Novel Genetic Algorithm (GA) based hybrid machine learning-pedotransfer Function (ML-PTF) for prediction of spatial pattern of saturated hydraulic conductivity
Saturated hydraulic conductivity (K s ) is an important soil characteristic that controls water moves through the soil. On the other hand, its measurement is difficult, time-consuming, and expensive; hence Pedotransfer Functions (PTFs) are commonly used for its estimation. Despite significant develo...
Saved in:
Published in: | Engineering applications of computational fluid mechanics Vol. 16; no. 1; pp. 1082 - 1099 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Hong Kong
Taylor & Francis
31-12-2022
Taylor & Francis Ltd Taylor & Francis Group |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Saturated hydraulic conductivity (K
s
) is an important soil characteristic that controls water moves through the soil. On the other hand, its measurement is difficult, time-consuming, and expensive; hence Pedotransfer Functions (PTFs) are commonly used for its estimation. Despite significant development over the years, the PTFs showed poor performance in predicting K
s
. Using Genetic Algorithm (GA), two hybrid Machine Learning based PTFs (ML-PTF), i.e. a combination of GA with Multilayer Perceptron (MLP-GA) and Support Vector Machine (SVM-GA), were proposed in this study. We compared the performances of four machine learning algorithms for different sets of predictors. The predictor combination containing sand, clay, Field Capacity, and Wilting Point showed the highest accuracy for all the ML-PTFs. Among the ML-PTFs, the SVM-GA algorithm outperformed the rest of the PTFs. It was noticed that the SVM-GA PTF demonstrated higher efficiency than the MLP-GA algorithm. The reference model for hydraulic conductivity prediction was selected as the SVM-GA PTF paired with the K-5 predictor variables. The proposed PTFs were compared with 160 models from past literature. It was found that the algorithms advocated were an improvement over these PTFs. The current model would help in efficient spatio-temporal measurement of hydraulic conductivity using pre-available databases. |
---|---|
AbstractList | Saturated hydraulic conductivity (K
s
) is an important soil characteristic that controls water moves through the soil. On the other hand, its measurement is difficult, time-consuming, and expensive; hence Pedotransfer Functions (PTFs) are commonly used for its estimation. Despite significant development over the years, the PTFs showed poor performance in predicting K
s
. Using Genetic Algorithm (GA), two hybrid Machine Learning based PTFs (ML-PTF), i.e. a combination of GA with Multilayer Perceptron (MLP-GA) and Support Vector Machine (SVM-GA), were proposed in this study. We compared the performances of four machine learning algorithms for different sets of predictors. The predictor combination containing sand, clay, Field Capacity, and Wilting Point showed the highest accuracy for all the ML-PTFs. Among the ML-PTFs, the SVM-GA algorithm outperformed the rest of the PTFs. It was noticed that the SVM-GA PTF demonstrated higher efficiency than the MLP-GA algorithm. The reference model for hydraulic conductivity prediction was selected as the SVM-GA PTF paired with the K-5 predictor variables. The proposed PTFs were compared with 160 models from past literature. It was found that the algorithms advocated were an improvement over these PTFs. The current model would help in efficient spatio-temporal measurement of hydraulic conductivity using pre-available databases. Saturated hydraulic conductivity (Ks) is an important soil characteristic that controls water moves through the soil. On the other hand, its measurement is difficult, time-consuming, and expensive; hence Pedotransfer Functions (PTFs) are commonly used for its estimation. Despite significant development over the years, the PTFs showed poor performance in predicting Ks. Using Genetic Algorithm (GA), two hybrid Machine Learning based PTFs (ML-PTF), i.e. a combination of GA with Multilayer Perceptron (MLP-GA) and Support Vector Machine (SVM-GA), were proposed in this study. We compared the performances of four machine learning algorithms for different sets of predictors. The predictor combination containing sand, clay, Field Capacity, and Wilting Point showed the highest accuracy for all the ML-PTFs. Among the ML-PTFs, the SVM-GA algorithm outperformed the rest of the PTFs. It was noticed that the SVM-GA PTF demonstrated higher efficiency than the MLP-GA algorithm. The reference model for hydraulic conductivity prediction was selected as the SVM-GA PTF paired with the K-5 predictor variables. The proposed PTFs were compared with 160 models from past literature. It was found that the algorithms advocated were an improvement over these PTFs. The current model would help in efficient spatio-temporal measurement of hydraulic conductivity using pre-available databases. |
Author | Vishwakarma, Dinesh Kumar Sagar, Atish Singh, R. M. Singh, Vijay Kumar Panda, Kanhu Charan Al-Ansari, Nadhir Elbeltagi, Ahmed Paramaguru, Pradosh Kumar Kumar, Devendra Duan, Huan-Feng Kashyap, P. S. Kumar, Ashish |
Author_xml | – sequence: 1 givenname: Vijay Kumar surname: Singh fullname: Singh, Vijay Kumar organization: Mahatma Gandhi Kashi Vidyapith – sequence: 2 givenname: Kanhu Charan surname: Panda fullname: Panda, Kanhu Charan email: kanhucharan.bm@gmail.com organization: Institute of Agricultural Sciences, BHU – sequence: 3 givenname: Atish surname: Sagar fullname: Sagar, Atish organization: Indian Agricultural Research Institute – sequence: 4 givenname: Nadhir surname: Al-Ansari fullname: Al-Ansari, Nadhir organization: Lulea University of Technology – sequence: 5 givenname: Huan-Feng surname: Duan fullname: Duan, Huan-Feng organization: The Hong Kong Polytechnic University – sequence: 6 givenname: Pradosh Kumar surname: Paramaguru fullname: Paramaguru, Pradosh Kumar organization: ICAR-Indian Institute of Natural Resins and Gums – sequence: 7 givenname: Dinesh Kumar surname: Vishwakarma fullname: Vishwakarma, Dinesh Kumar organization: G.B. Pant University of Agriculture and Technology – sequence: 8 givenname: Ashish surname: Kumar fullname: Kumar, Ashish organization: Institute of Agricultural Sciences, BHU – sequence: 9 givenname: Devendra surname: Kumar fullname: Kumar, Devendra organization: Govind Ballabh Pant University of Agriculture and Technology – sequence: 10 givenname: P. S. surname: Kashyap fullname: Kashyap, P. S. organization: Govind Ballabh Pant University of Agriculture and Technology – sequence: 11 givenname: R. M. surname: Singh fullname: Singh, R. M. organization: Institute of Agricultural Sciences, BHU – sequence: 12 givenname: Ahmed orcidid: 0000-0002-5506-9502 surname: Elbeltagi fullname: Elbeltagi, Ahmed organization: Mansoura University |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-90604$$DView record from Swedish Publication Index |
BookMark | eNp9UstuFDEQHKEgEUI-AckSl0Rigu3xPHxjFdgl0vI4BMTN6vFj19GsPbE9ifZr-FW8OwGJCz64rVJ1tbu7XhYnzjtdFK8JviK4w-8I54ziBl9RTGm-2gPwrDjNoS0xrn6eHN-sPJBeFOcx2h7XuK0Iadlp8euLf9ADWmmnk5VoMWx8sGm7QxerxSXqIWqFtvs-WIV2ILfWaTRoCM66TTlq5VMAF40OaDk5max36OLzuvx2u7xExgc0Bq3sjHuD4gjJwoBySDrMEKQpQDpWUQGmIX9CeqemnPRg0_5V8dzAEPX5Uzwrvi8_3l5_KtdfVzfXi3UpWdelspZKSqI5JS007NCawlXHGNRVrXHHaZPHUbem7ivCZdMoxbEyPeW4rfu-UtVZcTPrKg93Ygx2B2EvPFhxBHzYCAh5QoMWJh8KTY1ZRRjjTa8NrbsGgDS4Y4pnrbezVnzU49T_o_bB_lgc1YY0CZ5XwjL9zUwfg7-fdEzizk_B5W4FbRvWthR3NLPqmSWDjzFo81eWYHFwgvjjBHFwgnhyQs57P-dZlxeyg0cfBiUS7AcfTF6etFFU_5f4DYpBvRk |
CitedBy_id | crossref_primary_10_1007_s12145_022_00909_1 crossref_primary_10_1080_19942060_2023_2174189 crossref_primary_10_1007_s00024_022_03189_4 crossref_primary_10_1007_s00704_024_04940_8 crossref_primary_10_1080_19942060_2023_2243090 crossref_primary_10_2166_aqua_2023_100 crossref_primary_10_1007_s12145_024_01336_0 crossref_primary_10_1007_s00477_023_02657_0 crossref_primary_10_1002_zamm_202300390 crossref_primary_10_1007_s12517_023_11387_0 crossref_primary_10_1080_19942060_2022_2121944 crossref_primary_10_1080_19942060_2023_2192258 crossref_primary_10_2166_ws_2022_396 crossref_primary_10_1016_j_apr_2023_101717 crossref_primary_10_1080_19942060_2022_2123404 crossref_primary_10_1007_s11356_022_21596_x crossref_primary_10_1007_s40996_023_01068_z crossref_primary_10_1007_s11356_023_25221_3 crossref_primary_10_1007_s13201_024_02200_8 crossref_primary_10_2166_aqua_2024_289 crossref_primary_10_1007_s00704_023_04556_4 crossref_primary_10_1007_s00024_023_03426_4 crossref_primary_10_2166_ws_2023_132 crossref_primary_10_1002_ird_2982 crossref_primary_10_1007_s00704_024_04953_3 crossref_primary_10_1080_19942060_2024_2364745 crossref_primary_10_1016_j_jclepro_2024_141822 crossref_primary_10_1080_19942060_2022_2119281 crossref_primary_10_1007_s12665_023_11019_6 crossref_primary_10_1080_19942060_2023_2300456 crossref_primary_10_3390_su14138209 crossref_primary_10_2166_ws_2022_429 crossref_primary_10_1007_s00704_024_04862_5 crossref_primary_10_1080_19942060_2024_2310608 crossref_primary_10_1007_s13201_023_02005_1 |
Cites_doi | 10.1002/ep.12251 10.1007/s11356-021-17084-3 10.1016/j.fuel.2015.01.044 10.1016/j.fuel.2014.09.058 10.1016/S1002-0160(18)60034-7 10.1175/EI-D-14-0024.1 10.1016/j.compag.2021.106294 10.1080/19942060.2020.1858967 10.1016/j.asoc.2012.10.009 10.1016/j.jhydrol.2019.124223 10.1016/j.geoderma.2019.114089 10.3390/su14042141 10.1007/s11269-019-02477-4 10.1016/j.fuel.2013.09.071 10.2134/advagricsystmodel3.c2 10.1016/j.jhydrol.2021.127381 10.1016/j.jenvman.2021.112051 10.1016/j.scitotenv.2017.09.293 10.1111/ejss.12249 10.1016/j.atmosres.2018.05.022 10.1007/s13202-020-00941-1 10.1016/j.supflu.2015.08.012 10.1080/19942060.2021.1984992 10.1038/s41524-019-0221-0 10.1007/s11269-018-2178-z 10.1016/j.biortech.2018.09.115 10.1007/s00500-021-06281-4 10.1016/j.petlm.2015.10.002 10.1029/2020WR028862 10.1007/s11269-021-02818-2 10.1002/ird.2628 10.1016/j.nhtm.2017.10.001 10.1097/00010694-193401000-00003 10.1080/19942060.2021.1893226 10.1080/19942060.2022.2035257 10.1016/j.agwat.2010.12.012 10.1016/j.compag.2018.04.019 10.1016/j.fuel.2015.02.094 10.1016/j.applthermaleng.2018.07.116 10.1007/s11053-019-09459-8 10.1080/19942060.2021.2019126 10.1016/j.catena.2019.104249 10.1007/978-3-319-63439-5_7 10.1080/19942060.2018.1553742 10.1016/j.envsoft.2020.104867 10.1007/s12205-015-0298-z 10.1016/j.renene.2019.12.047 10.1016/j.asoc.2017.12.048 10.1080/19942060.2021.1918258 10.1007/s12517-021-07170-8 10.1016/j.still.2017.01.004 10.1016/j.petlm.2018.06.002 10.1016/j.still.2019.104449 10.1016/j.jhydrol.2018.11.015 10.1016/j.neucom.2016.01.106 10.1002/2017RG000581 10.1016/j.still.2017.03.001 10.1080/19942060.2018.1526119 10.1016/B978-0-12-818032-7.00018-7 10.1016/j.still.2017.07.009 10.1016/j.scitotenv.2019.01.409 10.1016/j.neucom.2007.02.014 10.1016/j.jhydrol.2018.12.067 10.2136/vzj2013.07.0121 10.1039/C9RA04927D 10.1007/s40899-017-0189-1 10.1007/s00366-019-00908-9 10.1080/19942060.2020.1869102 10.1002/cpe.5242 10.1007/s11356-017-0393-4 10.1155/2015/706897 10.1080/19942060.2021.2009374 10.1007/s11104-017-3309-7 10.1002/joc.3914 10.1016/j.eswa.2012.07.059 10.1029/2018WR024357 10.1016/j.still.2014.02.006 10.3390/app9132630 10.1007/s00521-020-05157-2 10.1016/j.petrol.2020.108182 10.1080/19942060.2021.1926328 10.1680/jgeot.17.P.120 10.1016/j.fuel.2014.08.044 |
ContentType | Journal Article |
Copyright | 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2022 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2022 – notice: 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 0YH AAYXX CITATION 3V. 7TC 7XB 8FD 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FR3 GNUQQ GUQSH KR7 M2O MBDVC PQEST PQQKQ PQUKI PRINS Q9U ADTPV AOWAS D8T ZZAVC DOA |
DOI | 10.1080/19942060.2022.2071994 |
DatabaseName | Taylor & Francis Open Access CrossRef ProQuest Central (Corporate) Mechanical Engineering Abstracts ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student Research Library Prep Civil Engineering Abstracts Research Library (ProQuest Database) Research Library (Corporate) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic SwePub SwePub Articles SWEPUB Freely available online SwePub Articles full text DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Civil Engineering Abstracts Research Library Prep ProQuest Central Student Technology Research Database ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition Mechanical Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1997-003X |
EndPage | 1099 |
ExternalDocumentID | oai_doaj_org_article_ffff2a6504314496bef2586aa16084d9 oai_DiVA_org_ltu_90604 10_1080_19942060_2022_2071994 2071994 |
Genre | Research Article |
GroupedDBID | 0YH 4.4 5VS 8G5 ABUWG ACGFS ADBBV ADCVX AENEX AFKRA ALMA_UNASSIGNED_HOLDINGS ARCSS AZQEC BCNDV BENPR DWQXO EBS GNUQQ GROUPED_DOAJ GUQSH KQ8 M2O M4Z OK1 P2P PQEST PQUKI PROAC RDKPK TFMNY TFW AAYXX CCPQU CITATION H13 TDBHL 3V. 7TC 7XB 8FD 8FK FR3 KR7 MBDVC PQQKQ PRINS Q9U ADTPV AOWAS BPHCQ D8T EJD IPNFZ RIG ZZAVC |
ID | FETCH-LOGICAL-c488t-5cdcc1e9217a641174d03844a535e0892699757f5b319c66dd90dfb29075bb3d3 |
IEDL.DBID | DOA |
ISSN | 1994-2060 1997-003X |
IngestDate | Tue Oct 22 15:13:20 EDT 2024 Sat Aug 24 00:24:17 EDT 2024 Fri Nov 08 20:47:17 EST 2024 Fri Aug 23 02:17:32 EDT 2024 Tue Jun 13 19:15:56 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c488t-5cdcc1e9217a641174d03844a535e0892699757f5b319c66dd90dfb29075bb3d3 |
ORCID | 0000-0002-5506-9502 |
OpenAccessLink | https://doaj.org/article/ffff2a6504314496bef2586aa16084d9 |
PQID | 2764772082 |
PQPubID | 3933313 |
PageCount | 18 |
ParticipantIDs | crossref_primary_10_1080_19942060_2022_2071994 proquest_journals_2764772082 swepub_primary_oai_DiVA_org_ltu_90604 doaj_primary_oai_doaj_org_article_ffff2a6504314496bef2586aa16084d9 informaworld_taylorfrancis_310_1080_19942060_2022_2071994 |
PublicationCentury | 2000 |
PublicationDate | 2022-12-31 |
PublicationDateYYYYMMDD | 2022-12-31 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-31 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | Hong Kong |
PublicationPlace_xml | – name: Hong Kong |
PublicationTitle | Engineering applications of computational fluid mechanics |
PublicationYear | 2022 |
Publisher | Taylor & Francis Taylor & Francis Ltd Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd – name: Taylor & Francis Group |
References | CIT0072 CIT0071 CIT0030 CIT0074 Singh V. K. (CIT0073) 2022; 14 CIT0076 CIT0031 CIT0075 CIT0034 CIT0078 CIT0033 CIT0070 CIT0036 CIT0035 CIT0079 CIT0038 CIT0037 CIT0039 CIT0083 CIT0082 CIT0041 CIT0085 CIT0040 CIT0084 CIT0043 CIT0042 CIT0001 CIT0044 CIT0081 CIT0080 Tanveer M. (CIT0077) 2022; 310 Gaudette H. E. (CIT0032) 1974; 44 CIT0003 CIT0047 CIT0002 CIT0046 CIT0005 CIT0049 CIT0004 CIT0048 CIT0007 CIT0006 CIT0009 CIT0008 CIT0050 CIT0052 CIT0051 CIT0010 CIT0054 CIT0053 CIT0012 CIT0056 CIT0011 CIT0055 Zhou J. (CIT0086) 2021; 37 CIT0014 CIT0058 CIT0013 CIT0057 CIT0016 CIT0015 CIT0059 CIT0018 CIT0017 CIT0019 CIT0061 CIT0060 CIT0063 CIT0062 Rousseva S. (CIT0064) 2017; 142 CIT0021 CIT0065 CIT0020 CIT0023 CIT0067 CIT0022 CIT0066 Kumar K. P. M. (CIT0045) 2021; 33 CIT0025 CIT0069 CIT0024 CIT0068 CIT0027 CIT0026 CIT0029 CIT0028 |
References_xml | – ident: CIT0013 doi: 10.1002/ep.12251 – ident: CIT0043 doi: 10.1007/s11356-021-17084-3 – ident: CIT0014 doi: 10.1016/j.fuel.2015.01.044 – ident: CIT0002 doi: 10.1016/j.fuel.2014.09.058 – ident: CIT0017 doi: 10.1016/S1002-0160(18)60034-7 – ident: CIT0035 doi: 10.1175/EI-D-14-0024.1 – ident: CIT0036 doi: 10.1016/j.compag.2021.106294 – ident: CIT0082 doi: 10.1080/19942060.2020.1858967 – ident: CIT0010 doi: 10.1016/j.asoc.2012.10.009 – ident: CIT0074 doi: 10.1016/j.jhydrol.2019.124223 – ident: CIT0063 doi: 10.1016/j.geoderma.2019.114089 – volume: 14 issue: 4 year: 2022 ident: CIT0073 publication-title: Sustainability doi: 10.3390/su14042141 contributor: fullname: Singh V. K. – ident: CIT0050 doi: 10.1007/s11269-019-02477-4 – volume: 142 start-page: 29 volume-title: Advances in agronomy year: 2017 ident: CIT0064 contributor: fullname: Rousseva S. – ident: CIT0009 doi: 10.1016/j.fuel.2013.09.071 – ident: CIT0021 doi: 10.2134/advagricsystmodel3.c2 – ident: CIT0061 doi: 10.1016/j.jhydrol.2021.127381 – ident: CIT0027 doi: 10.1016/j.jenvman.2021.112051 – ident: CIT0025 doi: 10.1016/j.scitotenv.2017.09.293 – ident: CIT0040 doi: 10.1111/ejss.12249 – ident: CIT0065 doi: 10.1016/j.atmosres.2018.05.022 – ident: CIT0008 doi: 10.1007/s13202-020-00941-1 – ident: CIT0011 doi: 10.1016/j.supflu.2015.08.012 – ident: CIT0078 doi: 10.1080/19942060.2021.1984992 – ident: CIT0068 doi: 10.1038/s41524-019-0221-0 – ident: CIT0044 doi: 10.1007/s11269-018-2178-z – ident: CIT0046 doi: 10.1016/j.biortech.2018.09.115 – ident: CIT0053 doi: 10.1007/s00500-021-06281-4 – ident: CIT0012 doi: 10.1016/j.petlm.2015.10.002 – ident: CIT0039 doi: 10.1029/2020WR028862 – ident: CIT0054 doi: 10.1007/s11269-021-02818-2 – ident: CIT0015 doi: 10.1002/ird.2628 – ident: CIT0031 doi: 10.1016/j.nhtm.2017.10.001 – ident: CIT0080 doi: 10.1097/00010694-193401000-00003 – ident: CIT0062 doi: 10.1080/19942060.2021.1893226 – ident: CIT0028 doi: 10.1080/19942060.2022.2035257 – ident: CIT0051 doi: 10.1016/j.agwat.2010.12.012 – ident: CIT0075 doi: 10.1016/j.compag.2018.04.019 – ident: CIT0005 doi: 10.1016/j.fuel.2015.02.094 – ident: CIT0029 doi: 10.1016/j.applthermaleng.2018.07.116 – ident: CIT0055 doi: 10.1007/s11053-019-09459-8 – ident: CIT0001 doi: 10.1080/19942060.2021.2019126 – ident: CIT0067 doi: 10.1016/j.catena.2019.104249 – ident: CIT0059 doi: 10.1007/978-3-319-63439-5_7 – ident: CIT0071 doi: 10.1080/19942060.2018.1553742 – ident: CIT0023 doi: 10.1016/j.envsoft.2020.104867 – ident: CIT0070 doi: 10.1007/s12205-015-0298-z – ident: CIT0084 doi: 10.1016/j.renene.2019.12.047 – ident: CIT0030 doi: 10.1016/j.asoc.2017.12.048 – volume: 44 start-page: 249 issue: 1 year: 1974 ident: CIT0032 publication-title: Journal of Sedimentary Research contributor: fullname: Gaudette H. E. – ident: CIT0049 doi: 10.1080/19942060.2021.1918258 – ident: CIT0060 doi: 10.1007/s12517-021-07170-8 – ident: CIT0085 doi: 10.1016/j.still.2017.01.004 – ident: CIT0007 doi: 10.1016/j.petlm.2018.06.002 – ident: CIT0042 doi: 10.1016/j.still.2019.104449 – ident: CIT0052 doi: 10.1016/j.jhydrol.2018.11.015 – ident: CIT0004 doi: 10.1016/j.neucom.2016.01.106 – ident: CIT0079 doi: 10.1002/2017RG000581 – ident: CIT0022 doi: 10.1016/j.still.2017.03.001 – ident: CIT0034 doi: 10.1080/19942060.2018.1526119 – ident: CIT0038 doi: 10.1016/B978-0-12-818032-7.00018-7 – ident: CIT0026 doi: 10.1016/j.still.2017.07.009 – ident: CIT0069 doi: 10.1016/j.scitotenv.2019.01.409 – ident: CIT0033 doi: 10.1016/j.neucom.2007.02.014 – ident: CIT0037 doi: 10.1016/j.jhydrol.2018.12.067 – ident: CIT0019 doi: 10.2136/vzj2013.07.0121 – ident: CIT0041 doi: 10.1039/C9RA04927D – ident: CIT0020 doi: 10.1007/s40899-017-0189-1 – volume: 37 start-page: 1 issue: 3 year: 2021 ident: CIT0086 publication-title: Engineering with Computers doi: 10.1007/s00366-019-00908-9 contributor: fullname: Zhou J. – ident: CIT0076 doi: 10.1080/19942060.2020.1869102 – volume: 33 start-page: e5242 issue: 3 year: 2021 ident: CIT0045 publication-title: Concurrency and Computation: Practice and Experience doi: 10.1002/cpe.5242 contributor: fullname: Kumar K. P. M. – ident: CIT0057 doi: 10.1007/s11356-017-0393-4 – volume: 310 start-page: 1 issue: 2 year: 2022 ident: CIT0077 publication-title: Annals of Operations Research contributor: fullname: Tanveer M. – ident: CIT0003 doi: 10.1155/2015/706897 – ident: CIT0024 doi: 10.1080/19942060.2021.2009374 – ident: CIT0072 doi: 10.1007/s11104-017-3309-7 – ident: CIT0066 doi: 10.1002/joc.3914 – ident: CIT0056 doi: 10.1016/j.eswa.2012.07.059 – ident: CIT0018 doi: 10.1029/2018WR024357 – ident: CIT0047 doi: 10.1016/j.still.2014.02.006 – ident: CIT0048 doi: 10.3390/app9132630 – ident: CIT0016 doi: 10.1007/s00521-020-05157-2 – ident: CIT0058 doi: 10.1016/j.petrol.2020.108182 – ident: CIT0081 doi: 10.1080/19942060.2021.1926328 – ident: CIT0083 doi: 10.1680/jgeot.17.P.120 – ident: CIT0006 doi: 10.1016/j.fuel.2014.08.044 |
SSID | ssib050731174 ssj0001753472 |
Score | 2.5187695 |
Snippet | Saturated hydraulic conductivity (K
s
) is an important soil characteristic that controls water moves through the soil. On the other hand, its measurement is... Saturated hydraulic conductivity (Ks) is an important soil characteristic that controls water moves through the soil. On the other hand, its measurement is... |
SourceID | doaj swepub proquest crossref informaworld |
SourceType | Open Website Open Access Repository Aggregation Database Publisher |
StartPage | 1082 |
SubjectTerms | genetic algorithm Genetic algorithms Geoteknik Hydraulic conductivity Hydraulics Machine learning Multilayer Perceptron Multilayer perceptrons Pedotransfer Functions Performance prediction Soil Mechanics Soil water movement Soils support vector machine Support vector machines |
Title | Novel Genetic Algorithm (GA) based hybrid machine learning-pedotransfer Function (ML-PTF) for prediction of spatial pattern of saturated hydraulic conductivity |
URI | https://www.tandfonline.com/doi/abs/10.1080/19942060.2022.2071994 https://www.proquest.com/docview/2764772082 https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-90604 https://doaj.org/article/ffff2a6504314496bef2586aa16084d9 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgJzjwUUBsaZEPILWHUMdxHPu4tF16gAqJgrhZdmy3lba7q2wWiV_DX2XG8Va7XHohx1GsjD1j-43jeUPIO-U8-C5jhXI8FqJxbaFDEwpASDpEQPAq4Jnu-bfm4qc6PUOanLtSX3gnbKAHHgbuOMLDrUSiLWippQuR10paW0qmhB9S95jaCKbAkwDkVGWZgU06bQFULlIlp8SFy5lk63QexY5RhiIIFzkmZzUo2NqoEp__P2ym25h0k2c07U2TZ-RJBpV0PHTmOXkQZrvkaQaYNE_f5S55vME--IL8uZj_ClOKxNPQjo6nV_Pupr--pYefxkcUtzdPr39jRhe9TVcuA801Jq6KRYBoNmHe0NEJ7I1oX3r45XPx9XJyREF9uujwH1CSzyNd4s1t0HGR-DwHEXKKAtTFr_jOrqagBETnSECbKlq8JN8nZ5cn50Wu11C0sAz0Rd36ti2DhijHSoHj71mlhLB1VQemNJdaN3UTawfzvpXSe818dBzi89q5ylevyM5sPguvCRVOVr51jjvRCha1jbUqRcuta2y0IYzIh7VxzGKg5TBlZjtdW9OgNU225oh8RBPevYys2kkAvmayr5n7fG1E9KYDmD4dqsShAoqp7lFgf-0tJi8TS8MbzAPmAMNG5P3gQVsant78GCcNp_3KaOQ52vsf_XhDHqFqA1_lPtnpu1U4IA-XfvU2TaO_21UbxA |
link.rule.ids | 230,315,782,786,866,887,2108,27935,27936 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+Genetic+Algorithm+%28GA%29+based+hybrid+machine+learning-pedotransfer+Function+%28ML-PTF%29+for+prediction+of+spatial+pattern+of+saturated+hydraulic+conductivity&rft.jtitle=Engineering+applications+of+computational+fluid+mechanics&rft.au=Singh%2C+Vijay+Kumar&rft.au=Panda%2C+Kanhu+Charan&rft.au=Sagar%2C+Atish&rft.au=Al-Ansari%2C+Nadhir&rft.date=2022-12-31&rft.pub=Taylor+%26+Francis&rft.issn=1994-2060&rft.eissn=1997-003X&rft.volume=16&rft.issue=1&rft.spage=1082&rft.epage=1099&rft_id=info:doi/10.1080%2F19942060.2022.2071994&rft.externalDBID=0YH&rft.externalDocID=2071994 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1994-2060&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1994-2060&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1994-2060&client=summon |