 ident: B2 article-title: Dendritic Cells, Monocytes and Macrophages: A Unified Nomenclature Based on Ontogeny publication-title: Nat Rev Immunol doi: 10.1038/nri3712 contributor: fullname: Guilliams – volume: 45 year: 2015 ident: B36 article-title: Soluble Flagellin Coimmunization Attenuates Th1 Priming to Salmonella and Clearance by Modulating Dendritic Cell Activation and Cytokine Production publication-title: Eur J Immunol doi: 10.1002/eji.201545564 contributor: fullname: Flores-Langarica – volume: 45 year: 2016 ident: B8 article-title: Unsupervised High-Dimensional Analysis Aligns Dendritic Cells Across Tissues and Species publication-title: Immunity doi: 10.1016/j.immuni.2016.08.015 contributor: fullname: Guilliams – volume: 3 year: 2012 ident: B35 article-title: Expression of XCR1 Characterizes the Batf3-Dependent Lineage of Dendritic Cells Capable of Antigen Cross-Presentation publication-title: Front Immunol doi: 10.3389/fimmu.2012.00214 contributor: fullname: Bachem – volume: 189 year: 1999 ident: B9 article-title: CD8alpha+ and CD8alpha- Subclasses of Dendritic Cells Direct the Development of Distinct T Helper Cells In Vivo publication-title: J Exp Med doi: 10.1084/jem.189.3.587 contributor: fullname: Maldonado-Lopez – volume: 199 year: 2004 ident: B15 article-title: In Vivo Targeting of Antigens to Maturing Dendritic Cells via the DEC-205 Receptor Improves T Cell Vaccination publication-title: J Exp Med doi: 10.1084/jem.20032220 contributor: fullname: Bonifaz – volume: 110 year: 2007 ident: B32 article-title: Chemokine-Idiotype Fusion DNA Vaccines Are Potentiated by Bivalency and Xenogeneic Sequences publication-title: Blood doi: 10.1182/blood-2006-06-032938 contributor: fullname: Fredriksen – volume: 9 year: 2018 ident: B24 article-title: CD8(+)XCR1(neg) Dendritic Cells Express High Levels of Toll-Like Receptor 5 and a Unique Complement of Endocytic Receptors publication-title: Front Immunol doi: 10.3389/fimmu.2018.02990 contributor: fullname: Wylie – volume: 172 year: 2004 ident: B21 article-title: Flagellin Promotes Myeloid Differentiation Factor 88-Dependent Development of Th2-Type Response publication-title: J Immunol doi: 10.4049/jimmunol.172.11.6922 contributor: fullname: Didierlaurent – volume: 41 year: 2011 ident: B48 article-title: Soluble Flagellin, FliC, Induces an Ag-Specific Th2 Response, Yet Promotes T-Bet-Regulated Th1 Clearance of Salmonella Typhimurium Infection publication-title: Eur J Immunol doi: 10.1002/eji.201041089 contributor: fullname: Bobat – volume: 31 year: 2009 ident: B5 article-title: Selective Expression of the Chemokine Receptor XCR1 on Cross-Presenting Dendritic Cells Determines Cooperation With CD8+ T Cells publication-title: Immunity doi: 10.1016/j.immuni.2009.08.027 contributor: fullname: Dorner – volume: 45 year: 2015 ident: B13 article-title: Vaccine Molecules Targeting Xcr1 on Cross-Presenting DCs Induce Protective CD8+ T-Cell Responses Against Influenza Virus publication-title: Eur J Immunol doi: 10.1002/eji.201445080 contributor: fullname: Fossum – volume: 45 year: 2015 ident: B30 article-title: Batf3-Dependent CD103+ Dendritic Cells are Major Producers of IL-12 That Drive Local Th1 Immunity Against Leishmania Major Infection in Mice publication-title: Eur J Immunol doi: 10.1002/eji.201444651 contributor: fullname: Martinez-Lopez – volume: 34 year: 2004 ident: B47 article-title: Responses to the Soluble Flagellar Protein FliC Are Th2, While Those to FliC on Salmonella are Th1 publication-title: Eur J Immunol doi: 10.1002/eji.200425403 contributor: fullname: Cunningham – volume: 2 year: 2007 ident: B49 article-title: Toll-Like Receptor Expression and Responsiveness of Distinct Murine Splenic and Mucosal B-Cell Subsets publication-title: PloS One doi: 10.1371/journal.pone.0000863 contributor: fullname: Gururajan – volume: 192 year: 2014 ident: B42 article-title: TLR3-Responsive, XCR1+, CD141(BDCA-3)+/CD8alpha+-Equivalent Dendritic Cells Uncovered in Healthy and Simian Immunodeficiency Virus-Infected Rhesus Macaques publication-title: J Immunol doi: 10.4049/jimmunol.1302448 contributor: fullname: Dutertre – volume: 7 start-page: 7639 year: 2017 ident: B16 article-title: The Anti-Influenza M2e Antibody Response is Promoted by XCR1 Targeting in Pig Skin publication-title: Sci Rep doi: 10.1038/s41598-017-07372-9 contributor: fullname: Deloizy – volume: 10 year: 2009 ident: B4 article-title: Cross-Presentation of Viral and Self Antigens by Skin-Derived CD103+ Dendritic Cells publication-title: Nat Immunol doi: 10.1038/ni.1724 contributor: fullname: Bedoui – volume: 14 year: 2014 ident: B11 article-title: Dendritic Cell-Targeted Vaccines–Hope or Hype publication-title: Nat Rev Immunol doi: 10.1038/nri3727 contributor: fullname: Kastenmuller – volume: 9 start-page: 1820 year: 2019 ident: B31 article-title: Dendritic Cell Targeted Ccl3- and Xcl1-Fusion DNA Vaccines Differ in Induced Immune Responses and Optimal Delivery Site publication-title: Sci Rep doi: 10.1038/s41598-018-38080-7 contributor: fullname: Lysen – volume: 96 year: 1999 ident: B10 article-title: Distinct Dendritic Cell Subsets Differentially Regulate the Class of Immune Response In Vivo publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.96.3.1036 contributor: fullname: Pulendran – volume: 21 year: 2020 ident: B40 article-title: BATF3 Programs CD8(+) T Cell Memory publication-title: Nat Immunol doi: 10.1038/s41590-020-0786-2 contributor: fullname: Ataide – volume: 166 year: 2001 ident: B3 article-title: Cutting Edge: Intravenous Soluble Antigen is Presented to CD4 T Cells by CD8- Dendritic Cells, But Cross-Presented to CD8 T Cells by CD8+ Dendritic Cells publication-title: J Immunol doi: 10.4049/jimmunol.166.9.5327 contributor: fullname: Pooley – volume: 51 start-page: 337 year: 2019 ident: B38 article-title: Class-Switch Recombination Occurs Infrequently in Germinal Centers publication-title: Immunity doi: 10.1016/j.immuni.2019.07.001 contributor: fullname: Roco – volume: 5 year: 2014 ident: B7 article-title: Ontogenic, Phenotypic, and Functional Characterization of XCR1(+) Dendritic Cells Leads to a Consistent Classification of Intestinal Dendritic Cells Based on the Expression of XCR1 and SIRPalpha publication-title: Front Immunol doi: 10.3389/fimmu.2014.00326 contributor: fullname: Becker – volume: 133 year: 1984 ident: B33 article-title: Antigen Recognition by H-2-Restricted T Cells. II. A Tryptic Ovalbumin Peptide That Substitutes for Processed Antigen publication-title: J Immunol doi: 10.4049/jimmunol.133.4.2067 contributor: fullname: Shimonkevitz – volume: 205 year: 2020 ident: B41 article-title: Cutting Edge: Batf3 Expression by CD8 T Cells Critically Regulates the Development of Memory Populations publication-title: J Immunol doi: 10.4049/jimmunol.2000228 contributor: fullname: Qiu – volume: 6 start-page: 24199 year: 2016 ident: B26 article-title: Carboxyl-Terminal Fusion of E7 Into Flagellin Shifts TLR5 Activation to NLRC4/NAIP5 Activation and Induces TLR5-Independent Anti-Tumor Immunity publication-title: Sci Rep doi: 10.1038/srep24199 contributor: fullname: Lin – volume: 194 year: 2015 ident: B18 article-title: Induction of Potent CD8 T Cell Cytotoxicity by Specific Targeting of Antigen to Cross-Presenting Dendritic Cells In Vivo via Murine or Human XCR1 publication-title: J Immunol doi: 10.4049/jimmunol.1401903 contributor: fullname: Hartung – volume: 198 year: 2017 ident: B29 article-title: Targeting Influenza Virus Hemagglutinin to Xcr1+ Dendritic Cells in the Absence of Receptor-Mediated Endocytosis Enhances Protective Antibody Responses publication-title: J Immunol doi: 10.4049/jimmunol.1601881 contributor: fullname: Gudjonsson – volume: 207 year: 2010 ident: B44 article-title: The XC Chemokine Receptor 1 is a Conserved Selective Marker of Mammalian Cells Homologous to Mouse CD8alpha+ Dendritic Cells publication-title: J Exp Med doi: 10.1084/jem.20100223 contributor: fullname: Crozat – volume: 24 year: 2012 ident: B23 article-title: PRAT4A-Dependent Expression of Cell Surface TLR5 on Neutrophils, Classical Monocytes and Dendritic Cells publication-title: Int Immunol doi: 10.1093/intimm/dxs068 contributor: fullname: Shibata |
SSID | ssj0000493335 |
Score | 2.3784242 |
Snippet | Targeting antigen to conventional dendritic cells (cDCs) can improve antigen-specific immune responses and additionally be used to influence the polarization... |
SourceID | doaj pubmedcentral cristin proquest crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 752714 |
SubjectTerms | Animals Antibody Formation Antigens Dendritic Cells Humans IgG2a Immunoglobulin G Immunology Influenza Vaccines Influenza, Human Interleukin-12 Mice targeting Th1 XCR1 |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagEhIXxLuhgIzECSk0sZONfSx9qFwQKovUm-XHmC7aeqvu7qH8hP5qZuzdVRchceEWxVFi-ZvRzGRmvmHsvSW74WVfaxV93XnV1grd7tqiOaRsrlKRfg2cfhu-nKujY6LJ2Yz6opqwQg9cDm4fLbwkkislou8ERDUijrro6f-JDb5E6426E0z9LH6vlLIvaUyMwvR-nFxeLjEeFOLj0IvSteOzHqUtk5SZ-__mbv5ZNXnHDJ08Zo9W_iM_KPt-wu5BesoelImSN8_Y7ThXdqM94uf-uuWzxI8ghTzPgB_CdDrnZ_ZqEqY3nIZ2eODji7ZeYwSBf6Z-EeBnpXQW5rhuF5w4rPJkLOCLGf9auB0QUX7ww07QwcSX5VknvyxdlbXn7PvJ8fjwtF6NW6h9p_Sijlr7QdjeWj30LYBrQLi2C95h0AcWFTU2IWjntGtj6BGLTrtIbehO0KhP-YLtpFmCXcYbGKkAHqOfznd-CGoErXT9IJxCD64JFdtdnb1JKOnEUtoLg5GXbCr2YQ2GuSqEG7hsCEOTMTSEoSkYVuwTwbV5kLiy8w2UILOSIPMvCarYuzXYBnWLEiY2wWw5N-gsEt1g08mKvSzgbz4lKWHdKF2xYUsstvayvZImF5m_W2kMq4fm1f_Y_B57SOdRmuxfs53F9RLesPvzsHybNeI34YYPnw priority: 102 providerName: Directory of Open Access Journals |
Title | Targeting Xcr1 on Dendritic Cells Rapidly Induce Th1-Associated Immune Responses That Contribute to Protection Against Influenza Infection |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35296089 https://search.proquest.com/docview/2640328043 http://hdl.handle.net/10852/96630 https://pubmed.ncbi.nlm.nih.gov/PMC8918470 https://doaj.org/article/5453121082fc42ef863447fc1290adc0 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbdQKCX0nfcR1Chp4J3bcleS8d0k5AeWkK6hdyEXk5cdu1lH4f0J_RXd0ayQ7b01Jux_BD6Rsw30ugbQj5q9BuWl6kUtU0LK_JUAO1ONbhD3M0VosalgYvv1bdrcXqGMjnlcBYmJO1b04zbxXLcNrcht3K1tJMhT2xy-XUmJMQlVTYZkRFwwwch-s9IeTnnZdzBhABMTupmudxBKMjYuCpZlWMtHo77jRkWdz-0YTa1e44p6Pf_i3T-nTv5wBmdPyVPehZJT2Jvn5FHvn1ODmNdybsX5Pc85HeDV6LXdp3TrqWnvnWhqgGd-cViQ6_0qnGLO4qlO6yn89s8HZDyjn7BUyOeXsUEWr-Bdr2lqGQV6mN5uu3oZVR4AFzpyY1ugGbCx0LFk18ar2LbS_Lj_Gw-u0j7ogupLYTcprWUtmK61FpWZe69yTwzeeGsgdDPa5iudeacNEaavHYl83UhTY2H0Q3Dgp_8FTlou9YfEZr5qXDeQgxU2MJWTkx9zk1ZMSOAx2UuIUf92KsW7B21SkumIP7iWUI-DWCoVZTdgGaFcKoAp0I4VYQzIZ8RrvsHUTE73OjWN6q3GwVMkaNYmmC1LaDXYopah7XFdTjtLPzxwwC2ghmG2ya69d1uo4AyouhgVvCEvI7g3_9qMKOEVHtmsdeX_RYw6qDi3Rvxm_9-8y15jIMQz9e_Iwfb9c6_J6ON2x2HlYXjMC_-AFm0EkI |
link.rule.ids | 230,315,729,782,786,866,887,2108,27935,27936,53803,53805 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF4VKtRe6Lukz63UUyUn9q4dr480gIIKCNFU4rbal8FVYkd5HOAn9Fd3ZtdGpOqJW5Rx4sd8o5nxzn4fIV8V5g3Ds6gQpYlSI5JIQNkdKUiHuJorRImvBsY_87NLcXCINDlZtxfGD-0bXfXr6axfV9d-tnI-M4NuTmxwfjoSBfQleTzYIo8hXmN-r0n_HYpeznkW1jChBSsGZTWbraEZZKyfZyxPUI2H44pjjPLuO8bHU72RmjyD___Kzn-nJ--lo6NnD7yR52S3rT_pfjC_II9c_ZLsBEXKm1fkz8RPhkM-o5dmkdCmpgeutl4PgY7cdLqkF2pe2ekNRdEP4-jkOok6HztLj3G_iaMXYfTWLcGuVhQ5sLyylqOrhp4HbghABN2_UhUUqPBnXivlVuGnYHtNfh0dTkbjqJVriEwqilVUFoXJmcqUKvIscU7HjukktUZD0-gUBHoZW1toXeiktBlzZVroErexa4ZSofwN2a6b2u0RGruhsM5A95Sa1ORWDF3CdZYzLaACjG2P7LU-kzVECrKcZkxC58bjHvnWOVHOA2EHmCXCQHoYSISBDDDoke_o5rsDkWvbf9EsrmTrKAk1JkeaNcFKk8JViyGyJJYG3-Apa-CMXzqQSIhNXHBRtWvWSwnFJtIVxinvkbcBNHen6uDXI_kGnDauZdMCKPL83y1q3j34l5_Jk_Hk9ESeHJ_9eE-e4gMJu_Q_kO3VYu0-kq2lXX_yUfUX6WYm3Q |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF7RoiIu5U3Nc5E4ITl-x-tjSRq1AqqoBKm31T5bo8SO8ji0P4FfzcxuHDWIE9wsr9_zjWbGO_t9hHwUGDdUVoQVsyrMFUtCBml3KCAc4mwuYxZ_DZx-L88v2fAEaXK2Ul-uaV_JutdMZ72mvna9lfOZiro-sWj8bcAqqEvKOJprG-2R--CzcXGnUP_pE98sywo_jwllWBXZejZbQ0GYpr2ySMsEFXkynHWMUeL9QDmfanbCk2Px_1vq-WcH5Z2QNHr0Hy_zmBxu8lB67A95Qu6Z5ik58MqUN8_Ir4nrEIe4Ri_VIqFtQ4em0U4XgQ7MdLqkF2Je6-kNRfEPZejkOgk7WxtNz3DdiaEXvgXXLGFcrChyYTmFLUNXLR17jghABj2-EjUkqnAxp5lyK3DLjz0nP0Ynk8FpuJFtCFXOqlVoq0qVqSiEqMoiMUbGJpVJrpWE4tEIcHgba11JWcnE6iI1Nq-kxeXsMkXJ0OwF2W_axhwRGps-00ZBFZWrXJWa9U2SyaJMJYNMMNYBOdrYjTfgMch2WqQcKrgsDsinzpB87ok7YJgjFLiDAkcocA-FgHxGU28PRM5tt6NdXPGNsTjkmhnSrbHUqhyemvWRLdEq_JMntII7fuiAwsFHceJFNKZdLzkknUhbGOdZQF564Gxv1UEwIOUOpHaeZXcEkOR4wDfIefXPZ74nD8bDEf96dv7lNXmI38Mv1n9D9leLtXlL9pZ6_c451m8bSCld |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Targeting+Xcr1+on+Dendritic+Cells+Rapidly+Induce+Th1-Associated+Immune+Responses+That+Contribute+to+Protection+Against+Influenza+Infection&rft.jtitle=Frontiers+in+immunology&rft.au=Tesfaye%2C+Demo+Yemane&rft.au=Bobic%2C+Sonja&rft.au=Lys%C3%A9n%2C+Anna&rft.au=Huszthy%2C+Peter+Csaba&rft.date=2022-02-28&rft.eissn=1664-3224&rft.volume=13&rft.spage=752714&rft.epage=752714&rft_id=info:doi/10.3389%2Ffimmu.2022.752714&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-3224&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-3224&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-3224&client=summon |