Novel Genetic Algorithm (GA) based hybrid machine learning-pedotransfer Function (ML-PTF) for prediction of spatial pattern of saturated hydraulic conductivity

Saturated hydraulic conductivity (K s ) is an important soil characteristic that controls water moves through the soil. On the other hand, its measurement is difficult, time-consuming, and expensive; hence Pedotransfer Functions (PTFs) are commonly used for its estimation. Despite significant develo...

Full description

Saved in:
Bibliographic Details
Published in:Engineering applications of computational fluid mechanics Vol. 16; no. 1; pp. 1082 - 1099
Main Authors: Singh, Vijay Kumar, Panda, Kanhu Charan, Sagar, Atish, Al-Ansari, Nadhir, Duan, Huan-Feng, Paramaguru, Pradosh Kumar, Vishwakarma, Dinesh Kumar, Kumar, Ashish, Kumar, Devendra, Kashyap, P. S., Singh, R. M., Elbeltagi, Ahmed
Format: Journal Article
Language:English
Published: Hong Kong Taylor & Francis 31-12-2022
Taylor & Francis Ltd
Taylor & Francis Group
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Saturated hydraulic conductivity (K s ) is an important soil characteristic that controls water moves through the soil. On the other hand, its measurement is difficult, time-consuming, and expensive; hence Pedotransfer Functions (PTFs) are commonly used for its estimation. Despite significant development over the years, the PTFs showed poor performance in predicting K s . Using Genetic Algorithm (GA), two hybrid Machine Learning based PTFs (ML-PTF), i.e. a combination of GA with Multilayer Perceptron (MLP-GA) and Support Vector Machine (SVM-GA), were proposed in this study. We compared the performances of four machine learning algorithms for different sets of predictors. The predictor combination containing sand, clay, Field Capacity, and Wilting Point showed the highest accuracy for all the ML-PTFs. Among the ML-PTFs, the SVM-GA algorithm outperformed the rest of the PTFs. It was noticed that the SVM-GA PTF demonstrated higher efficiency than the MLP-GA algorithm. The reference model for hydraulic conductivity prediction was selected as the SVM-GA PTF paired with the K-5 predictor variables. The proposed PTFs were compared with 160 models from past literature. It was found that the algorithms advocated were an improvement over these PTFs. The current model would help in efficient spatio-temporal measurement of hydraulic conductivity using pre-available databases.
AbstractList Saturated hydraulic conductivity (K s ) is an important soil characteristic that controls water moves through the soil. On the other hand, its measurement is difficult, time-consuming, and expensive; hence Pedotransfer Functions (PTFs) are commonly used for its estimation. Despite significant development over the years, the PTFs showed poor performance in predicting K s . Using Genetic Algorithm (GA), two hybrid Machine Learning based PTFs (ML-PTF), i.e. a combination of GA with Multilayer Perceptron (MLP-GA) and Support Vector Machine (SVM-GA), were proposed in this study. We compared the performances of four machine learning algorithms for different sets of predictors. The predictor combination containing sand, clay, Field Capacity, and Wilting Point showed the highest accuracy for all the ML-PTFs. Among the ML-PTFs, the SVM-GA algorithm outperformed the rest of the PTFs. It was noticed that the SVM-GA PTF demonstrated higher efficiency than the MLP-GA algorithm. The reference model for hydraulic conductivity prediction was selected as the SVM-GA PTF paired with the K-5 predictor variables. The proposed PTFs were compared with 160 models from past literature. It was found that the algorithms advocated were an improvement over these PTFs. The current model would help in efficient spatio-temporal measurement of hydraulic conductivity using pre-available databases.
Saturated hydraulic conductivity (Ks) is an important soil characteristic that controls water moves through the soil. On the other hand, its measurement is difficult, time-consuming, and expensive; hence Pedotransfer Functions (PTFs) are commonly used for its estimation. Despite significant development over the years, the PTFs showed poor performance in predicting Ks. Using Genetic Algorithm (GA), two hybrid Machine Learning based PTFs (ML-PTF), i.e. a combination of GA with Multilayer Perceptron (MLP-GA) and Support Vector Machine (SVM-GA), were proposed in this study. We compared the performances of four machine learning algorithms for different sets of predictors. The predictor combination containing sand, clay, Field Capacity, and Wilting Point showed the highest accuracy for all the ML-PTFs. Among the ML-PTFs, the SVM-GA algorithm outperformed the rest of the PTFs. It was noticed that the SVM-GA PTF demonstrated higher efficiency than the MLP-GA algorithm. The reference model for hydraulic conductivity prediction was selected as the SVM-GA PTF paired with the K-5 predictor variables. The proposed PTFs were compared with 160 models from past literature. It was found that the algorithms advocated were an improvement over these PTFs. The current model would help in efficient spatio-temporal measurement of hydraulic conductivity using pre-available databases.
Author Vishwakarma, Dinesh Kumar
Sagar, Atish
Singh, R. M.
Singh, Vijay Kumar
Panda, Kanhu Charan
Al-Ansari, Nadhir
Elbeltagi, Ahmed
Paramaguru, Pradosh Kumar
Kumar, Devendra
Duan, Huan-Feng
Kashyap, P. S.
Kumar, Ashish
Author_xml – sequence: 1
  givenname: Vijay Kumar
  surname: Singh
  fullname: Singh, Vijay Kumar
  organization: Mahatma Gandhi Kashi Vidyapith
– sequence: 2
  givenname: Kanhu Charan
  surname: Panda
  fullname: Panda, Kanhu Charan
  email: kanhucharan.bm@gmail.com
  organization: Institute of Agricultural Sciences, BHU
– sequence: 3
  givenname: Atish
  surname: Sagar
  fullname: Sagar, Atish
  organization: Indian Agricultural Research Institute
– sequence: 4
  givenname: Nadhir
  surname: Al-Ansari
  fullname: Al-Ansari, Nadhir
  organization: Lulea University of Technology
– sequence: 5
  givenname: Huan-Feng
  surname: Duan
  fullname: Duan, Huan-Feng
  organization: The Hong Kong Polytechnic University
– sequence: 6
  givenname: Pradosh Kumar
  surname: Paramaguru
  fullname: Paramaguru, Pradosh Kumar
  organization: ICAR-Indian Institute of Natural Resins and Gums
– sequence: 7
  givenname: Dinesh Kumar
  surname: Vishwakarma
  fullname: Vishwakarma, Dinesh Kumar
  organization: G.B. Pant University of Agriculture and Technology
– sequence: 8
  givenname: Ashish
  surname: Kumar
  fullname: Kumar, Ashish
  organization: Institute of Agricultural Sciences, BHU
– sequence: 9
  givenname: Devendra
  surname: Kumar
  fullname: Kumar, Devendra
  organization: Govind Ballabh Pant University of Agriculture and Technology
– sequence: 10
  givenname: P. S.
  surname: Kashyap
  fullname: Kashyap, P. S.
  organization: Govind Ballabh Pant University of Agriculture and Technology
– sequence: 11
  givenname: R. M.
  surname: Singh
  fullname: Singh, R. M.
  organization: Institute of Agricultural Sciences, BHU
– sequence: 12
  givenname: Ahmed
  orcidid: 0000-0002-5506-9502
  surname: Elbeltagi
  fullname: Elbeltagi, Ahmed
  organization: Mansoura University
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-90604$$DView record from Swedish Publication Index
BookMark eNp9UstuFDEQHKEgEUI-AckSl0Rigu3xPHxjFdgl0vI4BMTN6vFj19GsPbE9ifZr-FW8OwGJCz64rVJ1tbu7XhYnzjtdFK8JviK4w-8I54ziBl9RTGm-2gPwrDjNoS0xrn6eHN-sPJBeFOcx2h7XuK0Iadlp8euLf9ADWmmnk5VoMWx8sGm7QxerxSXqIWqFtvs-WIV2ILfWaTRoCM66TTlq5VMAF40OaDk5max36OLzuvx2u7xExgc0Bq3sjHuD4gjJwoBySDrMEKQpQDpWUQGmIX9CeqemnPRg0_5V8dzAEPX5Uzwrvi8_3l5_KtdfVzfXi3UpWdelspZKSqI5JS007NCawlXHGNRVrXHHaZPHUbem7ivCZdMoxbEyPeW4rfu-UtVZcTPrKg93Ygx2B2EvPFhxBHzYCAh5QoMWJh8KTY1ZRRjjTa8NrbsGgDS4Y4pnrbezVnzU49T_o_bB_lgc1YY0CZ5XwjL9zUwfg7-fdEzizk_B5W4FbRvWthR3NLPqmSWDjzFo81eWYHFwgvjjBHFwgnhyQs57P-dZlxeyg0cfBiUS7AcfTF6etFFU_5f4DYpBvRk
CitedBy_id crossref_primary_10_1007_s12145_022_00909_1
crossref_primary_10_1080_19942060_2023_2174189
crossref_primary_10_1007_s00024_022_03189_4
crossref_primary_10_1007_s00704_024_04940_8
crossref_primary_10_1080_19942060_2023_2243090
crossref_primary_10_2166_aqua_2023_100
crossref_primary_10_1007_s12145_024_01336_0
crossref_primary_10_1007_s00477_023_02657_0
crossref_primary_10_1002_zamm_202300390
crossref_primary_10_1007_s12517_023_11387_0
crossref_primary_10_1080_19942060_2022_2121944
crossref_primary_10_1080_19942060_2023_2192258
crossref_primary_10_2166_ws_2022_396
crossref_primary_10_1016_j_apr_2023_101717
crossref_primary_10_1080_19942060_2022_2123404
crossref_primary_10_1007_s11356_022_21596_x
crossref_primary_10_1007_s40996_023_01068_z
crossref_primary_10_1007_s11356_023_25221_3
crossref_primary_10_1007_s13201_024_02200_8
crossref_primary_10_2166_aqua_2024_289
crossref_primary_10_1007_s00704_023_04556_4
crossref_primary_10_1007_s00024_023_03426_4
crossref_primary_10_2166_ws_2023_132
crossref_primary_10_1002_ird_2982
crossref_primary_10_1007_s00704_024_04953_3
crossref_primary_10_1080_19942060_2024_2364745
crossref_primary_10_1016_j_jclepro_2024_141822
crossref_primary_10_1080_19942060_2022_2119281
crossref_primary_10_1007_s12665_023_11019_6
crossref_primary_10_1080_19942060_2023_2300456
crossref_primary_10_3390_su14138209
crossref_primary_10_2166_ws_2022_429
crossref_primary_10_1007_s00704_024_04862_5
crossref_primary_10_1080_19942060_2024_2310608
crossref_primary_10_1007_s13201_023_02005_1
Cites_doi 10.1002/ep.12251
10.1007/s11356-021-17084-3
10.1016/j.fuel.2015.01.044
10.1016/j.fuel.2014.09.058
10.1016/S1002-0160(18)60034-7
10.1175/EI-D-14-0024.1
10.1016/j.compag.2021.106294
10.1080/19942060.2020.1858967
10.1016/j.asoc.2012.10.009
10.1016/j.jhydrol.2019.124223
10.1016/j.geoderma.2019.114089
10.3390/su14042141
10.1007/s11269-019-02477-4
10.1016/j.fuel.2013.09.071
10.2134/advagricsystmodel3.c2
10.1016/j.jhydrol.2021.127381
10.1016/j.jenvman.2021.112051
10.1016/j.scitotenv.2017.09.293
10.1111/ejss.12249
10.1016/j.atmosres.2018.05.022
10.1007/s13202-020-00941-1
10.1016/j.supflu.2015.08.012
10.1080/19942060.2021.1984992
10.1038/s41524-019-0221-0
10.1007/s11269-018-2178-z
10.1016/j.biortech.2018.09.115
10.1007/s00500-021-06281-4
10.1016/j.petlm.2015.10.002
10.1029/2020WR028862
10.1007/s11269-021-02818-2
10.1002/ird.2628
10.1016/j.nhtm.2017.10.001
10.1097/00010694-193401000-00003
10.1080/19942060.2021.1893226
10.1080/19942060.2022.2035257
10.1016/j.agwat.2010.12.012
10.1016/j.compag.2018.04.019
10.1016/j.fuel.2015.02.094
10.1016/j.applthermaleng.2018.07.116
10.1007/s11053-019-09459-8
10.1080/19942060.2021.2019126
10.1016/j.catena.2019.104249
10.1007/978-3-319-63439-5_7
10.1080/19942060.2018.1553742
10.1016/j.envsoft.2020.104867
10.1007/s12205-015-0298-z
10.1016/j.renene.2019.12.047
10.1016/j.asoc.2017.12.048
10.1080/19942060.2021.1918258
10.1007/s12517-021-07170-8
10.1016/j.still.2017.01.004
10.1016/j.petlm.2018.06.002
10.1016/j.still.2019.104449
10.1016/j.jhydrol.2018.11.015
10.1016/j.neucom.2016.01.106
10.1002/2017RG000581
10.1016/j.still.2017.03.001
10.1080/19942060.2018.1526119
10.1016/B978-0-12-818032-7.00018-7
10.1016/j.still.2017.07.009
10.1016/j.scitotenv.2019.01.409
10.1016/j.neucom.2007.02.014
10.1016/j.jhydrol.2018.12.067
10.2136/vzj2013.07.0121
10.1039/C9RA04927D
10.1007/s40899-017-0189-1
10.1007/s00366-019-00908-9
10.1080/19942060.2020.1869102
10.1002/cpe.5242
10.1007/s11356-017-0393-4
10.1155/2015/706897
10.1080/19942060.2021.2009374
10.1007/s11104-017-3309-7
10.1002/joc.3914
10.1016/j.eswa.2012.07.059
10.1029/2018WR024357
10.1016/j.still.2014.02.006
10.3390/app9132630
10.1007/s00521-020-05157-2
10.1016/j.petrol.2020.108182
10.1080/19942060.2021.1926328
10.1680/jgeot.17.P.120
10.1016/j.fuel.2014.08.044
ContentType Journal Article
Copyright 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2022
2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2022
– notice: 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 0YH
AAYXX
CITATION
3V.
7TC
7XB
8FD
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FR3
GNUQQ
GUQSH
KR7
M2O
MBDVC
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ADTPV
AOWAS
D8T
ZZAVC
DOA
DOI 10.1080/19942060.2022.2071994
DatabaseName Taylor & Francis Open Access
CrossRef
ProQuest Central (Corporate)
Mechanical Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
Research Library Prep
Civil Engineering Abstracts
Research Library (ProQuest Database)
Research Library (Corporate)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Civil Engineering Abstracts
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Mechanical Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList


Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1997-003X
EndPage 1099
ExternalDocumentID oai_doaj_org_article_ffff2a6504314496bef2586aa16084d9
oai_DiVA_org_ltu_90604
10_1080_19942060_2022_2071994
2071994
Genre Research Article
GroupedDBID 0YH
4.4
5VS
8G5
ABUWG
ACGFS
ADBBV
ADCVX
AENEX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AZQEC
BCNDV
BENPR
DWQXO
EBS
GNUQQ
GROUPED_DOAJ
GUQSH
KQ8
M2O
M4Z
OK1
P2P
PQEST
PQUKI
PROAC
RDKPK
TFMNY
TFW
AAYXX
CCPQU
CITATION
H13
TDBHL
3V.
7TC
7XB
8FD
8FK
FR3
KR7
MBDVC
PQQKQ
PRINS
Q9U
ADTPV
AOWAS
BPHCQ
D8T
EJD
IPNFZ
RIG
ZZAVC
ID FETCH-LOGICAL-c488t-5cdcc1e9217a641174d03844a535e0892699757f5b319c66dd90dfb29075bb3d3
IEDL.DBID DOA
ISSN 1994-2060
1997-003X
IngestDate Tue Oct 22 15:13:20 EDT 2024
Sat Aug 24 00:24:17 EDT 2024
Fri Nov 08 20:47:17 EST 2024
Fri Aug 23 02:17:32 EDT 2024
Tue Jun 13 19:15:56 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c488t-5cdcc1e9217a641174d03844a535e0892699757f5b319c66dd90dfb29075bb3d3
ORCID 0000-0002-5506-9502
OpenAccessLink https://doaj.org/article/ffff2a6504314496bef2586aa16084d9
PQID 2764772082
PQPubID 3933313
PageCount 18
ParticipantIDs crossref_primary_10_1080_19942060_2022_2071994
proquest_journals_2764772082
swepub_primary_oai_DiVA_org_ltu_90604
doaj_primary_oai_doaj_org_article_ffff2a6504314496bef2586aa16084d9
informaworld_taylorfrancis_310_1080_19942060_2022_2071994
PublicationCentury 2000
PublicationDate 2022-12-31
PublicationDateYYYYMMDD 2022-12-31
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-31
  day: 31
PublicationDecade 2020
PublicationPlace Hong Kong
PublicationPlace_xml – name: Hong Kong
PublicationTitle Engineering applications of computational fluid mechanics
PublicationYear 2022
Publisher Taylor & Francis
Taylor & Francis Ltd
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
– name: Taylor & Francis Group
References CIT0072
CIT0071
CIT0030
CIT0074
Singh V. K. (CIT0073) 2022; 14
CIT0076
CIT0031
CIT0075
CIT0034
CIT0078
CIT0033
CIT0070
CIT0036
CIT0035
CIT0079
CIT0038
CIT0037
CIT0039
CIT0083
CIT0082
CIT0041
CIT0085
CIT0040
CIT0084
CIT0043
CIT0042
CIT0001
CIT0044
CIT0081
CIT0080
Tanveer M. (CIT0077) 2022; 310
Gaudette H. E. (CIT0032) 1974; 44
CIT0003
CIT0047
CIT0002
CIT0046
CIT0005
CIT0049
CIT0004
CIT0048
CIT0007
CIT0006
CIT0009
CIT0008
CIT0050
CIT0052
CIT0051
CIT0010
CIT0054
CIT0053
CIT0012
CIT0056
CIT0011
CIT0055
Zhou J. (CIT0086) 2021; 37
CIT0014
CIT0058
CIT0013
CIT0057
CIT0016
CIT0015
CIT0059
CIT0018
CIT0017
CIT0019
CIT0061
CIT0060
CIT0063
CIT0062
Rousseva S. (CIT0064) 2017; 142
CIT0021
CIT0065
CIT0020
CIT0023
CIT0067
CIT0022
CIT0066
Kumar K. P. M. (CIT0045) 2021; 33
CIT0025
CIT0069
CIT0024
CIT0068
CIT0027
CIT0026
CIT0029
CIT0028
References_xml – ident: CIT0013
  doi: 10.1002/ep.12251
– ident: CIT0043
  doi: 10.1007/s11356-021-17084-3
– ident: CIT0014
  doi: 10.1016/j.fuel.2015.01.044
– ident: CIT0002
  doi: 10.1016/j.fuel.2014.09.058
– ident: CIT0017
  doi: 10.1016/S1002-0160(18)60034-7
– ident: CIT0035
  doi: 10.1175/EI-D-14-0024.1
– ident: CIT0036
  doi: 10.1016/j.compag.2021.106294
– ident: CIT0082
  doi: 10.1080/19942060.2020.1858967
– ident: CIT0010
  doi: 10.1016/j.asoc.2012.10.009
– ident: CIT0074
  doi: 10.1016/j.jhydrol.2019.124223
– ident: CIT0063
  doi: 10.1016/j.geoderma.2019.114089
– volume: 14
  issue: 4
  year: 2022
  ident: CIT0073
  publication-title: Sustainability
  doi: 10.3390/su14042141
  contributor:
    fullname: Singh V. K.
– ident: CIT0050
  doi: 10.1007/s11269-019-02477-4
– volume: 142
  start-page: 29
  volume-title: Advances in agronomy
  year: 2017
  ident: CIT0064
  contributor:
    fullname: Rousseva S.
– ident: CIT0009
  doi: 10.1016/j.fuel.2013.09.071
– ident: CIT0021
  doi: 10.2134/advagricsystmodel3.c2
– ident: CIT0061
  doi: 10.1016/j.jhydrol.2021.127381
– ident: CIT0027
  doi: 10.1016/j.jenvman.2021.112051
– ident: CIT0025
  doi: 10.1016/j.scitotenv.2017.09.293
– ident: CIT0040
  doi: 10.1111/ejss.12249
– ident: CIT0065
  doi: 10.1016/j.atmosres.2018.05.022
– ident: CIT0008
  doi: 10.1007/s13202-020-00941-1
– ident: CIT0011
  doi: 10.1016/j.supflu.2015.08.012
– ident: CIT0078
  doi: 10.1080/19942060.2021.1984992
– ident: CIT0068
  doi: 10.1038/s41524-019-0221-0
– ident: CIT0044
  doi: 10.1007/s11269-018-2178-z
– ident: CIT0046
  doi: 10.1016/j.biortech.2018.09.115
– ident: CIT0053
  doi: 10.1007/s00500-021-06281-4
– ident: CIT0012
  doi: 10.1016/j.petlm.2015.10.002
– ident: CIT0039
  doi: 10.1029/2020WR028862
– ident: CIT0054
  doi: 10.1007/s11269-021-02818-2
– ident: CIT0015
  doi: 10.1002/ird.2628
– ident: CIT0031
  doi: 10.1016/j.nhtm.2017.10.001
– ident: CIT0080
  doi: 10.1097/00010694-193401000-00003
– ident: CIT0062
  doi: 10.1080/19942060.2021.1893226
– ident: CIT0028
  doi: 10.1080/19942060.2022.2035257
– ident: CIT0051
  doi: 10.1016/j.agwat.2010.12.012
– ident: CIT0075
  doi: 10.1016/j.compag.2018.04.019
– ident: CIT0005
  doi: 10.1016/j.fuel.2015.02.094
– ident: CIT0029
  doi: 10.1016/j.applthermaleng.2018.07.116
– ident: CIT0055
  doi: 10.1007/s11053-019-09459-8
– ident: CIT0001
  doi: 10.1080/19942060.2021.2019126
– ident: CIT0067
  doi: 10.1016/j.catena.2019.104249
– ident: CIT0059
  doi: 10.1007/978-3-319-63439-5_7
– ident: CIT0071
  doi: 10.1080/19942060.2018.1553742
– ident: CIT0023
  doi: 10.1016/j.envsoft.2020.104867
– ident: CIT0070
  doi: 10.1007/s12205-015-0298-z
– ident: CIT0084
  doi: 10.1016/j.renene.2019.12.047
– ident: CIT0030
  doi: 10.1016/j.asoc.2017.12.048
– volume: 44
  start-page: 249
  issue: 1
  year: 1974
  ident: CIT0032
  publication-title: Journal of Sedimentary Research
  contributor:
    fullname: Gaudette H. E.
– ident: CIT0049
  doi: 10.1080/19942060.2021.1918258
– ident: CIT0060
  doi: 10.1007/s12517-021-07170-8
– ident: CIT0085
  doi: 10.1016/j.still.2017.01.004
– ident: CIT0007
  doi: 10.1016/j.petlm.2018.06.002
– ident: CIT0042
  doi: 10.1016/j.still.2019.104449
– ident: CIT0052
  doi: 10.1016/j.jhydrol.2018.11.015
– ident: CIT0004
  doi: 10.1016/j.neucom.2016.01.106
– ident: CIT0079
  doi: 10.1002/2017RG000581
– ident: CIT0022
  doi: 10.1016/j.still.2017.03.001
– ident: CIT0034
  doi: 10.1080/19942060.2018.1526119
– ident: CIT0038
  doi: 10.1016/B978-0-12-818032-7.00018-7
– ident: CIT0026
  doi: 10.1016/j.still.2017.07.009
– ident: CIT0069
  doi: 10.1016/j.scitotenv.2019.01.409
– ident: CIT0033
  doi: 10.1016/j.neucom.2007.02.014
– ident: CIT0037
  doi: 10.1016/j.jhydrol.2018.12.067
– ident: CIT0019
  doi: 10.2136/vzj2013.07.0121
– ident: CIT0041
  doi: 10.1039/C9RA04927D
– ident: CIT0020
  doi: 10.1007/s40899-017-0189-1
– volume: 37
  start-page: 1
  issue: 3
  year: 2021
  ident: CIT0086
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-019-00908-9
  contributor:
    fullname: Zhou J.
– ident: CIT0076
  doi: 10.1080/19942060.2020.1869102
– volume: 33
  start-page: e5242
  issue: 3
  year: 2021
  ident: CIT0045
  publication-title: Concurrency and Computation: Practice and Experience
  doi: 10.1002/cpe.5242
  contributor:
    fullname: Kumar K. P. M.
– ident: CIT0057
  doi: 10.1007/s11356-017-0393-4
– volume: 310
  start-page: 1
  issue: 2
  year: 2022
  ident: CIT0077
  publication-title: Annals of Operations Research
  contributor:
    fullname: Tanveer M.
– ident: CIT0003
  doi: 10.1155/2015/706897
– ident: CIT0024
  doi: 10.1080/19942060.2021.2009374
– ident: CIT0072
  doi: 10.1007/s11104-017-3309-7
– ident: CIT0066
  doi: 10.1002/joc.3914
– ident: CIT0056
  doi: 10.1016/j.eswa.2012.07.059
– ident: CIT0018
  doi: 10.1029/2018WR024357
– ident: CIT0047
  doi: 10.1016/j.still.2014.02.006
– ident: CIT0048
  doi: 10.3390/app9132630
– ident: CIT0016
  doi: 10.1007/s00521-020-05157-2
– ident: CIT0058
  doi: 10.1016/j.petrol.2020.108182
– ident: CIT0081
  doi: 10.1080/19942060.2021.1926328
– ident: CIT0083
  doi: 10.1680/jgeot.17.P.120
– ident: CIT0006
  doi: 10.1016/j.fuel.2014.08.044
SSID ssib050731174
ssj0001753472
Score 2.5187695
Snippet Saturated hydraulic conductivity (K s ) is an important soil characteristic that controls water moves through the soil. On the other hand, its measurement is...
Saturated hydraulic conductivity (Ks) is an important soil characteristic that controls water moves through the soil. On the other hand, its measurement is...
SourceID doaj
swepub
proquest
crossref
informaworld
SourceType Open Website
Open Access Repository
Aggregation Database
Publisher
StartPage 1082
SubjectTerms genetic algorithm
Genetic algorithms
Geoteknik
Hydraulic conductivity
Hydraulics
Machine learning
Multilayer Perceptron
Multilayer perceptrons
Pedotransfer Functions
Performance prediction
Soil Mechanics
Soil water movement
Soils
support vector machine
Support vector machines
Title Novel Genetic Algorithm (GA) based hybrid machine learning-pedotransfer Function (ML-PTF) for prediction of spatial pattern of saturated hydraulic conductivity
URI https://www.tandfonline.com/doi/abs/10.1080/19942060.2022.2071994
https://www.proquest.com/docview/2764772082
https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-90604
https://doaj.org/article/ffff2a6504314496bef2586aa16084d9
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgJzjwUUBsaZEPILWHUMdxHPu4tF16gAqJgrhZdmy3lba7q2wWiV_DX2XG8Va7XHohx1GsjD1j-43jeUPIO-U8-C5jhXI8FqJxbaFDEwpASDpEQPAq4Jnu-bfm4qc6PUOanLtSX3gnbKAHHgbuOMLDrUSiLWippQuR10paW0qmhB9S95jaCKbAkwDkVGWZgU06bQFULlIlp8SFy5lk63QexY5RhiIIFzkmZzUo2NqoEp__P2ym25h0k2c07U2TZ-RJBpV0PHTmOXkQZrvkaQaYNE_f5S55vME--IL8uZj_ClOKxNPQjo6nV_Pupr--pYefxkcUtzdPr39jRhe9TVcuA801Jq6KRYBoNmHe0NEJ7I1oX3r45XPx9XJyREF9uujwH1CSzyNd4s1t0HGR-DwHEXKKAtTFr_jOrqagBETnSECbKlq8JN8nZ5cn50Wu11C0sAz0Rd36ti2DhijHSoHj71mlhLB1VQemNJdaN3UTawfzvpXSe818dBzi89q5ylevyM5sPguvCRVOVr51jjvRCha1jbUqRcuta2y0IYzIh7VxzGKg5TBlZjtdW9OgNU225oh8RBPevYys2kkAvmayr5n7fG1E9KYDmD4dqsShAoqp7lFgf-0tJi8TS8MbzAPmAMNG5P3gQVsant78GCcNp_3KaOQ52vsf_XhDHqFqA1_lPtnpu1U4IA-XfvU2TaO_21UbxA
link.rule.ids 230,315,782,786,866,887,2108,27935,27936
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+Genetic+Algorithm+%28GA%29+based+hybrid+machine+learning-pedotransfer+Function+%28ML-PTF%29+for+prediction+of+spatial+pattern+of+saturated+hydraulic+conductivity&rft.jtitle=Engineering+applications+of+computational+fluid+mechanics&rft.au=Singh%2C+Vijay+Kumar&rft.au=Panda%2C+Kanhu+Charan&rft.au=Sagar%2C+Atish&rft.au=Al-Ansari%2C+Nadhir&rft.date=2022-12-31&rft.pub=Taylor+%26+Francis&rft.issn=1994-2060&rft.eissn=1997-003X&rft.volume=16&rft.issue=1&rft.spage=1082&rft.epage=1099&rft_id=info:doi/10.1080%2F19942060.2022.2071994&rft.externalDBID=0YH&rft.externalDocID=2071994
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1994-2060&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1994-2060&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1994-2060&client=summon