Understanding and Eliminating Hysteresis for Highly Efficient Planar Perovskite Solar Cells

Through detailed device characterization using cross‐sectional Kelvin probe force microscopy (KPFM) and trap density of states measurements, we identify that the J–V hysteresis seen in planar organic–inorganic hybrid perovskite solar cells (PVSCs) using SnO2 electron selective layers (ESLs) synthesi...

Full description

Saved in:
Bibliographic Details
Published in:Advanced energy materials Vol. 7; no. 17
Main Authors: Wang, Changlei, Xiao, Chuanxiao, Yu, Yue, Zhao, Dewei, Awni, Rasha A., Grice, Corey R., Ghimire, Kiran, Constantinou, Iordania, Liao, Weiqiang, Cimaroli, Alexander J., Liu, Pei, Chen, Jing, Podraza, Nikolas J., Jiang, Chun‐Sheng, Al‐Jassim, Mowafak M., Zhao, Xingzhong, Yan, Yanfa
Format: Journal Article
Language:English
Published: Weinheim Wiley Subscription Services, Inc 06-09-2017
Wiley
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Through detailed device characterization using cross‐sectional Kelvin probe force microscopy (KPFM) and trap density of states measurements, we identify that the J–V hysteresis seen in planar organic–inorganic hybrid perovskite solar cells (PVSCs) using SnO2 electron selective layers (ESLs) synthesized by low‐temperature plasma‐enhanced atomic‐layer deposition (PEALD) method is mainly caused by the imbalanced charge transportation between the ESL/perovskite and the hole selective layer/perovskite interfaces. We find that this charge transportation imbalance is originated from the poor electrical conductivity of the low‐temperature PEALD SnO2 ESL. We further discover that a facile low‐temperature thermal annealing of SnO2 ESLs can effectively improve the electrical mobility of low‐temperature PEALD SnO2 ESLs and consequently significantly reduce or even eliminate the J–V hysteresis. With the reduction of J–V hysteresis and optimization of deposition process, planar PVSCs with stabilized output powers up to 20.3% are achieved. The results of this study provide insights for further enhancing the efficiency of planar PVSCs. Through detailed characterizations, it is identified that the current density‐voltage hysteresis of planar perovskite solar cells using low‐temperature atomic‐layer deposited SnO2 electron selective layers originates from the poor‐electrical conductivity of the SnO2 layers. A facile low‐temperature thermal annealing in ambient air can effectively reduce the degrees of the hysteresis and improve the power conversion efficiency of planar perovskite solar cells.
AbstractList Through detailed device characterization using cross-sectional Kelvin probe force microscopy (KPFM) and trap density of states measurements, we identify that the J-V hysteresis seen in planar organic-inorganic hybrid perovskite solar cells (PVSCs) using SnO2 electron selective layers (ESLs) synthesized by low-temperature plasma-enhanced atomic-layer deposition (PEALD) method is mainly caused by the imbalanced charge transportation between the ESL/perovskite and the hole selective layer/perovskite interfaces. We find that this charge transportation imbalance is originated from the poor electrical conductivity of the low-temperature PEALD SnO2 ESL. We further discover that a facile low-temperature thermal annealing of SnO2 ESLs can effectively improve the electrical mobility of low-temperature PEALD SnO2 ESLs and consequently significantly reduce or even eliminate the J-V hysteresis. With the reduction of J-V hysteresis and optimization of deposition process, planar PVSCs with stabilized output powers up to 20.3% are achieved. Here, the results of this study provide insights for further enhancing the efficiency of planar PVSCs.
Through detailed device characterization using cross‐sectional Kelvin probe force microscopy (KPFM) and trap density of states measurements, we identify that the J–V hysteresis seen in planar organic–inorganic hybrid perovskite solar cells (PVSCs) using SnO2 electron selective layers (ESLs) synthesized by low‐temperature plasma‐enhanced atomic‐layer deposition (PEALD) method is mainly caused by the imbalanced charge transportation between the ESL/perovskite and the hole selective layer/perovskite interfaces. We find that this charge transportation imbalance is originated from the poor electrical conductivity of the low‐temperature PEALD SnO2 ESL. We further discover that a facile low‐temperature thermal annealing of SnO2 ESLs can effectively improve the electrical mobility of low‐temperature PEALD SnO2 ESLs and consequently significantly reduce or even eliminate the J–V hysteresis. With the reduction of J–V hysteresis and optimization of deposition process, planar PVSCs with stabilized output powers up to 20.3% are achieved. The results of this study provide insights for further enhancing the efficiency of planar PVSCs.
Through detailed device characterization using cross‐sectional Kelvin probe force microscopy (KPFM) and trap density of states measurements, we identify that the J – V hysteresis seen in planar organic–inorganic hybrid perovskite solar cells (PVSCs) using SnO 2 electron selective layers (ESLs) synthesized by low‐temperature plasma‐enhanced atomic‐layer deposition (PEALD) method is mainly caused by the imbalanced charge transportation between the ESL/perovskite and the hole selective layer/perovskite interfaces. We find that this charge transportation imbalance is originated from the poor electrical conductivity of the low‐temperature PEALD SnO 2 ESL. We further discover that a facile low‐temperature thermal annealing of SnO 2 ESLs can effectively improve the electrical mobility of low‐temperature PEALD SnO 2 ESLs and consequently significantly reduce or even eliminate the J – V hysteresis. With the reduction of J – V hysteresis and optimization of deposition process, planar PVSCs with stabilized output powers up to 20.3% are achieved. The results of this study provide insights for further enhancing the efficiency of planar PVSCs.
Through detailed device characterization using cross‐sectional Kelvin probe force microscopy (KPFM) and trap density of states measurements, we identify that the J–V hysteresis seen in planar organic–inorganic hybrid perovskite solar cells (PVSCs) using SnO2 electron selective layers (ESLs) synthesized by low‐temperature plasma‐enhanced atomic‐layer deposition (PEALD) method is mainly caused by the imbalanced charge transportation between the ESL/perovskite and the hole selective layer/perovskite interfaces. We find that this charge transportation imbalance is originated from the poor electrical conductivity of the low‐temperature PEALD SnO2 ESL. We further discover that a facile low‐temperature thermal annealing of SnO2 ESLs can effectively improve the electrical mobility of low‐temperature PEALD SnO2 ESLs and consequently significantly reduce or even eliminate the J–V hysteresis. With the reduction of J–V hysteresis and optimization of deposition process, planar PVSCs with stabilized output powers up to 20.3% are achieved. The results of this study provide insights for further enhancing the efficiency of planar PVSCs. Through detailed characterizations, it is identified that the current density‐voltage hysteresis of planar perovskite solar cells using low‐temperature atomic‐layer deposited SnO2 electron selective layers originates from the poor‐electrical conductivity of the SnO2 layers. A facile low‐temperature thermal annealing in ambient air can effectively reduce the degrees of the hysteresis and improve the power conversion efficiency of planar perovskite solar cells.
Author Zhao, Xingzhong
Zhao, Dewei
Liu, Pei
Cimaroli, Alexander J.
Liao, Weiqiang
Al‐Jassim, Mowafak M.
Jiang, Chun‐Sheng
Wang, Changlei
Yu, Yue
Constantinou, Iordania
Podraza, Nikolas J.
Xiao, Chuanxiao
Awni, Rasha A.
Grice, Corey R.
Ghimire, Kiran
Chen, Jing
Yan, Yanfa
Author_xml – sequence: 1
  givenname: Changlei
  surname: Wang
  fullname: Wang, Changlei
  organization: Wuhan University
– sequence: 2
  givenname: Chuanxiao
  surname: Xiao
  fullname: Xiao, Chuanxiao
  organization: National Renewable Energy Laboratory
– sequence: 3
  givenname: Yue
  surname: Yu
  fullname: Yu, Yue
  organization: University of Toledo
– sequence: 4
  givenname: Dewei
  surname: Zhao
  fullname: Zhao, Dewei
  organization: University of Toledo
– sequence: 5
  givenname: Rasha A.
  surname: Awni
  fullname: Awni, Rasha A.
  organization: University of Toledo
– sequence: 6
  givenname: Corey R.
  surname: Grice
  fullname: Grice, Corey R.
  organization: University of Toledo
– sequence: 7
  givenname: Kiran
  surname: Ghimire
  fullname: Ghimire, Kiran
  organization: University of Toledo
– sequence: 8
  givenname: Iordania
  surname: Constantinou
  fullname: Constantinou, Iordania
  organization: University of Heidelberg
– sequence: 9
  givenname: Weiqiang
  surname: Liao
  fullname: Liao, Weiqiang
  organization: University of Toledo
– sequence: 10
  givenname: Alexander J.
  surname: Cimaroli
  fullname: Cimaroli, Alexander J.
  organization: University of Toledo
– sequence: 11
  givenname: Pei
  surname: Liu
  fullname: Liu, Pei
  organization: Wuhan University
– sequence: 12
  givenname: Jing
  surname: Chen
  fullname: Chen, Jing
  organization: Southeast University
– sequence: 13
  givenname: Nikolas J.
  surname: Podraza
  fullname: Podraza, Nikolas J.
  organization: University of Toledo
– sequence: 14
  givenname: Chun‐Sheng
  surname: Jiang
  fullname: Jiang, Chun‐Sheng
  organization: National Renewable Energy Laboratory
– sequence: 15
  givenname: Mowafak M.
  surname: Al‐Jassim
  fullname: Al‐Jassim, Mowafak M.
  organization: National Renewable Energy Laboratory
– sequence: 16
  givenname: Xingzhong
  surname: Zhao
  fullname: Zhao, Xingzhong
  email: xzzhao@whu.edu.cn
  organization: Wuhan University
– sequence: 17
  givenname: Yanfa
  orcidid: 0000-0003-3977-5789
  surname: Yan
  fullname: Yan, Yanfa
  email: Yanfa.Yan@utoledo.edu
  organization: University of Toledo
BackLink https://www.osti.gov/servlets/purl/1392207$$D View this record in Osti.gov
BookMark eNqFkM1PwjAYxhuDiYhcPS96Btu169YjIVNMUEmUk4em6zoojhbbodl_b5cZPPpe3o_8njdPnkswMNYoAK4RnCII4zuhzH4aQ5RCSBA5A0NEEZnQjMDBacbxBRh7v4OhCEMQ4yF4X5tSOd8IU2qziUKL8lrvtRFNty9a3yinvPZRZV200Jtt3UZ5VWmplWmiVS2McNFKOfvlP3Sjoldbh8Nc1bW_AueVqL0a__YRWN_nb_PFZPny8DifLSeSZIxMZMWgLKiUJOxFsJ_QJKEplqnCCc4yyuIiLmksGcYkKXFVMpGKqkwKKbFIEB6Bm_6v9Y3mXgYbciutMUo2HGEWxzAN0G0PHZz9PCrf8J09OhN8ccRwwihmtKOmPSWd9d6pih-c3gvXcgR5FzTvguanoIOA9YJvXav2H5rP8uenP-0P0VaDFQ
CitedBy_id crossref_primary_10_1039_D4YA00204K
crossref_primary_10_1039_C8TA00526E
crossref_primary_10_1039_D1TA04130D
crossref_primary_10_1007_s40242_022_1401_x
crossref_primary_10_1039_C9NJ06342K
crossref_primary_10_1063_5_0123558
crossref_primary_10_1002_adfm_201808667
crossref_primary_10_1088_1361_6463_aaa727
crossref_primary_10_1016_j_orgel_2018_11_021
crossref_primary_10_1039_C8SE00200B
crossref_primary_10_1002_inf2_12059
crossref_primary_10_1002_adma_201703737
crossref_primary_10_1002_advs_201903250
crossref_primary_10_1039_C7TA08053K
crossref_primary_10_1016_j_solmat_2022_112088
crossref_primary_10_1021_acsami_4c02043
crossref_primary_10_1039_C8TA12100A
crossref_primary_10_1002_nano_202000306
crossref_primary_10_1039_C8QM00620B
crossref_primary_10_1021_acsaem_8b01405
crossref_primary_10_1039_C8TC05999C
crossref_primary_10_1039_D2CP05226A
crossref_primary_10_1002_adma_202005504
crossref_primary_10_1039_D0TA04680A
crossref_primary_10_1016_j_jpowsour_2020_228648
crossref_primary_10_1002_cssc_201900509
crossref_primary_10_1002_adfm_201805168
crossref_primary_10_1016_j_nanoen_2019_02_075
crossref_primary_10_1016_j_optmat_2022_112570
crossref_primary_10_1021_acsenergylett_9b01042
crossref_primary_10_1016_j_jechem_2018_11_011
crossref_primary_10_1016_j_joule_2020_01_012
crossref_primary_10_1021_acsaem_0c02438
crossref_primary_10_1021_acsami_8b15665
crossref_primary_10_1016_j_nanoen_2017_08_016
crossref_primary_10_7498_aps_68_20190569
crossref_primary_10_1016_j_nanoen_2019_04_069
crossref_primary_10_1002_aenm_201802080
crossref_primary_10_1002_pssa_202300293
crossref_primary_10_1039_D0TA06033J
crossref_primary_10_1002_adfm_202008300
crossref_primary_10_1002_smtd_202000588
crossref_primary_10_1016_j_solener_2020_03_062
crossref_primary_10_3390_nano14100886
crossref_primary_10_1007_s10853_019_04145_9
crossref_primary_10_1021_acs_jpclett_2c00278
crossref_primary_10_1021_acsnano_9b09315
crossref_primary_10_1002_aenm_201801954
crossref_primary_10_1002_solr_202100794
crossref_primary_10_1016_j_nanoen_2018_07_027
crossref_primary_10_1088_1361_6528_ab87cb
crossref_primary_10_1002_aenm_202002989
crossref_primary_10_1021_acsami_9b14730
crossref_primary_10_1039_C8TA09855G
crossref_primary_10_1016_j_electacta_2019_03_176
crossref_primary_10_1021_acs_jpcc_9b11483
crossref_primary_10_1039_C7CC09838C
crossref_primary_10_1002_adma_201704208
crossref_primary_10_1038_s41560_020_00692_7
crossref_primary_10_1002_aenm_202101854
crossref_primary_10_1002_adfm_201900092
crossref_primary_10_1016_j_nanoen_2019_03_044
crossref_primary_10_1002_adfm_201806779
crossref_primary_10_1016_j_solener_2017_09_047
crossref_primary_10_1039_D2EE01742C
crossref_primary_10_1016_j_nanoen_2017_12_047
crossref_primary_10_1016_j_apsusc_2018_11_163
crossref_primary_10_1002_pip_3487
crossref_primary_10_1002_smtd_201900150
crossref_primary_10_1039_C9TA11245F
crossref_primary_10_1039_D0EE00385A
crossref_primary_10_1063_1_5042299
crossref_primary_10_1002_adma_202301404
crossref_primary_10_1002_cssc_201802421
crossref_primary_10_3390_en14041156
crossref_primary_10_1016_j_solener_2018_08_033
crossref_primary_10_1038_s41560_023_01250_7
crossref_primary_10_1002_smll_202404334
crossref_primary_10_1002_advs_201901241
crossref_primary_10_1016_j_apsusc_2018_08_128
crossref_primary_10_1016_j_jpowsour_2020_229160
crossref_primary_10_3390_nano11030750
crossref_primary_10_1021_acsami_0c22993
crossref_primary_10_1002_anie_202003502
crossref_primary_10_1002_solr_201900332
crossref_primary_10_1039_C7TC03482B
crossref_primary_10_1039_C8TA00816G
crossref_primary_10_3390_nano11010088
crossref_primary_10_1021_acsaem_9b00233
crossref_primary_10_1002_adfm_202004209
crossref_primary_10_1016_j_ccr_2023_215502
crossref_primary_10_1016_j_jechem_2021_09_021
crossref_primary_10_1088_1361_6463_ac0269
crossref_primary_10_1021_acsaem_8b01202
crossref_primary_10_3390_cryst7100291
crossref_primary_10_1002_aenm_202002606
crossref_primary_10_1016_j_nanoen_2017_11_069
crossref_primary_10_1021_acsaem_3c01713
crossref_primary_10_1016_j_cej_2023_141705
crossref_primary_10_1021_acsami_1c11990
crossref_primary_10_1021_acs_langmuir_1c00080
crossref_primary_10_1002_adma_201906374
crossref_primary_10_1002_adfm_201905883
crossref_primary_10_1039_C7TA08617B
crossref_primary_10_1016_j_nanoen_2017_08_041
crossref_primary_10_1038_s41467_022_34768_7
crossref_primary_10_1039_D1SE01279G
crossref_primary_10_1002_solr_201900088
crossref_primary_10_1016_j_solener_2024_112754
crossref_primary_10_1002_adfm_201802757
crossref_primary_10_1002_cssc_201902165
crossref_primary_10_1002_ange_202003502
crossref_primary_10_1016_j_mtener_2019_03_005
crossref_primary_10_1021_acsami_8b09515
crossref_primary_10_1039_C9CP05147C
crossref_primary_10_1038_s41467_018_07099_9
crossref_primary_10_1038_s41598_023_35651_1
crossref_primary_10_1002_solr_201700175
crossref_primary_10_1021_acsaem_9b00613
crossref_primary_10_1063_5_0010705
crossref_primary_10_1088_1361_6463_ab05b2
crossref_primary_10_1021_acsaem_8b01038
crossref_primary_10_1002_aenm_202301706
crossref_primary_10_1063_5_0084596
crossref_primary_10_1002_advs_202203210
crossref_primary_10_1021_acsaem_0c00612
crossref_primary_10_1002_solr_201700214
crossref_primary_10_1557_s43577_023_00585_6
crossref_primary_10_1002_adfm_202107823
crossref_primary_10_1002_aenm_201900444
crossref_primary_10_1021_acs_jpcc_2c09122
crossref_primary_10_1039_D1TA01291F
crossref_primary_10_1021_acsami_7b08582
crossref_primary_10_1002_solr_201900078
crossref_primary_10_1039_C8NR05504A
crossref_primary_10_1007_s42247_020_00071_8
crossref_primary_10_15377_2409_983X_2023_10_1
crossref_primary_10_1021_acs_jpcc_8b08869
crossref_primary_10_1039_C7EE02634J
crossref_primary_10_1021_acsnano_0c01392
crossref_primary_10_1039_C8TA05756G
crossref_primary_10_1039_C8QI01020J
crossref_primary_10_1039_C8CC09557D
crossref_primary_10_1002_smll_201804465
crossref_primary_10_1021_acsaem_9b01916
crossref_primary_10_1002_adfm_201808801
crossref_primary_10_1021_acsami_3c04387
crossref_primary_10_1021_acsami_2c22801
crossref_primary_10_1002_admi_201901716
crossref_primary_10_1021_acsami_3c12698
crossref_primary_10_1021_acsami_9b11817
crossref_primary_10_1002_aenm_202301161
crossref_primary_10_1002_solr_201900266
crossref_primary_10_3390_ma16186170
crossref_primary_10_1038_s41566_024_01383_5
crossref_primary_10_1039_C7CC07534K
crossref_primary_10_1039_C8TC05484C
crossref_primary_10_1088_1361_6528_aacf7c
crossref_primary_10_1002_adma_201804402
crossref_primary_10_1021_acsami_9b23374
crossref_primary_10_1039_D0CS00156B
crossref_primary_10_1002_adma_201805214
crossref_primary_10_1002_solr_201800292
crossref_primary_10_1016_j_solmat_2021_111095
crossref_primary_10_1002_solr_202000090
crossref_primary_10_1016_j_nanoen_2019_104289
crossref_primary_10_1039_C9CP05381F
crossref_primary_10_1021_acsenergylett_7b00644
crossref_primary_10_1002_adfm_202103121
crossref_primary_10_1109_JPHOTOV_2019_2928466
crossref_primary_10_1021_acsami_0c13296
crossref_primary_10_1002_anie_201905624
crossref_primary_10_1021_acssuschemeng_8b06606
crossref_primary_10_1016_j_jallcom_2022_167583
crossref_primary_10_1039_C8CC04271C
crossref_primary_10_1002_aenm_201702934
crossref_primary_10_1002_adfm_201904300
crossref_primary_10_1002_admi_202101004
crossref_primary_10_1002_ange_201905624
crossref_primary_10_1002_solr_201900251
crossref_primary_10_1021_acsaem_1c01759
crossref_primary_10_1002_aenm_202003073
crossref_primary_10_1016_j_apsusc_2022_153206
crossref_primary_10_1039_C7TA10742K
crossref_primary_10_1002_smll_202208260
crossref_primary_10_1007_s40820_021_00596_5
crossref_primary_10_3390_app12094545
Cites_doi 10.1021/jacs.6b08337
10.1038/ncomms4461
10.1002/smll.201402767
10.1021/ja512518r
10.1021/ja809598r
10.1002/cssc.201600944
10.1002/aenm.201600846
10.1126/science.aai9081
10.1039/C6TA04503K
10.1021/nn505723h
10.1039/C5NR09045H
10.1126/science.1254763
10.1039/C4EE03664F
10.1126/science.aah5557
10.1039/C5TA01824B
10.1002/cssc.201601027
10.1039/C6EE02016J
10.1002/adfm.201501264
10.1002/admi.201600122
10.1002/aenm.201401855
10.1038/nenergy.2016.177
10.1126/science.aaa9272
10.1002/adma.201600969
10.1038/ncomms9397
10.1126/science.1243167
10.1126/science.1243982
10.1063/1.1736034
10.1126/science.aaa5760
10.1039/C6RA19476A
10.1016/j.nanoen.2015.11.008
10.1039/c3ee40810h
10.1002/adma.201604048
10.1038/nature14133
10.1088/0022-3727/3/2/308
10.1039/C5EE02155C
10.1021/nl501838y
10.1039/C4TA04969A
10.1039/C5EE02608C
10.1038/ncomms8140
10.1002/adma.201600594
10.1039/C6EE02390H
10.1038/nenergy.2015.12
10.1021/jacs.5b01994
10.1038/nenergy.2016.152
10.1039/C6EE02139E
10.1038/nnano.2015.230
10.1002/adma.201600619
10.1126/science.aad4424
10.1002/adma.201602992
10.1038/ncomms6784
10.1039/C6TA05095F
10.1016/j.nanoen.2016.04.060
10.1021/acs.jpclett.6b00295
10.1063/1.1660648
10.1016/j.nanoen.2016.02.033
10.1002/aenm.201501310
10.1039/C4EE02465F
10.1038/nenergy.2016.142
10.1039/C6EE03397K
10.1002/adfm.201504564
10.1039/C6EE03182J
10.1002/adma.201600446
10.1126/sciadv.1501170
10.1021/jacs.5b04930
ContentType Journal Article
Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
CorporateAuthor National Renewable Energy Lab. (NREL), Golden, CO (United States)
CorporateAuthor_xml – name: National Renewable Energy Lab. (NREL), Golden, CO (United States)
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
OIOZB
OTOTI
DOI 10.1002/aenm.201700414
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Aerospace Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 1392207
10_1002_aenm_201700414
AENM201700414
Genre article
GrantInformation_xml – fundername: National Science Fund for Distinguished Young Scholars
  funderid: 50125309
– fundername: Ohio Research Scholar Program
– fundername: National Science Foundation
  funderid: CHE−1230246; DMR‐1534686
– fundername: National Natural Science Foundation of China
  funderid: 51272184; 91433203
– fundername: U.S. Department of Energy (DOE) SunShot Initiative
  funderid: DE‐FOA‐0000990
– fundername: National Basic Research Program of China
  funderid: 2011CB933300
– fundername: National Natural Science Foundation Project of China
  funderid: 61674029
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAIHA
AANLZ
AASGY
AAXRX
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
EJD
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AAYXX
ACBWZ
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMNL
F28
FR3
H8D
L7M
AAPBV
AEUQT
OIOZB
OTOTI
ID FETCH-LOGICAL-c4894-cf90cb6cc4c48b0415655673c7e35388692b2d62c93345d3fd9a7afd5bcc3a513
IEDL.DBID 33P
ISSN 1614-6832
IngestDate Fri May 19 00:35:51 EDT 2023
Tue Nov 19 04:34:57 EST 2024
Fri Aug 23 03:37:26 EDT 2024
Sat Aug 24 00:54:21 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4894-cf90cb6cc4c48b0415655673c7e35388692b2d62c93345d3fd9a7afd5bcc3a513
Notes USDOE
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Solar Energy Technologies Office (EE-4S), SunShot Initiative
NREL/JA-5K00-68335
AC36-08GO28308; DE‐FOA‐0000990
ORCID 0000-0003-3977-5789
0000000339775789
OpenAccessLink https://www.osti.gov/servlets/purl/1392207
PQID 1935963967
PQPubID 886389
PageCount 9
ParticipantIDs osti_scitechconnect_1392207
proquest_journals_1935963967
crossref_primary_10_1002_aenm_201700414
wiley_primary_10_1002_aenm_201700414_AENM201700414
PublicationCentury 2000
PublicationDate September 6, 2017
PublicationDateYYYYMMDD 2017-09-06
PublicationDate_xml – month: 09
  year: 2017
  text: September 6, 2017
  day: 06
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: United States
PublicationTitle Advanced energy materials
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley
References 1971; 42
2015; 6
2015; 5
2016; 19
2015; 3
2015; 347
2015; 11
2013; 342
2009; 131
2015; 348
1961; 32
2017; 355
2015; 8
2013; 6
1970; 3
2016; 11
2016; 4
2016; 6
2016; 7
2015; 25
2014; 5
2016; 1
2016; 2
2016; 3
2015; 137
2017; 10
2016; 354
2014; 14
2015; 517
2016; 352
2016; 138
2016; 28
2014; 8
2014; 7
2016; 26
2016; 8
2014; 345
2016; 9
2016; 22
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 342
  start-page: 341
  year: 2013
  publication-title: Science
– volume: 4
  start-page: 12080
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 151
  year: 1970
  publication-title: J. Phys. D: Appl. Phys.
– volume: 25
  start-page: 7200
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 19
  start-page: 88
  year: 2016
  publication-title: Nano Energy
– volume: 355
  start-page: 722
  year: 2017
  publication-title: Science
– volume: 3
  start-page: 1600122
  year: 2016
  publication-title: Adv. Mater. Interfaces
– volume: 5
  start-page: 1501310
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 16152
  year: 2016
  publication-title: Nat. Energy
– volume: 5
  start-page: 1401855
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 137
  start-page: 8696
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 3128
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 3690
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 710
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 1845
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 2
  start-page: 16177
  year: 2016
  publication-title: Nat. Energy
– volume: 1
  start-page: 15012
  year: 2016
  publication-title: Nat. Energy
– volume: 342
  start-page: 344
  year: 2013
  publication-title: Science
– volume: 6
  start-page: 90248
  year: 2016
  publication-title: RSC Adv
– volume: 8
  start-page: 995
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 354
  start-page: 206
  year: 2016
  publication-title: Science
– volume: 28
  start-page: 5214
  year: 2016
  publication-title: Adv. Mater.
– volume: 14
  start-page: 4158
  year: 2014
  publication-title: Nano Lett.
– volume: 131
  start-page: 6050
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 10
  year: 2015
  publication-title: Small
– volume: 9
  start-page: 3288
  year: 2016
  publication-title: ChemSusChem
– volume: 10
  start-page: 621
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 26
  start-page: 4866
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 3071
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 347
  start-page: 967
  year: 2015
  publication-title: Science
– volume: 6
  start-page: 1739
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 14276
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 28
  start-page: 10718
  year: 2016
  publication-title: Adv. Mater.
– volume: 28
  start-page: 6734
  year: 2016
  publication-title: Adv. Mater.
– volume: 3
  start-page: 9074
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 3461
  year: 2014
  publication-title: Nat. Commun.
– volume: 42
  start-page: 2911
  year: 1971
  publication-title: J. Appl. Phys.
– volume: 5
  start-page: 5784
  year: 2014
  publication-title: Nat. Commun.
– volume: 6
  start-page: 7140
  year: 2015
  publication-title: Nat. Commun.
– volume: 9
  start-page: 2686
  year: 2016
  publication-title: ChemSusChem
– volume: 8
  start-page: 5847
  year: 2016
  publication-title: Nanoscale
– volume: 8
  start-page: 3208
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 137
  start-page: 2674
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 138
  start-page: 12360
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 26
  start-page: 208
  year: 2016
  publication-title: Nano Energy
– volume: 2
  start-page: e1501170
  year: 2016
  publication-title: Sci. Adv.
– volume: 352
  start-page: aad4424
  year: 2016
  publication-title: Science
– volume: 3
  start-page: 9401
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 28
  start-page: 5206
  year: 2016
  publication-title: Adv. Mater.
– volume: 348
  start-page: 1234
  year: 2015
  publication-title: Science
– volume: 32
  start-page: 510
  year: 1961
  publication-title: J. Appl. Phys.
– volume: 22
  start-page: 328
  year: 2016
  publication-title: Nano Energy
– volume: 6
  start-page: 8397
  year: 2015
  publication-title: Nat. Commun.
– volume: 137
  start-page: 6730
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 2928
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 28
  start-page: 9333
  year: 2016
  publication-title: Adv. Mater.
– volume: 28
  start-page: 6478
  year: 2016
  publication-title: Adv. Mater.
– volume: 9
  start-page: 3406
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 1600846
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 517
  start-page: 476
  year: 2015
  publication-title: Nature
– volume: 11
  start-page: 75
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 345
  start-page: 295
  year: 2014
  publication-title: Science
– volume: 1
  start-page: 16142
  year: 2016
  publication-title: Nat. Energy
– volume: 8
  start-page: 12701
  year: 2014
  publication-title: ACS Nano
– ident: e_1_2_7_15_1
  doi: 10.1021/jacs.6b08337
– ident: e_1_2_7_59_1
  doi: 10.1038/ncomms4461
– ident: e_1_2_7_57_1
  doi: 10.1002/smll.201402767
– ident: e_1_2_7_29_1
  doi: 10.1021/ja512518r
– ident: e_1_2_7_1_1
  doi: 10.1021/ja809598r
– ident: e_1_2_7_33_1
  doi: 10.1002/cssc.201600944
– ident: e_1_2_7_49_1
  doi: 10.1002/aenm.201600846
– ident: e_1_2_7_18_1
  doi: 10.1126/science.aai9081
– ident: e_1_2_7_39_1
  doi: 10.1039/C6TA04503K
– ident: e_1_2_7_55_1
  doi: 10.1021/nn505723h
– ident: e_1_2_7_11_1
  doi: 10.1039/C5NR09045H
– ident: e_1_2_7_47_1
  doi: 10.1126/science.1254763
– ident: e_1_2_7_40_1
  doi: 10.1039/C4EE03664F
– ident: e_1_2_7_4_1
  doi: 10.1126/science.aah5557
– ident: e_1_2_7_28_1
  doi: 10.1039/C5TA01824B
– ident: e_1_2_7_16_1
  doi: 10.1002/cssc.201601027
– ident: e_1_2_7_50_1
  doi: 10.1039/C6EE02016J
– ident: e_1_2_7_35_1
  doi: 10.1002/adfm.201501264
– ident: e_1_2_7_38_1
  doi: 10.1002/admi.201600122
– ident: e_1_2_7_9_1
  doi: 10.1002/aenm.201401855
– ident: e_1_2_7_22_1
  doi: 10.1038/nenergy.2016.177
– ident: e_1_2_7_3_1
  doi: 10.1126/science.aaa9272
– ident: e_1_2_7_46_1
  doi: 10.1002/adma.201600969
– ident: e_1_2_7_56_1
  doi: 10.1038/ncomms9397
– ident: e_1_2_7_6_1
  doi: 10.1126/science.1243167
– ident: e_1_2_7_7_1
  doi: 10.1126/science.1243982
– ident: e_1_2_7_48_1
  doi: 10.1063/1.1736034
– ident: e_1_2_7_62_1
  doi: 10.1126/science.aaa5760
– ident: e_1_2_7_13_1
  doi: 10.1039/C6RA19476A
– ident: e_1_2_7_8_1
  doi: 10.1016/j.nanoen.2015.11.008
– ident: e_1_2_7_58_1
  doi: 10.1039/c3ee40810h
– ident: e_1_2_7_43_1
  doi: 10.1002/adma.201604048
– ident: e_1_2_7_2_1
  doi: 10.1038/nature14133
– ident: e_1_2_7_63_1
  doi: 10.1088/0022-3727/3/2/308
– ident: e_1_2_7_26_1
  doi: 10.1039/C5EE02155C
– ident: e_1_2_7_53_1
  doi: 10.1021/nl501838y
– ident: e_1_2_7_42_1
  doi: 10.1039/C4TA04969A
– ident: e_1_2_7_34_1
  doi: 10.1039/C5EE02608C
– ident: e_1_2_7_23_1
  doi: 10.1038/ncomms8140
– ident: e_1_2_7_12_1
  doi: 10.1002/adma.201600594
– ident: e_1_2_7_32_1
  doi: 10.1039/C6EE02390H
– ident: e_1_2_7_51_1
  doi: 10.1038/nenergy.2015.12
– ident: e_1_2_7_31_1
  doi: 10.1021/jacs.5b01994
– ident: e_1_2_7_20_1
  doi: 10.1038/nenergy.2016.152
– ident: e_1_2_7_27_1
  doi: 10.1039/C6EE02139E
– ident: e_1_2_7_30_1
  doi: 10.1038/nnano.2015.230
– ident: e_1_2_7_37_1
  doi: 10.1002/adma.201600619
– ident: e_1_2_7_5_1
  doi: 10.1126/science.aad4424
– ident: e_1_2_7_14_1
  doi: 10.1002/adma.201602992
– ident: e_1_2_7_44_1
  doi: 10.1038/ncomms6784
– ident: e_1_2_7_45_1
  doi: 10.1039/C6TA05095F
– ident: e_1_2_7_61_1
  doi: 10.1016/j.nanoen.2016.04.060
– ident: e_1_2_7_24_1
  doi: 10.1021/acs.jpclett.6b00295
– ident: e_1_2_7_36_1
  doi: 10.1063/1.1660648
– ident: e_1_2_7_52_1
  doi: 10.1016/j.nanoen.2016.02.033
– ident: e_1_2_7_60_1
  doi: 10.1002/aenm.201501310
– ident: e_1_2_7_41_1
  doi: 10.1039/C4EE02465F
– ident: e_1_2_7_21_1
  doi: 10.1038/nenergy.2016.142
– ident: e_1_2_7_17_1
  doi: 10.1039/C6EE03397K
– ident: e_1_2_7_10_1
  doi: 10.1002/adfm.201504564
– ident: e_1_2_7_19_1
  doi: 10.1039/C6EE03182J
– ident: e_1_2_7_25_1
  doi: 10.1002/adma.201600446
– ident: e_1_2_7_54_1
  doi: 10.1126/sciadv.1501170
– ident: e_1_2_7_64_1
  doi: 10.1021/jacs.5b04930
SSID ssj0000491033
Score 2.628464
Snippet Through detailed device characterization using cross‐sectional Kelvin probe force microscopy (KPFM) and trap density of states measurements, we identify that...
Through detailed device characterization using cross-sectional Kelvin probe force microscopy (KPFM) and trap density of states measurements, we identify that...
SourceID osti
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Publisher
SubjectTerms Charge transport
Deposition
Electrical resistivity
Hysteresis
Kelvin probe force microscopy
Optimization
perovskite solar cells
Perovskites
Photovoltaic cells
post annealing
Solar cells
SOLAR ENERGY
Tin dioxide
Title Understanding and Eliminating Hysteresis for Highly Efficient Planar Perovskite Solar Cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201700414
https://www.proquest.com/docview/1935963967
https://www.osti.gov/servlets/purl/1392207
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7akx58i9UqOQieFrd57h6lrvSiCLUgeAhJNgWhtNJtBf-9M9l2bU-CnjZh2QeZTOabYeYbQq5Bktp7qROmdZmIIESSu0wkkrMQslxaEXkK-gP99JrdF0iT01Tx1_wQTcANNSOe16jg1lW3P6ShNkywkhz55epO1kjdhDUc_LkJsgD87aaxnTwAG5Eo2L4r4saU3W6-YcMwtaagYBugcx26RtvzsP__vz4ge0vcSe_qjXJItsLkiOyusREek7fheqELhQstxrHpF6ZG0z5yPoNz_l5RALoUE0TGX7SIFBRguSi2P7Iz-hxm088KY8J0gG4z7YXxuDohw4fipddPlr0XEi-yXCR-lKfeKe8FzB3W8SspleZeBw5nZKZy5lipmM85F7LkozK32o5K6bznVnb5KWlNppNwRqhz4JRw62wQCiQvcwtjLoSUumSpS9vkZrXw5qOm2DA1mTIzuFymWa42uUC5GAAHyHDrMRXIzw2AWMZS3SadlbjMUhEr08XKY0BhCm6zKJhfvmHuiqfHZnb-l4cuyA6OYyaa6pDWfLYIl2S7KhdXcXt-A0Yk4rk
link.rule.ids 230,315,783,787,888,1409,27936,27937,46067,46491
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSzMxEA9aD58efH2fWJ85CJ4Wt3lujkVXKmoRVBC-Q0iyKQilla4K_vfOpA_bkyCedrPLPsjMZH4ZZn5DyAlIUocgdca0rjIRhciML0QmOYuxMNKJxFPQudfdp-KiRJqc9rQWZswPMQu4oWWk9RoNHAPSZ1-soS4OsJQcCeZSK-sVoYRB2-T8bhZmAQDcylNDeYA2IlOgwFPqxpydLb5iwTU1hmBiC7BzHrwm73O58Qv_vUnWJ9CTtse6skWW4mCbrM0REv4l_x_na10oHGjZT32_MDuadpD2GfbnzzUFrEsxR6T_QcvEQgHOi2IHJDeid3E0fK8xLEzvcedMz2O_X_8jj5flw3knm7RfyIIojMhCz-TBqxAEjD2W8ispleZBRw7LZKEM86xSLBjOhax4rzJOu14lfQjcyRbfIY3BcBB3CfUe9iXceRdRRloaB-dcCCl1xXKfN8npdObty5hlw475lJnF6bKz6WqSfRSMBXyAJLcBs4HCqwUcy1ium-RgKi87scXatrD4GICYgtssSeabb9h22b2djfZ-8tAx-dN5uL2xN1fd632yitdTYpo6II3X0Vs8JMt19XaUdPUTnBbm2g
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9swEBbdFMr20NduabppV4dCTyaOnvZxSRxS2g2BNFDoQUiyDIWQhDhZ2H_fGTlxk1OhPdmy8QPNjOYbMfMNIZ9Aktp7qROmdZmIIESSu0wkkrMQslxaEXkKJnM9_ZGNCqTJaav4G36IdsMNLSOu12jgm7Lq_yENtWGFleTILxc7WT8VgMUx_OJ81u6yAP4dpLGfPCAbkSjQ3yNzY8r6568480ydNVjYGeo8xa7R-Yxf_v9vvyIvDsCT3jWa8po8Cas35PkJHeEV-bk4rXShcKDFMnb9wtxoOkHSZ4jOf9UUkC7FDJHlIy0iBwW4Lor9j-yWzsJ2_VDjpjCdY9xMh2G5rK_JYlx8H06SQ_OFxIssF4mv8tQ75b2AscNCfiWl0tzrwGGRzFTOHCsV8znnQpa8KnOrbVVK5z23csDfks5qvQrvCHUOohJunQ1CgehlbuGcCyGlLlnq0i75fJx4s2k4NkzDpswMTpdpp6tLblAuBtABUtx6zAXyOwMolrFUd0nvKC5zsMTaDLD0GGCYgtssCuYv3zB3xfS-Hb3_l4duybPZaGy-fZl-vSGXeDlmpake6ey2-_CBXNTl_mPU1N_v7eWJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+and+Eliminating+Hysteresis+for+Highly+Efficient+Planar+Perovskite+Solar+Cells&rft.jtitle=Advanced+energy+materials&rft.au=Wang%2C+Changlei&rft.au=Xiao%2C+Chuanxiao&rft.au=Yu%2C+Yue&rft.au=Zhao%2C+Dewei&rft.date=2017-09-06&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=7&rft.issue=17&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.201700414&rft.externalDBID=10.1002%252Faenm.201700414&rft.externalDocID=AENM201700414
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon