Comparison of Ultrasound Image Classifier Deep Learning Algorithms for Shrapnel Detection

Ultrasound imaging is essential in emergency medicine and combat casualty care, oftentimes used as a critical triage tool. However, identifying injuries, such as shrapnel embedded in tissue or a pneumothorax, can be challenging without extensive ultrasonography training, which may not be available i...

Full description

Saved in:
Bibliographic Details
Published in:Journal of imaging Vol. 8; no. 5; p. 140
Main Authors: Boice, Emily N, Hernandez-Torres, Sofia I, Snider, Eric J
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 20-05-2022
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ultrasound imaging is essential in emergency medicine and combat casualty care, oftentimes used as a critical triage tool. However, identifying injuries, such as shrapnel embedded in tissue or a pneumothorax, can be challenging without extensive ultrasonography training, which may not be available in prolonged field care or emergency medicine scenarios. Artificial intelligence can simplify this by automating image interpretation but only if it can be deployed for use in real time. We previously developed a deep learning neural network model specifically designed to identify shrapnel in ultrasound images, termed ShrapML. Here, we expand on that work to further optimize the model and compare its performance to that of conventional models trained on the ImageNet database, such as ResNet50. Through Bayesian optimization, the model's parameters were further refined, resulting in an F1 score of 0.98. We compared the proposed model to four conventional models: DarkNet-19, GoogleNet, MobileNetv2, and SqueezeNet which were down-selected based on speed and testing accuracy. Although MobileNetv2 achieved a higher accuracy than ShrapML, there was a tradeoff between accuracy and speed, with ShrapML being 10× faster than MobileNetv2. In conclusion, real-time deployment of algorithms such as ShrapML can reduce the cognitive load for medical providers in high-stress emergency or miliary medicine scenarios.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2313-433X
2313-433X
DOI:10.3390/jimaging8050140