Intricacies of the Molecular Machinery of Catecholamine Biosynthesis and Secretion by Chromaffin Cells of the Normal Adrenal Medulla and in Pheochromocytoma and Paraganglioma

The adrenal medulla is composed predominantly of chromaffin cells producing and secreting the catecholamines dopamine, norepinephrine, and epinephrine. Catecholamine biosynthesis and secretion is a complex and tightly controlled physiologic process. The pathways involved have been extensively studie...

Full description

Saved in:
Bibliographic Details
Published in:Cancers Vol. 11; no. 8; p. 1121
Main Authors: Berends, Annika M A, Eisenhofer, Graeme, Fishbein, Lauren, Horst-Schrivers, Anouk N A V D, Kema, Ido P, Links, Thera P, Lenders, Jacques W M, Kerstens, Michiel N
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 06-08-2019
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The adrenal medulla is composed predominantly of chromaffin cells producing and secreting the catecholamines dopamine, norepinephrine, and epinephrine. Catecholamine biosynthesis and secretion is a complex and tightly controlled physiologic process. The pathways involved have been extensively studied, and various elements of the underlying molecular machinery have been identified. In this review, we provide a detailed description of the route from stimulus to secretion of catecholamines by the normal adrenal chromaffin cell compared to chromaffin tumor cells in pheochromocytomas. Pheochromocytomas are adrenomedullary tumors that are characterized by uncontrolled synthesis and secretion of catecholamines. This uncontrolled secretion can be partly explained by perturbations of the molecular catecholamine secretory machinery in pheochromocytoma cells. Chromaffin cell tumors also include sympathetic paragangliomas originating in sympathetic ganglia. Pheochromocytomas and paragangliomas are usually locally confined tumors, but about 15% do metastasize to distant locations. Histopathological examination currently poorly predicts future biologic behavior, thus long term postoperative follow-up is required. Therefore, there is an unmet need for prognostic biomarkers. Clearer understanding of the cellular mechanisms involved in the secretory characteristics of pheochromocytomas and sympathetic paragangliomas may offer one approach for the discovery of novel prognostic biomarkers for improved therapeutic targeting and monitoring of treatment or disease progression.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:2072-6694
2072-6694
DOI:10.3390/cancers11081121