Understanding and Eliminating Hysteresis for Highly Efficient Planar Perovskite Solar Cells
Through detailed device characterization using cross‐sectional Kelvin probe force microscopy (KPFM) and trap density of states measurements, we identify that the J–V hysteresis seen in planar organic–inorganic hybrid perovskite solar cells (PVSCs) using SnO2 electron selective layers (ESLs) synthesi...
Saved in:
Published in: | Advanced energy materials Vol. 7; no. 17 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Weinheim
Wiley Subscription Services, Inc
06-09-2017
Wiley |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Through detailed device characterization using cross‐sectional Kelvin probe force microscopy (KPFM) and trap density of states measurements, we identify that the J–V hysteresis seen in planar organic–inorganic hybrid perovskite solar cells (PVSCs) using SnO2 electron selective layers (ESLs) synthesized by low‐temperature plasma‐enhanced atomic‐layer deposition (PEALD) method is mainly caused by the imbalanced charge transportation between the ESL/perovskite and the hole selective layer/perovskite interfaces. We find that this charge transportation imbalance is originated from the poor electrical conductivity of the low‐temperature PEALD SnO2 ESL. We further discover that a facile low‐temperature thermal annealing of SnO2 ESLs can effectively improve the electrical mobility of low‐temperature PEALD SnO2 ESLs and consequently significantly reduce or even eliminate the J–V hysteresis. With the reduction of J–V hysteresis and optimization of deposition process, planar PVSCs with stabilized output powers up to 20.3% are achieved. The results of this study provide insights for further enhancing the efficiency of planar PVSCs.
Through detailed characterizations, it is identified that the current density‐voltage hysteresis of planar perovskite solar cells using low‐temperature atomic‐layer deposited SnO2 electron selective layers originates from the poor‐electrical conductivity of the SnO2 layers. A facile low‐temperature thermal annealing in ambient air can effectively reduce the degrees of the hysteresis and improve the power conversion efficiency of planar perovskite solar cells. |
---|---|
AbstractList | Through detailed device characterization using cross-sectional Kelvin probe force microscopy (KPFM) and trap density of states measurements, we identify that the J-V hysteresis seen in planar organic-inorganic hybrid perovskite solar cells (PVSCs) using SnO2 electron selective layers (ESLs) synthesized by low-temperature plasma-enhanced atomic-layer deposition (PEALD) method is mainly caused by the imbalanced charge transportation between the ESL/perovskite and the hole selective layer/perovskite interfaces. We find that this charge transportation imbalance is originated from the poor electrical conductivity of the low-temperature PEALD SnO2 ESL. We further discover that a facile low-temperature thermal annealing of SnO2 ESLs can effectively improve the electrical mobility of low-temperature PEALD SnO2 ESLs and consequently significantly reduce or even eliminate the J-V hysteresis. With the reduction of J-V hysteresis and optimization of deposition process, planar PVSCs with stabilized output powers up to 20.3% are achieved. Here, the results of this study provide insights for further enhancing the efficiency of planar PVSCs. Through detailed device characterization using cross‐sectional Kelvin probe force microscopy (KPFM) and trap density of states measurements, we identify that the J–V hysteresis seen in planar organic–inorganic hybrid perovskite solar cells (PVSCs) using SnO2 electron selective layers (ESLs) synthesized by low‐temperature plasma‐enhanced atomic‐layer deposition (PEALD) method is mainly caused by the imbalanced charge transportation between the ESL/perovskite and the hole selective layer/perovskite interfaces. We find that this charge transportation imbalance is originated from the poor electrical conductivity of the low‐temperature PEALD SnO2 ESL. We further discover that a facile low‐temperature thermal annealing of SnO2 ESLs can effectively improve the electrical mobility of low‐temperature PEALD SnO2 ESLs and consequently significantly reduce or even eliminate the J–V hysteresis. With the reduction of J–V hysteresis and optimization of deposition process, planar PVSCs with stabilized output powers up to 20.3% are achieved. The results of this study provide insights for further enhancing the efficiency of planar PVSCs. Through detailed device characterization using cross‐sectional Kelvin probe force microscopy (KPFM) and trap density of states measurements, we identify that the J – V hysteresis seen in planar organic–inorganic hybrid perovskite solar cells (PVSCs) using SnO 2 electron selective layers (ESLs) synthesized by low‐temperature plasma‐enhanced atomic‐layer deposition (PEALD) method is mainly caused by the imbalanced charge transportation between the ESL/perovskite and the hole selective layer/perovskite interfaces. We find that this charge transportation imbalance is originated from the poor electrical conductivity of the low‐temperature PEALD SnO 2 ESL. We further discover that a facile low‐temperature thermal annealing of SnO 2 ESLs can effectively improve the electrical mobility of low‐temperature PEALD SnO 2 ESLs and consequently significantly reduce or even eliminate the J – V hysteresis. With the reduction of J – V hysteresis and optimization of deposition process, planar PVSCs with stabilized output powers up to 20.3% are achieved. The results of this study provide insights for further enhancing the efficiency of planar PVSCs. Through detailed device characterization using cross‐sectional Kelvin probe force microscopy (KPFM) and trap density of states measurements, we identify that the J–V hysteresis seen in planar organic–inorganic hybrid perovskite solar cells (PVSCs) using SnO2 electron selective layers (ESLs) synthesized by low‐temperature plasma‐enhanced atomic‐layer deposition (PEALD) method is mainly caused by the imbalanced charge transportation between the ESL/perovskite and the hole selective layer/perovskite interfaces. We find that this charge transportation imbalance is originated from the poor electrical conductivity of the low‐temperature PEALD SnO2 ESL. We further discover that a facile low‐temperature thermal annealing of SnO2 ESLs can effectively improve the electrical mobility of low‐temperature PEALD SnO2 ESLs and consequently significantly reduce or even eliminate the J–V hysteresis. With the reduction of J–V hysteresis and optimization of deposition process, planar PVSCs with stabilized output powers up to 20.3% are achieved. The results of this study provide insights for further enhancing the efficiency of planar PVSCs. Through detailed characterizations, it is identified that the current density‐voltage hysteresis of planar perovskite solar cells using low‐temperature atomic‐layer deposited SnO2 electron selective layers originates from the poor‐electrical conductivity of the SnO2 layers. A facile low‐temperature thermal annealing in ambient air can effectively reduce the degrees of the hysteresis and improve the power conversion efficiency of planar perovskite solar cells. |
Author | Zhao, Xingzhong Zhao, Dewei Liu, Pei Cimaroli, Alexander J. Liao, Weiqiang Al‐Jassim, Mowafak M. Jiang, Chun‐Sheng Wang, Changlei Yu, Yue Constantinou, Iordania Podraza, Nikolas J. Xiao, Chuanxiao Awni, Rasha A. Grice, Corey R. Ghimire, Kiran Chen, Jing Yan, Yanfa |
Author_xml | – sequence: 1 givenname: Changlei surname: Wang fullname: Wang, Changlei organization: Wuhan University – sequence: 2 givenname: Chuanxiao surname: Xiao fullname: Xiao, Chuanxiao organization: National Renewable Energy Laboratory – sequence: 3 givenname: Yue surname: Yu fullname: Yu, Yue organization: University of Toledo – sequence: 4 givenname: Dewei surname: Zhao fullname: Zhao, Dewei organization: University of Toledo – sequence: 5 givenname: Rasha A. surname: Awni fullname: Awni, Rasha A. organization: University of Toledo – sequence: 6 givenname: Corey R. surname: Grice fullname: Grice, Corey R. organization: University of Toledo – sequence: 7 givenname: Kiran surname: Ghimire fullname: Ghimire, Kiran organization: University of Toledo – sequence: 8 givenname: Iordania surname: Constantinou fullname: Constantinou, Iordania organization: University of Heidelberg – sequence: 9 givenname: Weiqiang surname: Liao fullname: Liao, Weiqiang organization: University of Toledo – sequence: 10 givenname: Alexander J. surname: Cimaroli fullname: Cimaroli, Alexander J. organization: University of Toledo – sequence: 11 givenname: Pei surname: Liu fullname: Liu, Pei organization: Wuhan University – sequence: 12 givenname: Jing surname: Chen fullname: Chen, Jing organization: Southeast University – sequence: 13 givenname: Nikolas J. surname: Podraza fullname: Podraza, Nikolas J. organization: University of Toledo – sequence: 14 givenname: Chun‐Sheng surname: Jiang fullname: Jiang, Chun‐Sheng organization: National Renewable Energy Laboratory – sequence: 15 givenname: Mowafak M. surname: Al‐Jassim fullname: Al‐Jassim, Mowafak M. organization: National Renewable Energy Laboratory – sequence: 16 givenname: Xingzhong surname: Zhao fullname: Zhao, Xingzhong email: xzzhao@whu.edu.cn organization: Wuhan University – sequence: 17 givenname: Yanfa orcidid: 0000-0003-3977-5789 surname: Yan fullname: Yan, Yanfa email: Yanfa.Yan@utoledo.edu organization: University of Toledo |
BackLink | https://www.osti.gov/servlets/purl/1392207$$D View this record in Osti.gov |
BookMark | eNqFkM1PwjAYxhuDiYhcPS96Btu169YjIVNMUEmUk4em6zoojhbbodl_b5cZPPpe3o_8njdPnkswMNYoAK4RnCII4zuhzH4aQ5RCSBA5A0NEEZnQjMDBacbxBRh7v4OhCEMQ4yF4X5tSOd8IU2qziUKL8lrvtRFNty9a3yinvPZRZV200Jtt3UZ5VWmplWmiVS2McNFKOfvlP3Sjoldbh8Nc1bW_AueVqL0a__YRWN_nb_PFZPny8DifLSeSZIxMZMWgLKiUJOxFsJ_QJKEplqnCCc4yyuIiLmksGcYkKXFVMpGKqkwKKbFIEB6Bm_6v9Y3mXgYbciutMUo2HGEWxzAN0G0PHZz9PCrf8J09OhN8ccRwwihmtKOmPSWd9d6pih-c3gvXcgR5FzTvguanoIOA9YJvXav2H5rP8uenP-0P0VaDFQ |
CitedBy_id | crossref_primary_10_1039_D4YA00204K crossref_primary_10_1039_C8TA00526E crossref_primary_10_1039_D1TA04130D crossref_primary_10_1007_s40242_022_1401_x crossref_primary_10_1039_C9NJ06342K crossref_primary_10_1063_5_0123558 crossref_primary_10_1002_adfm_201808667 crossref_primary_10_1088_1361_6463_aaa727 crossref_primary_10_1016_j_orgel_2018_11_021 crossref_primary_10_1039_C8SE00200B crossref_primary_10_1002_inf2_12059 crossref_primary_10_1002_adma_201703737 crossref_primary_10_1002_advs_201903250 crossref_primary_10_1039_C7TA08053K crossref_primary_10_1016_j_solmat_2022_112088 crossref_primary_10_1021_acsami_4c02043 crossref_primary_10_1039_C8TA12100A crossref_primary_10_1002_nano_202000306 crossref_primary_10_1039_C8QM00620B crossref_primary_10_1021_acsaem_8b01405 crossref_primary_10_1039_C8TC05999C crossref_primary_10_1039_D2CP05226A crossref_primary_10_1002_adma_202005504 crossref_primary_10_1039_D0TA04680A crossref_primary_10_1016_j_jpowsour_2020_228648 crossref_primary_10_1002_cssc_201900509 crossref_primary_10_1002_adfm_201805168 crossref_primary_10_1016_j_nanoen_2019_02_075 crossref_primary_10_1016_j_optmat_2022_112570 crossref_primary_10_1021_acsenergylett_9b01042 crossref_primary_10_1016_j_jechem_2018_11_011 crossref_primary_10_1016_j_joule_2020_01_012 crossref_primary_10_1021_acsaem_0c02438 crossref_primary_10_1021_acsami_8b15665 crossref_primary_10_1016_j_nanoen_2017_08_016 crossref_primary_10_7498_aps_68_20190569 crossref_primary_10_1016_j_nanoen_2019_04_069 crossref_primary_10_1002_aenm_201802080 crossref_primary_10_1002_pssa_202300293 crossref_primary_10_1039_D0TA06033J crossref_primary_10_1002_adfm_202008300 crossref_primary_10_1002_smtd_202000588 crossref_primary_10_1016_j_solener_2020_03_062 crossref_primary_10_3390_nano14100886 crossref_primary_10_1007_s10853_019_04145_9 crossref_primary_10_1021_acs_jpclett_2c00278 crossref_primary_10_1021_acsnano_9b09315 crossref_primary_10_1002_aenm_201801954 crossref_primary_10_1002_solr_202100794 crossref_primary_10_1016_j_nanoen_2018_07_027 crossref_primary_10_1088_1361_6528_ab87cb crossref_primary_10_1002_aenm_202002989 crossref_primary_10_1021_acsami_9b14730 crossref_primary_10_1039_C8TA09855G crossref_primary_10_1016_j_electacta_2019_03_176 crossref_primary_10_1021_acs_jpcc_9b11483 crossref_primary_10_1039_C7CC09838C crossref_primary_10_1002_adma_201704208 crossref_primary_10_1038_s41560_020_00692_7 crossref_primary_10_1002_aenm_202101854 crossref_primary_10_1002_adfm_201900092 crossref_primary_10_1016_j_nanoen_2019_03_044 crossref_primary_10_1002_adfm_201806779 crossref_primary_10_1016_j_solener_2017_09_047 crossref_primary_10_1039_D2EE01742C crossref_primary_10_1016_j_nanoen_2017_12_047 crossref_primary_10_1016_j_apsusc_2018_11_163 crossref_primary_10_1002_pip_3487 crossref_primary_10_1002_smtd_201900150 crossref_primary_10_1039_C9TA11245F crossref_primary_10_1039_D0EE00385A crossref_primary_10_1063_1_5042299 crossref_primary_10_1002_adma_202301404 crossref_primary_10_1002_cssc_201802421 crossref_primary_10_3390_en14041156 crossref_primary_10_1016_j_solener_2018_08_033 crossref_primary_10_1038_s41560_023_01250_7 crossref_primary_10_1002_smll_202404334 crossref_primary_10_1002_advs_201901241 crossref_primary_10_1016_j_apsusc_2018_08_128 crossref_primary_10_1016_j_jpowsour_2020_229160 crossref_primary_10_3390_nano11030750 crossref_primary_10_1021_acsami_0c22993 crossref_primary_10_1002_anie_202003502 crossref_primary_10_1002_solr_201900332 crossref_primary_10_1039_C7TC03482B crossref_primary_10_1039_C8TA00816G crossref_primary_10_3390_nano11010088 crossref_primary_10_1021_acsaem_9b00233 crossref_primary_10_1002_adfm_202004209 crossref_primary_10_1016_j_ccr_2023_215502 crossref_primary_10_1016_j_jechem_2021_09_021 crossref_primary_10_1088_1361_6463_ac0269 crossref_primary_10_1021_acsaem_8b01202 crossref_primary_10_3390_cryst7100291 crossref_primary_10_1002_aenm_202002606 crossref_primary_10_1016_j_nanoen_2017_11_069 crossref_primary_10_1021_acsaem_3c01713 crossref_primary_10_1016_j_cej_2023_141705 crossref_primary_10_1021_acsami_1c11990 crossref_primary_10_1021_acs_langmuir_1c00080 crossref_primary_10_1002_adma_201906374 crossref_primary_10_1002_adfm_201905883 crossref_primary_10_1039_C7TA08617B crossref_primary_10_1016_j_nanoen_2017_08_041 crossref_primary_10_1038_s41467_022_34768_7 crossref_primary_10_1039_D1SE01279G crossref_primary_10_1002_solr_201900088 crossref_primary_10_1016_j_solener_2024_112754 crossref_primary_10_1002_adfm_201802757 crossref_primary_10_1002_cssc_201902165 crossref_primary_10_1002_ange_202003502 crossref_primary_10_1016_j_mtener_2019_03_005 crossref_primary_10_1021_acsami_8b09515 crossref_primary_10_1039_C9CP05147C crossref_primary_10_1038_s41467_018_07099_9 crossref_primary_10_1038_s41598_023_35651_1 crossref_primary_10_1002_solr_201700175 crossref_primary_10_1021_acsaem_9b00613 crossref_primary_10_1063_5_0010705 crossref_primary_10_1088_1361_6463_ab05b2 crossref_primary_10_1021_acsaem_8b01038 crossref_primary_10_1002_aenm_202301706 crossref_primary_10_1063_5_0084596 crossref_primary_10_1002_advs_202203210 crossref_primary_10_1021_acsaem_0c00612 crossref_primary_10_1002_solr_201700214 crossref_primary_10_1557_s43577_023_00585_6 crossref_primary_10_1002_adfm_202107823 crossref_primary_10_1002_aenm_201900444 crossref_primary_10_1021_acs_jpcc_2c09122 crossref_primary_10_1039_D1TA01291F crossref_primary_10_1021_acsami_7b08582 crossref_primary_10_1002_solr_201900078 crossref_primary_10_1039_C8NR05504A crossref_primary_10_1007_s42247_020_00071_8 crossref_primary_10_15377_2409_983X_2023_10_1 crossref_primary_10_1021_acs_jpcc_8b08869 crossref_primary_10_1039_C7EE02634J crossref_primary_10_1021_acsnano_0c01392 crossref_primary_10_1039_C8TA05756G crossref_primary_10_1039_C8QI01020J crossref_primary_10_1039_C8CC09557D crossref_primary_10_1002_smll_201804465 crossref_primary_10_1021_acsaem_9b01916 crossref_primary_10_1002_adfm_201808801 crossref_primary_10_1021_acsami_3c04387 crossref_primary_10_1021_acsami_2c22801 crossref_primary_10_1002_admi_201901716 crossref_primary_10_1021_acsami_3c12698 crossref_primary_10_1021_acsami_9b11817 crossref_primary_10_1002_aenm_202301161 crossref_primary_10_1002_solr_201900266 crossref_primary_10_3390_ma16186170 crossref_primary_10_1038_s41566_024_01383_5 crossref_primary_10_1039_C7CC07534K crossref_primary_10_1039_C8TC05484C crossref_primary_10_1088_1361_6528_aacf7c crossref_primary_10_1002_adma_201804402 crossref_primary_10_1021_acsami_9b23374 crossref_primary_10_1039_D0CS00156B crossref_primary_10_1002_adma_201805214 crossref_primary_10_1002_solr_201800292 crossref_primary_10_1016_j_solmat_2021_111095 crossref_primary_10_1002_solr_202000090 crossref_primary_10_1016_j_nanoen_2019_104289 crossref_primary_10_1039_C9CP05381F crossref_primary_10_1021_acsenergylett_7b00644 crossref_primary_10_1002_adfm_202103121 crossref_primary_10_1109_JPHOTOV_2019_2928466 crossref_primary_10_1021_acsami_0c13296 crossref_primary_10_1002_anie_201905624 crossref_primary_10_1021_acssuschemeng_8b06606 crossref_primary_10_1016_j_jallcom_2022_167583 crossref_primary_10_1039_C8CC04271C crossref_primary_10_1002_aenm_201702934 crossref_primary_10_1002_adfm_201904300 crossref_primary_10_1002_admi_202101004 crossref_primary_10_1002_ange_201905624 crossref_primary_10_1002_solr_201900251 crossref_primary_10_1021_acsaem_1c01759 crossref_primary_10_1002_aenm_202003073 crossref_primary_10_1016_j_apsusc_2022_153206 crossref_primary_10_1039_C7TA10742K crossref_primary_10_1002_smll_202208260 crossref_primary_10_1007_s40820_021_00596_5 crossref_primary_10_3390_app12094545 |
Cites_doi | 10.1021/jacs.6b08337 10.1038/ncomms4461 10.1002/smll.201402767 10.1021/ja512518r 10.1021/ja809598r 10.1002/cssc.201600944 10.1002/aenm.201600846 10.1126/science.aai9081 10.1039/C6TA04503K 10.1021/nn505723h 10.1039/C5NR09045H 10.1126/science.1254763 10.1039/C4EE03664F 10.1126/science.aah5557 10.1039/C5TA01824B 10.1002/cssc.201601027 10.1039/C6EE02016J 10.1002/adfm.201501264 10.1002/admi.201600122 10.1002/aenm.201401855 10.1038/nenergy.2016.177 10.1126/science.aaa9272 10.1002/adma.201600969 10.1038/ncomms9397 10.1126/science.1243167 10.1126/science.1243982 10.1063/1.1736034 10.1126/science.aaa5760 10.1039/C6RA19476A 10.1016/j.nanoen.2015.11.008 10.1039/c3ee40810h 10.1002/adma.201604048 10.1038/nature14133 10.1088/0022-3727/3/2/308 10.1039/C5EE02155C 10.1021/nl501838y 10.1039/C4TA04969A 10.1039/C5EE02608C 10.1038/ncomms8140 10.1002/adma.201600594 10.1039/C6EE02390H 10.1038/nenergy.2015.12 10.1021/jacs.5b01994 10.1038/nenergy.2016.152 10.1039/C6EE02139E 10.1038/nnano.2015.230 10.1002/adma.201600619 10.1126/science.aad4424 10.1002/adma.201602992 10.1038/ncomms6784 10.1039/C6TA05095F 10.1016/j.nanoen.2016.04.060 10.1021/acs.jpclett.6b00295 10.1063/1.1660648 10.1016/j.nanoen.2016.02.033 10.1002/aenm.201501310 10.1039/C4EE02465F 10.1038/nenergy.2016.142 10.1039/C6EE03397K 10.1002/adfm.201504564 10.1039/C6EE03182J 10.1002/adma.201600446 10.1126/sciadv.1501170 10.1021/jacs.5b04930 |
ContentType | Journal Article |
Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
CorporateAuthor | National Renewable Energy Lab. (NREL), Golden, CO (United States) |
CorporateAuthor_xml | – name: National Renewable Energy Lab. (NREL), Golden, CO (United States) |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M OIOZB OTOTI |
DOI | 10.1002/aenm.201700414 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 1392207 10_1002_aenm_201700414 AENM201700414 |
Genre | article |
GrantInformation_xml | – fundername: National Science Fund for Distinguished Young Scholars funderid: 50125309 – fundername: Ohio Research Scholar Program – fundername: National Science Foundation funderid: CHE−1230246; DMR‐1534686 – fundername: National Natural Science Foundation of China funderid: 51272184; 91433203 – fundername: U.S. Department of Energy (DOE) SunShot Initiative funderid: DE‐FOA‐0000990 – fundername: National Basic Research Program of China funderid: 2011CB933300 – fundername: National Natural Science Foundation Project of China funderid: 61674029 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAIHA AANLZ AASGY AAXRX AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS EJD G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AAYXX ACBWZ ASPBG AVWKF AZFZN CITATION FEDTE GODZA HVGLF 7SP 7TB 8FD AAMNL F28 FR3 H8D L7M AAPBV AEUQT OIOZB OTOTI |
ID | FETCH-LOGICAL-c4894-cf90cb6cc4c48b0415655673c7e35388692b2d62c93345d3fd9a7afd5bcc3a513 |
IEDL.DBID | 33P |
ISSN | 1614-6832 |
IngestDate | Fri May 19 00:35:51 EDT 2023 Tue Nov 19 04:34:57 EST 2024 Fri Aug 23 03:37:26 EDT 2024 Sat Aug 24 00:54:21 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4894-cf90cb6cc4c48b0415655673c7e35388692b2d62c93345d3fd9a7afd5bcc3a513 |
Notes | USDOE USDOE Office of Energy Efficiency and Renewable Energy (EERE), Solar Energy Technologies Office (EE-4S), SunShot Initiative NREL/JA-5K00-68335 AC36-08GO28308; DE‐FOA‐0000990 |
ORCID | 0000-0003-3977-5789 0000000339775789 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1392207 |
PQID | 1935963967 |
PQPubID | 886389 |
PageCount | 9 |
ParticipantIDs | osti_scitechconnect_1392207 proquest_journals_1935963967 crossref_primary_10_1002_aenm_201700414 wiley_primary_10_1002_aenm_201700414_AENM201700414 |
PublicationCentury | 2000 |
PublicationDate | September 6, 2017 |
PublicationDateYYYYMMDD | 2017-09-06 |
PublicationDate_xml | – month: 09 year: 2017 text: September 6, 2017 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: United States |
PublicationTitle | Advanced energy materials |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley |
References | 1971; 42 2015; 6 2015; 5 2016; 19 2015; 3 2015; 347 2015; 11 2013; 342 2009; 131 2015; 348 1961; 32 2017; 355 2015; 8 2013; 6 1970; 3 2016; 11 2016; 4 2016; 6 2016; 7 2015; 25 2014; 5 2016; 1 2016; 2 2016; 3 2015; 137 2017; 10 2016; 354 2014; 14 2015; 517 2016; 352 2016; 138 2016; 28 2014; 8 2014; 7 2016; 26 2016; 8 2014; 345 2016; 9 2016; 22 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 342 start-page: 341 year: 2013 publication-title: Science – volume: 4 start-page: 12080 year: 2016 publication-title: J. Mater. Chem. A – volume: 3 start-page: 151 year: 1970 publication-title: J. Phys. D: Appl. Phys. – volume: 25 start-page: 7200 year: 2015 publication-title: Adv. Funct. Mater. – volume: 19 start-page: 88 year: 2016 publication-title: Nano Energy – volume: 355 start-page: 722 year: 2017 publication-title: Science – volume: 3 start-page: 1600122 year: 2016 publication-title: Adv. Mater. Interfaces – volume: 5 start-page: 1501310 year: 2015 publication-title: Adv. Energy Mater. – volume: 1 start-page: 16152 year: 2016 publication-title: Nat. Energy – volume: 5 start-page: 1401855 year: 2015 publication-title: Adv. Energy Mater. – volume: 137 start-page: 8696 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 3128 year: 2016 publication-title: Energy Environ. Sci. – volume: 7 start-page: 3690 year: 2014 publication-title: Energy Environ. Sci. – volume: 10 start-page: 710 year: 2017 publication-title: Energy Environ. Sci. – volume: 7 start-page: 1845 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 2 start-page: 16177 year: 2016 publication-title: Nat. Energy – volume: 1 start-page: 15012 year: 2016 publication-title: Nat. Energy – volume: 342 start-page: 344 year: 2013 publication-title: Science – volume: 6 start-page: 90248 year: 2016 publication-title: RSC Adv – volume: 8 start-page: 995 year: 2015 publication-title: Energy Environ. Sci. – volume: 354 start-page: 206 year: 2016 publication-title: Science – volume: 28 start-page: 5214 year: 2016 publication-title: Adv. Mater. – volume: 14 start-page: 4158 year: 2014 publication-title: Nano Lett. – volume: 131 start-page: 6050 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 10 year: 2015 publication-title: Small – volume: 9 start-page: 3288 year: 2016 publication-title: ChemSusChem – volume: 10 start-page: 621 year: 2017 publication-title: Energy Environ. Sci. – volume: 26 start-page: 4866 year: 2016 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 3071 year: 2016 publication-title: Energy Environ. Sci. – volume: 347 start-page: 967 year: 2015 publication-title: Science – volume: 6 start-page: 1739 year: 2013 publication-title: Energy Environ. Sci. – volume: 4 start-page: 14276 year: 2016 publication-title: J. Mater. Chem. A – volume: 28 start-page: 10718 year: 2016 publication-title: Adv. Mater. – volume: 28 start-page: 6734 year: 2016 publication-title: Adv. Mater. – volume: 3 start-page: 9074 year: 2015 publication-title: J. Mater. Chem. A – volume: 5 start-page: 3461 year: 2014 publication-title: Nat. Commun. – volume: 42 start-page: 2911 year: 1971 publication-title: J. Appl. Phys. – volume: 5 start-page: 5784 year: 2014 publication-title: Nat. Commun. – volume: 6 start-page: 7140 year: 2015 publication-title: Nat. Commun. – volume: 9 start-page: 2686 year: 2016 publication-title: ChemSusChem – volume: 8 start-page: 5847 year: 2016 publication-title: Nanoscale – volume: 8 start-page: 3208 year: 2015 publication-title: Energy Environ. Sci. – volume: 137 start-page: 2674 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 138 start-page: 12360 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 26 start-page: 208 year: 2016 publication-title: Nano Energy – volume: 2 start-page: e1501170 year: 2016 publication-title: Sci. Adv. – volume: 352 start-page: aad4424 year: 2016 publication-title: Science – volume: 3 start-page: 9401 year: 2015 publication-title: J. Mater. Chem. A – volume: 28 start-page: 5206 year: 2016 publication-title: Adv. Mater. – volume: 348 start-page: 1234 year: 2015 publication-title: Science – volume: 32 start-page: 510 year: 1961 publication-title: J. Appl. Phys. – volume: 22 start-page: 328 year: 2016 publication-title: Nano Energy – volume: 6 start-page: 8397 year: 2015 publication-title: Nat. Commun. – volume: 137 start-page: 6730 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 2928 year: 2015 publication-title: Energy Environ. Sci. – volume: 28 start-page: 9333 year: 2016 publication-title: Adv. Mater. – volume: 28 start-page: 6478 year: 2016 publication-title: Adv. Mater. – volume: 9 start-page: 3406 year: 2016 publication-title: Energy Environ. Sci. – volume: 6 start-page: 1600846 year: 2016 publication-title: Adv. Energy Mater. – volume: 517 start-page: 476 year: 2015 publication-title: Nature – volume: 11 start-page: 75 year: 2016 publication-title: Nat. Nanotechnol. – volume: 345 start-page: 295 year: 2014 publication-title: Science – volume: 1 start-page: 16142 year: 2016 publication-title: Nat. Energy – volume: 8 start-page: 12701 year: 2014 publication-title: ACS Nano – ident: e_1_2_7_15_1 doi: 10.1021/jacs.6b08337 – ident: e_1_2_7_59_1 doi: 10.1038/ncomms4461 – ident: e_1_2_7_57_1 doi: 10.1002/smll.201402767 – ident: e_1_2_7_29_1 doi: 10.1021/ja512518r – ident: e_1_2_7_1_1 doi: 10.1021/ja809598r – ident: e_1_2_7_33_1 doi: 10.1002/cssc.201600944 – ident: e_1_2_7_49_1 doi: 10.1002/aenm.201600846 – ident: e_1_2_7_18_1 doi: 10.1126/science.aai9081 – ident: e_1_2_7_39_1 doi: 10.1039/C6TA04503K – ident: e_1_2_7_55_1 doi: 10.1021/nn505723h – ident: e_1_2_7_11_1 doi: 10.1039/C5NR09045H – ident: e_1_2_7_47_1 doi: 10.1126/science.1254763 – ident: e_1_2_7_40_1 doi: 10.1039/C4EE03664F – ident: e_1_2_7_4_1 doi: 10.1126/science.aah5557 – ident: e_1_2_7_28_1 doi: 10.1039/C5TA01824B – ident: e_1_2_7_16_1 doi: 10.1002/cssc.201601027 – ident: e_1_2_7_50_1 doi: 10.1039/C6EE02016J – ident: e_1_2_7_35_1 doi: 10.1002/adfm.201501264 – ident: e_1_2_7_38_1 doi: 10.1002/admi.201600122 – ident: e_1_2_7_9_1 doi: 10.1002/aenm.201401855 – ident: e_1_2_7_22_1 doi: 10.1038/nenergy.2016.177 – ident: e_1_2_7_3_1 doi: 10.1126/science.aaa9272 – ident: e_1_2_7_46_1 doi: 10.1002/adma.201600969 – ident: e_1_2_7_56_1 doi: 10.1038/ncomms9397 – ident: e_1_2_7_6_1 doi: 10.1126/science.1243167 – ident: e_1_2_7_7_1 doi: 10.1126/science.1243982 – ident: e_1_2_7_48_1 doi: 10.1063/1.1736034 – ident: e_1_2_7_62_1 doi: 10.1126/science.aaa5760 – ident: e_1_2_7_13_1 doi: 10.1039/C6RA19476A – ident: e_1_2_7_8_1 doi: 10.1016/j.nanoen.2015.11.008 – ident: e_1_2_7_58_1 doi: 10.1039/c3ee40810h – ident: e_1_2_7_43_1 doi: 10.1002/adma.201604048 – ident: e_1_2_7_2_1 doi: 10.1038/nature14133 – ident: e_1_2_7_63_1 doi: 10.1088/0022-3727/3/2/308 – ident: e_1_2_7_26_1 doi: 10.1039/C5EE02155C – ident: e_1_2_7_53_1 doi: 10.1021/nl501838y – ident: e_1_2_7_42_1 doi: 10.1039/C4TA04969A – ident: e_1_2_7_34_1 doi: 10.1039/C5EE02608C – ident: e_1_2_7_23_1 doi: 10.1038/ncomms8140 – ident: e_1_2_7_12_1 doi: 10.1002/adma.201600594 – ident: e_1_2_7_32_1 doi: 10.1039/C6EE02390H – ident: e_1_2_7_51_1 doi: 10.1038/nenergy.2015.12 – ident: e_1_2_7_31_1 doi: 10.1021/jacs.5b01994 – ident: e_1_2_7_20_1 doi: 10.1038/nenergy.2016.152 – ident: e_1_2_7_27_1 doi: 10.1039/C6EE02139E – ident: e_1_2_7_30_1 doi: 10.1038/nnano.2015.230 – ident: e_1_2_7_37_1 doi: 10.1002/adma.201600619 – ident: e_1_2_7_5_1 doi: 10.1126/science.aad4424 – ident: e_1_2_7_14_1 doi: 10.1002/adma.201602992 – ident: e_1_2_7_44_1 doi: 10.1038/ncomms6784 – ident: e_1_2_7_45_1 doi: 10.1039/C6TA05095F – ident: e_1_2_7_61_1 doi: 10.1016/j.nanoen.2016.04.060 – ident: e_1_2_7_24_1 doi: 10.1021/acs.jpclett.6b00295 – ident: e_1_2_7_36_1 doi: 10.1063/1.1660648 – ident: e_1_2_7_52_1 doi: 10.1016/j.nanoen.2016.02.033 – ident: e_1_2_7_60_1 doi: 10.1002/aenm.201501310 – ident: e_1_2_7_41_1 doi: 10.1039/C4EE02465F – ident: e_1_2_7_21_1 doi: 10.1038/nenergy.2016.142 – ident: e_1_2_7_17_1 doi: 10.1039/C6EE03397K – ident: e_1_2_7_10_1 doi: 10.1002/adfm.201504564 – ident: e_1_2_7_19_1 doi: 10.1039/C6EE03182J – ident: e_1_2_7_25_1 doi: 10.1002/adma.201600446 – ident: e_1_2_7_54_1 doi: 10.1126/sciadv.1501170 – ident: e_1_2_7_64_1 doi: 10.1021/jacs.5b04930 |
SSID | ssj0000491033 |
Score | 2.628464 |
Snippet | Through detailed device characterization using cross‐sectional Kelvin probe force microscopy (KPFM) and trap density of states measurements, we identify that... Through detailed device characterization using cross-sectional Kelvin probe force microscopy (KPFM) and trap density of states measurements, we identify that... |
SourceID | osti proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Publisher |
SubjectTerms | Charge transport Deposition Electrical resistivity Hysteresis Kelvin probe force microscopy Optimization perovskite solar cells Perovskites Photovoltaic cells post annealing Solar cells SOLAR ENERGY Tin dioxide |
Title | Understanding and Eliminating Hysteresis for Highly Efficient Planar Perovskite Solar Cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201700414 https://www.proquest.com/docview/1935963967 https://www.osti.gov/servlets/purl/1392207 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7akx58i9UqOQieFrd57h6lrvSiCLUgeAhJNgWhtNJtBf-9M9l2bU-CnjZh2QeZTOabYeYbQq5Bktp7qROmdZmIIESSu0wkkrMQslxaEXkK-gP99JrdF0iT01Tx1_wQTcANNSOe16jg1lW3P6ShNkywkhz55epO1kjdhDUc_LkJsgD87aaxnTwAG5Eo2L4r4saU3W6-YcMwtaagYBugcx26RtvzsP__vz4ge0vcSe_qjXJItsLkiOyusREek7fheqELhQstxrHpF6ZG0z5yPoNz_l5RALoUE0TGX7SIFBRguSi2P7Iz-hxm088KY8J0gG4z7YXxuDohw4fipddPlr0XEi-yXCR-lKfeKe8FzB3W8SspleZeBw5nZKZy5lipmM85F7LkozK32o5K6bznVnb5KWlNppNwRqhz4JRw62wQCiQvcwtjLoSUumSpS9vkZrXw5qOm2DA1mTIzuFymWa42uUC5GAAHyHDrMRXIzw2AWMZS3SadlbjMUhEr08XKY0BhCm6zKJhfvmHuiqfHZnb-l4cuyA6OYyaa6pDWfLYIl2S7KhdXcXt-A0Yk4rk |
link.rule.ids | 230,315,783,787,888,1409,27936,27937,46067,46491 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSzMxEA9aD58efH2fWJ85CJ4Wt3lujkVXKmoRVBC-Q0iyKQilla4K_vfOpA_bkyCedrPLPsjMZH4ZZn5DyAlIUocgdca0rjIRhciML0QmOYuxMNKJxFPQudfdp-KiRJqc9rQWZswPMQu4oWWk9RoNHAPSZ1-soS4OsJQcCeZSK-sVoYRB2-T8bhZmAQDcylNDeYA2IlOgwFPqxpydLb5iwTU1hmBiC7BzHrwm73O58Qv_vUnWJ9CTtse6skWW4mCbrM0REv4l_x_na10oHGjZT32_MDuadpD2GfbnzzUFrEsxR6T_QcvEQgHOi2IHJDeid3E0fK8xLEzvcedMz2O_X_8jj5flw3knm7RfyIIojMhCz-TBqxAEjD2W8ispleZBRw7LZKEM86xSLBjOhax4rzJOu14lfQjcyRbfIY3BcBB3CfUe9iXceRdRRloaB-dcCCl1xXKfN8npdObty5hlw475lJnF6bKz6WqSfRSMBXyAJLcBs4HCqwUcy1ium-RgKi87scXatrD4GICYgtssSeabb9h22b2djfZ-8tAx-dN5uL2xN1fd632yitdTYpo6II3X0Vs8JMt19XaUdPUTnBbm2g |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9swEBbdFMr20NduabppV4dCTyaOnvZxSRxS2g2BNFDoQUiyDIWQhDhZ2H_fGTlxk1OhPdmy8QPNjOYbMfMNIZ9Aktp7qROmdZmIIESSu0wkkrMQslxaEXkKJnM9_ZGNCqTJaav4G36IdsMNLSOu12jgm7Lq_yENtWGFleTILxc7WT8VgMUx_OJ81u6yAP4dpLGfPCAbkSjQ3yNzY8r6568480ydNVjYGeo8xa7R-Yxf_v9vvyIvDsCT3jWa8po8Cas35PkJHeEV-bk4rXShcKDFMnb9wtxoOkHSZ4jOf9UUkC7FDJHlIy0iBwW4Lor9j-yWzsJ2_VDjpjCdY9xMh2G5rK_JYlx8H06SQ_OFxIssF4mv8tQ75b2AscNCfiWl0tzrwGGRzFTOHCsV8znnQpa8KnOrbVVK5z23csDfks5qvQrvCHUOohJunQ1CgehlbuGcCyGlLlnq0i75fJx4s2k4NkzDpswMTpdpp6tLblAuBtABUtx6zAXyOwMolrFUd0nvKC5zsMTaDLD0GGCYgtssCuYv3zB3xfS-Hb3_l4duybPZaGy-fZl-vSGXeDlmpake6ey2-_CBXNTl_mPU1N_v7eWJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+and+Eliminating+Hysteresis+for+Highly+Efficient+Planar+Perovskite+Solar+Cells&rft.jtitle=Advanced+energy+materials&rft.au=Wang%2C+Changlei&rft.au=Xiao%2C+Chuanxiao&rft.au=Yu%2C+Yue&rft.au=Zhao%2C+Dewei&rft.date=2017-09-06&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=7&rft.issue=17&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.201700414&rft.externalDBID=10.1002%252Faenm.201700414&rft.externalDocID=AENM201700414 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |