Targeting Xcr1 on Dendritic Cells Rapidly Induce Th1-Associated Immune Responses That Contribute to Protection Against Influenza Infection

Targeting antigen to conventional dendritic cells (cDCs) can improve antigen-specific immune responses and additionally be used to influence the polarization of the immune responses. However, the mechanisms by which this is achieved are less clear. To improve our understanding, we here evaluate mole...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in immunology Vol. 13; p. 752714
Main Authors: Tesfaye, Demo Yemane, Bobic, Sonja, Lysén, Anna, Huszthy, Peter Csaba, Gudjonsson, Arnar, Braathen, Ranveig, Bogen, Bjarne, Fossum, Even
Format: Journal Article
Language:English
Published: Switzerland Frontiers Media S.A 28-02-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Targeting antigen to conventional dendritic cells (cDCs) can improve antigen-specific immune responses and additionally be used to influence the polarization of the immune responses. However, the mechanisms by which this is achieved are less clear. To improve our understanding, we here evaluate molecular and cellular requirements for CD4 T cell and antibody polarization after immunization with Xcl1-fusion vaccines that specifically target cDC1s. Xcl1-fusion vaccines induced an IgG2a/IgG2b-dominated antibody response and rapid polarization of Th1 cells both and . For comparison, we included fliC-fusion vaccines that almost exclusively induced IgG1, despite inducing a more mixed polarization of T cells. Th1 polarization and IgG2a induction with Xcl1-fusion vaccines required IL-12 secretion but were nevertheless maintained in BATF3 mice which lack IL-12-secreting migratory DCs. Interestingly, induction of IgG2a-dominated responses was highly dependent on the early kinetics of Th1 induction and was important for optimal protection in an influenza infection model. Early Th1 induction was dominant, since a combined Xcl1- and fliC-fusion vaccine induced IgG2a/IgG2b polarized antibody responses similar to Xcl1-fusion vaccines alone. In summary, our results demonstrate that targeting antigen to Xcr1 cDC1s is an efficient strategy for enhancing IgG2a antibody responses through rapid Th1 induction, which can be utilized for improved vaccine design.
AbstractList Targeting antigen to conventional dendritic cells (cDCs) can improve antigen-specific immune responses and additionally be used to influence the polarization of the immune responses. However, the mechanisms by which this is achieved are less clear. To improve our understanding, we here evaluate molecular and cellular requirements for CD4 + T cell and antibody polarization after immunization with Xcl1-fusion vaccines that specifically target cDC1s. Xcl1-fusion vaccines induced an IgG2a/IgG2b-dominated antibody response and rapid polarization of Th1 cells both in vitro and in vivo . For comparison, we included fliC-fusion vaccines that almost exclusively induced IgG1, despite inducing a more mixed polarization of T cells. Th1 polarization and IgG2a induction with Xcl1-fusion vaccines required IL-12 secretion but were nevertheless maintained in BATF3 -/- mice which lack IL-12-secreting migratory DCs. Interestingly, induction of IgG2a-dominated responses was highly dependent on the early kinetics of Th1 induction and was important for optimal protection in an influenza infection model. Early Th1 induction was dominant, since a combined Xcl1- and fliC-fusion vaccine induced IgG2a/IgG2b polarized antibody responses similar to Xcl1-fusion vaccines alone. In summary, our results demonstrate that targeting antigen to Xcr1 + cDC1s is an efficient strategy for enhancing IgG2a antibody responses through rapid Th1 induction, which can be utilized for improved vaccine design.
Targeting antigen to conventional dendritic cells (cDCs) can improve antigen-specific immune responses and additionally be used to influence the polarization of the immune responses. However, the mechanisms by which this is achieved are less clear. To improve our understanding, we here evaluate molecular and cellular requirements for CD4+ T cell and antibody polarization after immunization with Xcl1-fusion vaccines that specifically target cDC1s. Xcl1-fusion vaccines induced an IgG2a/IgG2b-dominated antibody response and rapid polarization of Th1 cells both in vitro and in vivo. For comparison, we included fliC-fusion vaccines that almost exclusively induced IgG1, despite inducing a more mixed polarization of T cells. Th1 polarization and IgG2a induction with Xcl1-fusion vaccines required IL-12 secretion but were nevertheless maintained in BATF3-/- mice which lack IL-12-secreting migratory DCs. Interestingly, induction of IgG2a-dominated responses was highly dependent on the early kinetics of Th1 induction and was important for optimal protection in an influenza infection model. Early Th1 induction was dominant, since a combined Xcl1- and fliC-fusion vaccine induced IgG2a/IgG2b polarized antibody responses similar to Xcl1-fusion vaccines alone. In summary, our results demonstrate that targeting antigen to Xcr1+ cDC1s is an efficient strategy for enhancing IgG2a antibody responses through rapid Th1 induction, which can be utilized for improved vaccine design.
Targeting antigen to conventional dendritic cells (cDCs) can improve antigen-specific immune responses and additionally be used to influence the polarization of the immune responses. However, the mechanisms by which this is achieved are less clear. To improve our understanding, we here evaluate molecular and cellular requirements for CD4 T cell and antibody polarization after immunization with Xcl1-fusion vaccines that specifically target cDC1s. Xcl1-fusion vaccines induced an IgG2a/IgG2b-dominated antibody response and rapid polarization of Th1 cells both and . For comparison, we included fliC-fusion vaccines that almost exclusively induced IgG1, despite inducing a more mixed polarization of T cells. Th1 polarization and IgG2a induction with Xcl1-fusion vaccines required IL-12 secretion but were nevertheless maintained in BATF3 mice which lack IL-12-secreting migratory DCs. Interestingly, induction of IgG2a-dominated responses was highly dependent on the early kinetics of Th1 induction and was important for optimal protection in an influenza infection model. Early Th1 induction was dominant, since a combined Xcl1- and fliC-fusion vaccine induced IgG2a/IgG2b polarized antibody responses similar to Xcl1-fusion vaccines alone. In summary, our results demonstrate that targeting antigen to Xcr1 cDC1s is an efficient strategy for enhancing IgG2a antibody responses through rapid Th1 induction, which can be utilized for improved vaccine design.
Author Tesfaye, Demo Yemane
Bogen, Bjarne
Braathen, Ranveig
Bobic, Sonja
Huszthy, Peter Csaba
Gudjonsson, Arnar
Fossum, Even
Lysén, Anna
AuthorAffiliation 2 Kristian Gerhard Jebsen Center for Research on Influenza Vaccines, University of Oslo and Oslo University Hospital , Oslo , Norway
1 Department of Immunology, Division of Laboratory Medicine, Oslo University Hospital , Oslo , Norway
3 Center for Immune Regulation, Institute of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet , Oslo , Norway
AuthorAffiliation_xml – name: 3 Center for Immune Regulation, Institute of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet , Oslo , Norway
– name: 2 Kristian Gerhard Jebsen Center for Research on Influenza Vaccines, University of Oslo and Oslo University Hospital , Oslo , Norway
– name: 1 Department of Immunology, Division of Laboratory Medicine, Oslo University Hospital , Oslo , Norway
Author_xml – sequence: 1
  givenname: Demo Yemane
  surname: Tesfaye
  fullname: Tesfaye, Demo Yemane
  organization: Kristian Gerhard Jebsen Center for Research on Influenza Vaccines, University of Oslo and Oslo University Hospital, Oslo, Norway
– sequence: 2
  givenname: Sonja
  surname: Bobic
  fullname: Bobic, Sonja
  organization: Kristian Gerhard Jebsen Center for Research on Influenza Vaccines, University of Oslo and Oslo University Hospital, Oslo, Norway
– sequence: 3
  givenname: Anna
  surname: Lysén
  fullname: Lysén, Anna
  organization: Kristian Gerhard Jebsen Center for Research on Influenza Vaccines, University of Oslo and Oslo University Hospital, Oslo, Norway
– sequence: 4
  givenname: Peter Csaba
  surname: Huszthy
  fullname: Huszthy, Peter Csaba
  organization: Center for Immune Regulation, Institute of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway
– sequence: 5
  givenname: Arnar
  surname: Gudjonsson
  fullname: Gudjonsson, Arnar
  organization: Kristian Gerhard Jebsen Center for Research on Influenza Vaccines, University of Oslo and Oslo University Hospital, Oslo, Norway
– sequence: 6
  givenname: Ranveig
  surname: Braathen
  fullname: Braathen, Ranveig
  organization: Kristian Gerhard Jebsen Center for Research on Influenza Vaccines, University of Oslo and Oslo University Hospital, Oslo, Norway
– sequence: 7
  givenname: Bjarne
  surname: Bogen
  fullname: Bogen, Bjarne
  organization: Center for Immune Regulation, Institute of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway
– sequence: 8
  givenname: Even
  surname: Fossum
  fullname: Fossum, Even
  organization: Kristian Gerhard Jebsen Center for Research on Influenza Vaccines, University of Oslo and Oslo University Hospital, Oslo, Norway
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35296089$$D View this record in MEDLINE/PubMed
BookMark eNpVks1qGzEQx5eS0qRpHqCXVsde7Oprd6VLwbhfhkBLcKE3oZVGjsJaciVtIH2EPHXkOAmJLho0M7-Z0fzfNkchBmia9wTPGRPys_Pb7TSnmNJ539Ke8FfNCek6PmOU8qNn9nFzlvMVrodLxlj7pjlmLZUdFvKkuV3rtIHiwwb9NYmgGNBXCDb54g1awjhmdKF33o43aBXsZACtL8lskXM0XhewaFW7CIAuIO9iyJCrXxe0jKEkP0wFUInod4oFTPEVvthoH3KpMDdOEP7rvXXwvWteOz1mOHu4T5s_37-tlz9n579-rJaL85nhQpaZk9L0VLday74lAAMGOhBuzcBxD7pjwmFr5TDIgTjbUnBcDk5Q0Q31s7Bgp83qwLVRX6ld8ludblTUXt0_xLRROtXxR1AtbxmhBAvqDK8k0THOe2cIlVhbgyvry4G1m4YtWAN1bD2-gL70BH-pNvFaCUkE7_eAjweAST7XNagQk1a1YkuV7Dq2j_j0UCLFfxPkorY-m7oZHSBOWdGOY0YF5qyGkkdYzDmBe2qEYLUXjboXjdqLRh1EU3M-PJ_gKeNRIuwOD6vBLA
CitedBy_id crossref_primary_10_1016_j_smim_2023_101762
crossref_primary_10_1016_j_heliyon_2024_e31712
crossref_primary_10_3389_fimmu_2023_1221008
crossref_primary_10_1016_j_celrep_2023_113294
crossref_primary_10_14336_AD_2022_1102
Cites_doi 10.1016/j.it.2011.10.007
10.4049/jimmunol.1500564
10.1016/j.ymthe.2005.10.019
10.4049/jimmunol.160.8.3958
10.1016/j.dci.2016.06.015
10.4049/immunohorizons.1700038
10.1182/blood-2013-04-495424
10.1002/eji.201445127
10.1002/eji.200323797
10.1172/JCI84428
10.1084/jem.20070176
10.1073/pnas.092141999
10.1016/S0092-8674(00)00078-7
10.4049/jimmunol.1101717
10.1038/35074106
10.4049/jimmunol.1901119
10.1155/2016/3605643
10.3389/fimmu.2019.01529
10.1038/nri3712
10.1002/eji.201545564
10.1016/j.immuni.2016.08.015
10.3389/fimmu.2012.00214
10.1084/jem.189.3.587
10.1084/jem.20032220
10.1182/blood-2006-06-032938
10.3389/fimmu.2018.02990
10.4049/jimmunol.172.11.6922
10.1002/eji.201041089
10.1016/j.immuni.2009.08.027
10.1002/eji.201445080
10.1002/eji.201444651
10.1002/eji.200425403
10.1371/journal.pone.0000863
10.4049/jimmunol.1302448
10.1038/s41598-017-07372-9
10.1038/ni.1724
10.1038/nri3727
10.1038/s41598-018-38080-7
10.1073/pnas.96.3.1036
10.1038/s41590-020-0786-2
10.4049/jimmunol.166.9.5327
10.1016/j.immuni.2019.07.001
10.3389/fimmu.2014.00326
10.4049/jimmunol.133.4.2067
10.4049/jimmunol.2000228
10.1038/srep24199
10.4049/jimmunol.1401903
10.4049/jimmunol.1601881
10.1084/jem.20100223
10.1093/intimm/dxs068
ContentType Journal Article
Copyright Copyright © 2022 Tesfaye, Bobic, Lysén, Huszthy, Gudjonsson, Braathen, Bogen and Fossum.
info:eu-repo/semantics/openAccess
Copyright © 2022 Tesfaye, Bobic, Lysén, Huszthy, Gudjonsson, Braathen, Bogen and Fossum 2022 Tesfaye, Bobic, Lysén, Huszthy, Gudjonsson, Braathen, Bogen and Fossum
Copyright_xml – notice: Copyright © 2022 Tesfaye, Bobic, Lysén, Huszthy, Gudjonsson, Braathen, Bogen and Fossum.
– notice: info:eu-repo/semantics/openAccess
– notice: Copyright © 2022 Tesfaye, Bobic, Lysén, Huszthy, Gudjonsson, Braathen, Bogen and Fossum 2022 Tesfaye, Bobic, Lysén, Huszthy, Gudjonsson, Braathen, Bogen and Fossum
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
3HK
5PM
DOA
DOI 10.3389/fimmu.2022.752714
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
NORA - Norwegian Open Research Archives
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList


CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-3224
EndPage 752714
ExternalDocumentID oai_doaj_org_article_5453121082fc42ef863447fc1290adc0
10852_96630
10_3389_fimmu_2022_752714
35296089
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CGR
CUY
CVF
DIK
EBS
ECM
EIF
EMOBN
GROUPED_DOAJ
GX1
HYE
IAO
IEA
IHR
IHW
IPNFZ
KQ8
M48
M~E
NPM
OK1
PGMZT
RIG
RNS
RPM
AAYXX
CITATION
7X8
3HK
ABPTK
ITC
5PM
ID FETCH-LOGICAL-c489t-f99c72a5aa9751eeb0e2b14dcb407ea638f0dd9bb9b1fd52ef49bf8286b202083
IEDL.DBID RPM
ISSN 1664-3224
IngestDate Tue Oct 22 15:16:12 EDT 2024
Tue Sep 17 21:27:22 EDT 2024
Sat Apr 29 05:42:54 EDT 2023
Sat Oct 26 00:23:12 EDT 2024
Thu Sep 26 17:39:29 EDT 2024
Sat Sep 28 08:19:54 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords targeting
XCR1
dendritic cells
IgG2a
Th1
Language English
License Copyright © 2022 Tesfaye, Bobic, Lysén, Huszthy, Gudjonsson, Braathen, Bogen and Fossum.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c489t-f99c72a5aa9751eeb0e2b14dcb407ea638f0dd9bb9b1fd52ef49bf8286b202083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
NFR/250884
This article was submitted to Antigen Presenting Cell Biology, a section of the journal Frontiers in Immunology
Edited by: Maud Plantinga, University Medical Center Utrecht, Netherlands
These authors have contributed equally to this work
Reviewed by: Tsuneyasu Kaisho, Wakayama Medical University, Japan; Kohtaro Fujihashi, The University of Tokyo, Japan
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8918470/
PMID 35296089
PQID 2640328043
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_5453121082fc42ef863447fc1290adc0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8918470
cristin_nora_10852_96630
proquest_miscellaneous_2640328043
crossref_primary_10_3389_fimmu_2022_752714
pubmed_primary_35296089
PublicationCentury 2000
PublicationDate 2022-02-28
PublicationDateYYYYMMDD 2022-02-28
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-28
  day: 28
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in immunology
PublicationTitleAlternate Front Immunol
PublicationYear 2022
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Qiu (B41) 2020; 205
Fredriksen (B32) 2007; 110
Dutertre (B42) 2014; 192
Gudjonsson (B29) 2017; 198
Roco (B38) 2019; 51
Hayashi (B27) 2001; 410
Fossum (B13) 2015; 45
Hartung (B18) 2015; 194
Becker (B7) 2014; 5
Sittig (B45) 2016; 2016
Crozat (B44) 2010; 207
Fredriksen (B28) 2006; 13
Wylie (B24) 2018; 9
Bonifaz (B15) 2004; 199
Muramatsu (B37) 2000; 102
Didierlaurent (B21) 2004; 172
Deloizy (B16) 2017; 7
Bedoui (B4) 2009; 10
Braathen R (B22) 2018; 2
Lin (B26) 2016; 6
DiLillo (B50) 2016; 126
Terhorst (B14) 2015; 194
Lysen (B31) 2019; 9
Crozat (B6) 2011; 187
Ataide (B40) 2020; 21
Guilliams (B8) 2016; 45
Schijns (B39) 1998; 160
Tesfaye (B1) 2019; 10
Shimonkevitz (B33) 1984; 133
Soares (B34) 2007; 204
Nizzoli (B46) 2013; 122
Shibata (B23) 2012; 24
Fossum (B19) 2020; 205
Dorner (B5) 2009; 31
Deloizy (B43) 2016; 65
Pulendran (B10) 1999; 96
Caminschi (B12) 2012; 33
Bachem (B35) 2012; 3
Dorner (B20) 2002; 99
Flores-Langarica (B36) 2015; 45
Cunningham (B47) 2004; 34
Guilliams (B2) 2014; 14
Maldonado-Lopez (B9) 1999; 189
Martinez-Lopez (B30) 2015; 45
Gururajan (B49) 2007; 2
Bobat (B48) 2011; 41
Kastenmuller (B11) 2014; 14
Li (B17) 2015; 45
Pooley (B3) 2001; 166
Edwards (B25) 2003; 33
References_xml – volume: 33
  year: 2012
  ident: B12
  article-title: Boosting Antibody Responses by Targeting Antigens to Dendritic Cells
  publication-title: Trends Immunol
  doi: 10.1016/j.it.2011.10.007
  contributor:
    fullname: Caminschi
– volume: 194
  year: 2015
  ident: B14
  article-title: Laser-Assisted Intradermal Delivery of Adjuvant-Free Vaccines Targeting XCR1+ Dendritic Cells Induces Potent Antitumoral Responses
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1500564
  contributor:
    fullname: Terhorst
– volume: 13
  year: 2006
  ident: B28
  article-title: DNA Vaccines Increase Immunogenicity of Idiotypic Tumor Antigen by Targeting Novel Fusion Proteins to Antigen-Presenting Cells
  publication-title: Mol Ther
  doi: 10.1016/j.ymthe.2005.10.019
  contributor:
    fullname: Fredriksen
– volume: 160
  year: 1998
  ident: B39
  article-title: Mice Lacking IL-12 Develop Polarized Th1 Cells During Viral Infection
  publication-title: J Immunol
  doi: 10.4049/jimmunol.160.8.3958
  contributor:
    fullname: Schijns
– volume: 65
  start-page: 31
  year: 2016
  ident: B43
  article-title: Expanding the Tools for Identifying Mononuclear Phagocyte Subsets in Swine: Reagents to Porcine CD11c and XCR1
  publication-title: Dev Comp Immunol
  doi: 10.1016/j.dci.2016.06.015
  contributor:
    fullname: Deloizy
– volume: 2
  start-page: 38
  year: 2018
  ident: B22
  article-title: The Magnitude and IgG Subclass of Antibodies Elicited by Targeted DNA Vaccines Are Influenced by Specificity for APC Surface Molecules
  publication-title: ImmunoHorizons
  doi: 10.4049/immunohorizons.1700038
  contributor:
    fullname: Braathen R
– volume: 122
  year: 2013
  ident: B46
  article-title: Human CD1c+ Dendritic Cells Secrete High Levels of IL-12 and Potently Prime Cytotoxic T-Cell Responses
  publication-title: Blood
  doi: 10.1182/blood-2013-04-495424
  contributor:
    fullname: Nizzoli
– volume: 45
  year: 2015
  ident: B17
  article-title: Antibodies Targeting Clec9A Promote Strong Humoral Immunity Without Adjuvant in Mice and Non-Human Primates
  publication-title: Eur J Immunol
  doi: 10.1002/eji.201445127
  contributor:
    fullname: Li
– volume: 33
  year: 2003
  ident: B25
  article-title: Toll-Like Receptor Expression in Murine DC Subsets: Lack of TLR7 Expression by CD8 Alpha+ DC Correlates With Unresponsiveness to Imidazoquinolines
  publication-title: Eur J Immunol
  doi: 10.1002/eji.200323797
  contributor:
    fullname: Edwards
– volume: 126
  year: 2016
  ident: B50
  article-title: Broadly Neutralizing Anti-Influenza Antibodies Require Fc Receptor Engagement for In Vivo Protection
  publication-title: J Clin Invest
  doi: 10.1172/JCI84428
  contributor:
    fullname: DiLillo
– volume: 204
  year: 2007
  ident: B34
  article-title: A Subset of Dendritic Cells Induces CD4+ T Cells to Produce IFN-Gamma by an IL-12-Independent But CD70-Dependent Mechanism In Vivo
  publication-title: J Exp Med
  doi: 10.1084/jem.20070176
  contributor:
    fullname: Soares
– volume: 99
  year: 2002
  ident: B20
  article-title: MIP-1alpha, MIP-1beta, RANTES, and ATAC/lymphotactin Function Together With IFN-Gamma as Type 1 Cytokines
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.092141999
  contributor:
    fullname: Dorner
– volume: 102
  year: 2000
  ident: B37
  article-title: Class Switch Recombination and Hypermutation Require Activation-Induced Cytidine Deaminase (AID), a Potential RNA Editing Enzyme
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)00078-7
  contributor:
    fullname: Muramatsu
– volume: 187
  year: 2011
  ident: B6
  article-title: Cutting Edge: Expression of XCR1 Defines Mouse Lymphoid-Tissue Resident and Migratory Dendritic Cells of the CD8{alpha}+ Type
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1101717
  contributor:
    fullname: Crozat
– volume: 410
  year: 2001
  ident: B27
  article-title: The Innate Immune Response to Bacterial Flagellin Is Mediated by Toll-Like Receptor 5
  publication-title: Nature
  doi: 10.1038/35074106
  contributor:
    fullname: Hayashi
– volume: 205
  year: 2020
  ident: B19
  article-title: Targeting Antigens to Different Receptors on Conventional Type 1 Dendritic Cells Impacts the Immune Response
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1901119
  contributor:
    fullname: Fossum
– volume: 2016
  start-page: 3605643
  year: 2016
  ident: B45
  article-title: A Comparative Study of the T Cell Stimulatory and Polarizing Capacity of Human Primary Blood Dendritic Cell Subsets
  publication-title: Mediators Inflamm
  doi: 10.1155/2016/3605643
  contributor:
    fullname: Sittig
– volume: 10
  year: 2019
  ident: B1
  article-title: Targeting Conventional Dendritic Cells to Fine-Tune Antibody Responses
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2019.01529
  contributor:
    fullname: Tesfaye
– volume: 14
  year: 2014
  ident: B2
  article-title: Dendritic Cells, Monocytes and Macrophages: A Unified Nomenclature Based on Ontogeny
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri3712
  contributor:
    fullname: Guilliams
– volume: 45
  year: 2015
  ident: B36
  article-title: Soluble Flagellin Coimmunization Attenuates Th1 Priming to Salmonella and Clearance by Modulating Dendritic Cell Activation and Cytokine Production
  publication-title: Eur J Immunol
  doi: 10.1002/eji.201545564
  contributor:
    fullname: Flores-Langarica
– volume: 45
  year: 2016
  ident: B8
  article-title: Unsupervised High-Dimensional Analysis Aligns Dendritic Cells Across Tissues and Species
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.08.015
  contributor:
    fullname: Guilliams
– volume: 3
  year: 2012
  ident: B35
  article-title: Expression of XCR1 Characterizes the Batf3-Dependent Lineage of Dendritic Cells Capable of Antigen Cross-Presentation
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2012.00214
  contributor:
    fullname: Bachem
– volume: 189
  year: 1999
  ident: B9
  article-title: CD8alpha+ and CD8alpha- Subclasses of Dendritic Cells Direct the Development of Distinct T Helper Cells In Vivo
  publication-title: J Exp Med
  doi: 10.1084/jem.189.3.587
  contributor:
    fullname: Maldonado-Lopez
– volume: 199
  year: 2004
  ident: B15
  article-title: In Vivo Targeting of Antigens to Maturing Dendritic Cells via the DEC-205 Receptor Improves T Cell Vaccination
  publication-title: J Exp Med
  doi: 10.1084/jem.20032220
  contributor:
    fullname: Bonifaz
– volume: 110
  year: 2007
  ident: B32
  article-title: Chemokine-Idiotype Fusion DNA Vaccines Are Potentiated by Bivalency and Xenogeneic Sequences
  publication-title: Blood
  doi: 10.1182/blood-2006-06-032938
  contributor:
    fullname: Fredriksen
– volume: 9
  year: 2018
  ident: B24
  article-title: CD8(+)XCR1(neg) Dendritic Cells Express High Levels of Toll-Like Receptor 5 and a Unique Complement of Endocytic Receptors
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2018.02990
  contributor:
    fullname: Wylie
– volume: 172
  year: 2004
  ident: B21
  article-title: Flagellin Promotes Myeloid Differentiation Factor 88-Dependent Development of Th2-Type Response
  publication-title: J Immunol
  doi: 10.4049/jimmunol.172.11.6922
  contributor:
    fullname: Didierlaurent
– volume: 41
  year: 2011
  ident: B48
  article-title: Soluble Flagellin, FliC, Induces an Ag-Specific Th2 Response, Yet Promotes T-Bet-Regulated Th1 Clearance of Salmonella Typhimurium Infection
  publication-title: Eur J Immunol
  doi: 10.1002/eji.201041089
  contributor:
    fullname: Bobat
– volume: 31
  year: 2009
  ident: B5
  article-title: Selective Expression of the Chemokine Receptor XCR1 on Cross-Presenting Dendritic Cells Determines Cooperation With CD8+ T Cells
  publication-title: Immunity
  doi: 10.1016/j.immuni.2009.08.027
  contributor:
    fullname: Dorner
– volume: 45
  year: 2015
  ident: B13
  article-title: Vaccine Molecules Targeting Xcr1 on Cross-Presenting DCs Induce Protective CD8+ T-Cell Responses Against Influenza Virus
  publication-title: Eur J Immunol
  doi: 10.1002/eji.201445080
  contributor:
    fullname: Fossum
– volume: 45
  year: 2015
  ident: B30
  article-title: Batf3-Dependent CD103+ Dendritic Cells are Major Producers of IL-12 That Drive Local Th1 Immunity Against Leishmania Major Infection in Mice
  publication-title: Eur J Immunol
  doi: 10.1002/eji.201444651
  contributor:
    fullname: Martinez-Lopez
– volume: 34
  year: 2004
  ident: B47
  article-title: Responses to the Soluble Flagellar Protein FliC Are Th2, While Those to FliC on Salmonella are Th1
  publication-title: Eur J Immunol
  doi: 10.1002/eji.200425403
  contributor:
    fullname: Cunningham
– volume: 2
  year: 2007
  ident: B49
  article-title: Toll-Like Receptor Expression and Responsiveness of Distinct Murine Splenic and Mucosal B-Cell Subsets
  publication-title: PloS One
  doi: 10.1371/journal.pone.0000863
  contributor:
    fullname: Gururajan
– volume: 192
  year: 2014
  ident: B42
  article-title: TLR3-Responsive, XCR1+, CD141(BDCA-3)+/CD8alpha+-Equivalent Dendritic Cells Uncovered in Healthy and Simian Immunodeficiency Virus-Infected Rhesus Macaques
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1302448
  contributor:
    fullname: Dutertre
– volume: 7
  start-page: 7639
  year: 2017
  ident: B16
  article-title: The Anti-Influenza M2e Antibody Response is Promoted by XCR1 Targeting in Pig Skin
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-07372-9
  contributor:
    fullname: Deloizy
– volume: 10
  year: 2009
  ident: B4
  article-title: Cross-Presentation of Viral and Self Antigens by Skin-Derived CD103+ Dendritic Cells
  publication-title: Nat Immunol
  doi: 10.1038/ni.1724
  contributor:
    fullname: Bedoui
– volume: 14
  year: 2014
  ident: B11
  article-title: Dendritic Cell-Targeted Vaccines–Hope or Hype
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri3727
  contributor:
    fullname: Kastenmuller
– volume: 9
  start-page: 1820
  year: 2019
  ident: B31
  article-title: Dendritic Cell Targeted Ccl3- and Xcl1-Fusion DNA Vaccines Differ in Induced Immune Responses and Optimal Delivery Site
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-38080-7
  contributor:
    fullname: Lysen
– volume: 96
  year: 1999
  ident: B10
  article-title: Distinct Dendritic Cell Subsets Differentially Regulate the Class of Immune Response In Vivo
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.96.3.1036
  contributor:
    fullname: Pulendran
– volume: 21
  year: 2020
  ident: B40
  article-title: BATF3 Programs CD8(+) T Cell Memory
  publication-title: Nat Immunol
  doi: 10.1038/s41590-020-0786-2
  contributor:
    fullname: Ataide
– volume: 166
  year: 2001
  ident: B3
  article-title: Cutting Edge: Intravenous Soluble Antigen is Presented to CD4 T Cells by CD8- Dendritic Cells, But Cross-Presented to CD8 T Cells by CD8+ Dendritic Cells
  publication-title: J Immunol
  doi: 10.4049/jimmunol.166.9.5327
  contributor:
    fullname: Pooley
– volume: 51
  start-page: 337
  year: 2019
  ident: B38
  article-title: Class-Switch Recombination Occurs Infrequently in Germinal Centers
  publication-title: Immunity
  doi: 10.1016/j.immuni.2019.07.001
  contributor:
    fullname: Roco
– volume: 5
  year: 2014
  ident: B7
  article-title: Ontogenic, Phenotypic, and Functional Characterization of XCR1(+) Dendritic Cells Leads to a Consistent Classification of Intestinal Dendritic Cells Based on the Expression of XCR1 and SIRPalpha
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2014.00326
  contributor:
    fullname: Becker
– volume: 133
  year: 1984
  ident: B33
  article-title: Antigen Recognition by H-2-Restricted T Cells. II. A Tryptic Ovalbumin Peptide That Substitutes for Processed Antigen
  publication-title: J Immunol
  doi: 10.4049/jimmunol.133.4.2067
  contributor:
    fullname: Shimonkevitz
– volume: 205
  year: 2020
  ident: B41
  article-title: Cutting Edge: Batf3 Expression by CD8 T Cells Critically Regulates the Development of Memory Populations
  publication-title: J Immunol
  doi: 10.4049/jimmunol.2000228
  contributor:
    fullname: Qiu
– volume: 6
  start-page: 24199
  year: 2016
  ident: B26
  article-title: Carboxyl-Terminal Fusion of E7 Into Flagellin Shifts TLR5 Activation to NLRC4/NAIP5 Activation and Induces TLR5-Independent Anti-Tumor Immunity
  publication-title: Sci Rep
  doi: 10.1038/srep24199
  contributor:
    fullname: Lin
– volume: 194
  year: 2015
  ident: B18
  article-title: Induction of Potent CD8 T Cell Cytotoxicity by Specific Targeting of Antigen to Cross-Presenting Dendritic Cells In Vivo via Murine or Human XCR1
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1401903
  contributor:
    fullname: Hartung
– volume: 198
  year: 2017
  ident: B29
  article-title: Targeting Influenza Virus Hemagglutinin to Xcr1+ Dendritic Cells in the Absence of Receptor-Mediated Endocytosis Enhances Protective Antibody Responses
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1601881
  contributor:
    fullname: Gudjonsson
– volume: 207
  year: 2010
  ident: B44
  article-title: The XC Chemokine Receptor 1 is a Conserved Selective Marker of Mammalian Cells Homologous to Mouse CD8alpha+ Dendritic Cells
  publication-title: J Exp Med
  doi: 10.1084/jem.20100223
  contributor:
    fullname: Crozat
– volume: 24
  year: 2012
  ident: B23
  article-title: PRAT4A-Dependent Expression of Cell Surface TLR5 on Neutrophils, Classical Monocytes and Dendritic Cells
  publication-title: Int Immunol
  doi: 10.1093/intimm/dxs068
  contributor:
    fullname: Shibata
SSID ssj0000493335
Score 2.3784242
Snippet Targeting antigen to conventional dendritic cells (cDCs) can improve antigen-specific immune responses and additionally be used to influence the polarization...
SourceID doaj
pubmedcentral
cristin
proquest
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 752714
SubjectTerms Animals
Antibody Formation
Antigens
Dendritic Cells
Humans
IgG2a
Immunoglobulin G
Immunology
Influenza Vaccines
Influenza, Human
Interleukin-12
Mice
targeting
Th1
XCR1
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagEhIXxLuhgIzECSk0sZONfSx9qFwQKovUm-XHmC7aeqvu7qH8hP5qZuzdVRchceEWxVFi-ZvRzGRmvmHsvSW74WVfaxV93XnV1grd7tqiOaRsrlKRfg2cfhu-nKujY6LJ2Yz6opqwQg9cDm4fLbwkkislou8ERDUijrro6f-JDb5E6426E0z9LH6vlLIvaUyMwvR-nFxeLjEeFOLj0IvSteOzHqUtk5SZ-__mbv5ZNXnHDJ08Zo9W_iM_KPt-wu5BesoelImSN8_Y7ThXdqM94uf-uuWzxI8ghTzPgB_CdDrnZ_ZqEqY3nIZ2eODji7ZeYwSBf6Z-EeBnpXQW5rhuF5w4rPJkLOCLGf9auB0QUX7ww07QwcSX5VknvyxdlbXn7PvJ8fjwtF6NW6h9p_Sijlr7QdjeWj30LYBrQLi2C95h0AcWFTU2IWjntGtj6BGLTrtIbehO0KhP-YLtpFmCXcYbGKkAHqOfznd-CGoErXT9IJxCD64JFdtdnb1JKOnEUtoLg5GXbCr2YQ2GuSqEG7hsCEOTMTSEoSkYVuwTwbV5kLiy8w2UILOSIPMvCarYuzXYBnWLEiY2wWw5N-gsEt1g08mKvSzgbz4lKWHdKF2xYUsstvayvZImF5m_W2kMq4fm1f_Y_B57SOdRmuxfs53F9RLesPvzsHybNeI34YYPnw
  priority: 102
  providerName: Directory of Open Access Journals
Title Targeting Xcr1 on Dendritic Cells Rapidly Induce Th1-Associated Immune Responses That Contribute to Protection Against Influenza Infection
URI https://www.ncbi.nlm.nih.gov/pubmed/35296089
https://search.proquest.com/docview/2640328043
http://hdl.handle.net/10852/96630
https://pubmed.ncbi.nlm.nih.gov/PMC8918470
https://doaj.org/article/5453121082fc42ef863447fc1290adc0
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbdQKCX0nfcR1Chp4J3bcleS8d0k5AeWkK6hdyEXk5cdu1lH4f0J_RXd0ayQ7b01Jux_BD6Rsw30ugbQj5q9BuWl6kUtU0LK_JUAO1ONbhD3M0VosalgYvv1bdrcXqGMjnlcBYmJO1b04zbxXLcNrcht3K1tJMhT2xy-XUmJMQlVTYZkRFwwwch-s9IeTnnZdzBhABMTupmudxBKMjYuCpZlWMtHo77jRkWdz-0YTa1e44p6Pf_i3T-nTv5wBmdPyVPehZJT2Jvn5FHvn1ODmNdybsX5Pc85HeDV6LXdp3TrqWnvnWhqgGd-cViQ6_0qnGLO4qlO6yn89s8HZDyjn7BUyOeXsUEWr-Bdr2lqGQV6mN5uu3oZVR4AFzpyY1ugGbCx0LFk18ar2LbS_Lj_Gw-u0j7ogupLYTcprWUtmK61FpWZe69yTwzeeGsgdDPa5iudeacNEaavHYl83UhTY2H0Q3Dgp_8FTlou9YfEZr5qXDeQgxU2MJWTkx9zk1ZMSOAx2UuIUf92KsW7B21SkumIP7iWUI-DWCoVZTdgGaFcKoAp0I4VYQzIZ8RrvsHUTE73OjWN6q3GwVMkaNYmmC1LaDXYopah7XFdTjtLPzxwwC2ghmG2ya69d1uo4AyouhgVvCEvI7g3_9qMKOEVHtmsdeX_RYw6qDi3Rvxm_9-8y15jIMQz9e_Iwfb9c6_J6ON2x2HlYXjMC_-AFm0EkI
link.rule.ids 230,315,729,782,786,866,887,2108,27935,27936,53803,53805
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF4VKtRe6Lukz63UUyUn9q4dr480gIIKCNFU4rbal8FVYkd5HOAn9Fd3ZtdGpOqJW5Rx4sd8o5nxzn4fIV8V5g3Ds6gQpYlSI5JIQNkdKUiHuJorRImvBsY_87NLcXCINDlZtxfGD-0bXfXr6axfV9d-tnI-M4NuTmxwfjoSBfQleTzYIo8hXmN-r0n_HYpeznkW1jChBSsGZTWbraEZZKyfZyxPUI2H44pjjPLuO8bHU72RmjyD___Kzn-nJ--lo6NnD7yR52S3rT_pfjC_II9c_ZLsBEXKm1fkz8RPhkM-o5dmkdCmpgeutl4PgY7cdLqkF2pe2ekNRdEP4-jkOok6HztLj3G_iaMXYfTWLcGuVhQ5sLyylqOrhp4HbghABN2_UhUUqPBnXivlVuGnYHtNfh0dTkbjqJVriEwqilVUFoXJmcqUKvIscU7HjukktUZD0-gUBHoZW1toXeiktBlzZVroErexa4ZSofwN2a6b2u0RGruhsM5A95Sa1ORWDF3CdZYzLaACjG2P7LU-kzVECrKcZkxC58bjHvnWOVHOA2EHmCXCQHoYSISBDDDoke_o5rsDkWvbf9EsrmTrKAk1JkeaNcFKk8JViyGyJJYG3-Apa-CMXzqQSIhNXHBRtWvWSwnFJtIVxinvkbcBNHen6uDXI_kGnDauZdMCKPL83y1q3j34l5_Jk_Hk9ESeHJ_9eE-e4gMJu_Q_kO3VYu0-kq2lXX_yUfUX6WYm3Q
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF7RoiIu5U3Nc5E4ITl-x-tjSRq1AqqoBKm31T5bo8SO8ji0P4FfzcxuHDWIE9wsr9_zjWbGO_t9hHwUGDdUVoQVsyrMFUtCBml3KCAc4mwuYxZ_DZx-L88v2fAEaXK2Ul-uaV_JutdMZ72mvna9lfOZiro-sWj8bcAqqEvKOJprG-2R--CzcXGnUP_pE98sywo_jwllWBXZejZbQ0GYpr2ySMsEFXkynHWMUeL9QDmfanbCk2Px_1vq-WcH5Z2QNHr0Hy_zmBxu8lB67A95Qu6Z5ik58MqUN8_Ir4nrEIe4Ri_VIqFtQ4em0U4XgQ7MdLqkF2Je6-kNRfEPZejkOgk7WxtNz3DdiaEXvgXXLGFcrChyYTmFLUNXLR17jghABj2-EjUkqnAxp5lyK3DLjz0nP0Ynk8FpuJFtCFXOqlVoq0qVqSiEqMoiMUbGJpVJrpWE4tEIcHgba11JWcnE6iI1Nq-kxeXsMkXJ0OwF2W_axhwRGps-00ZBFZWrXJWa9U2SyaJMJYNMMNYBOdrYjTfgMch2WqQcKrgsDsinzpB87ok7YJgjFLiDAkcocA-FgHxGU28PRM5tt6NdXPGNsTjkmhnSrbHUqhyemvWRLdEq_JMntII7fuiAwsFHceJFNKZdLzkknUhbGOdZQF564Gxv1UEwIOUOpHaeZXcEkOR4wDfIefXPZ74nD8bDEf96dv7lNXmI38Mv1n9D9leLtXlL9pZ6_c451m8bSCld
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Targeting+Xcr1+on+Dendritic+Cells+Rapidly+Induce+Th1-Associated+Immune+Responses+That+Contribute+to+Protection+Against+Influenza+Infection&rft.jtitle=Frontiers+in+immunology&rft.au=Tesfaye%2C+Demo+Yemane&rft.au=Bobic%2C+Sonja&rft.au=Lys%C3%A9n%2C+Anna&rft.au=Huszthy%2C+Peter+Csaba&rft.date=2022-02-28&rft.eissn=1664-3224&rft.volume=13&rft.spage=752714&rft.epage=752714&rft_id=info:doi/10.3389%2Ffimmu.2022.752714&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-3224&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-3224&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-3224&client=summon