The fibrinolytic system attenuates vascular tone: effects of tissue plasminogen activator (tPA) and aminocaproic acid on renal microcirculation
The renal medulla is a major source of plasminogen activators (PA), recently shown to induce vasodilation in vitro. Treatment with PA inhibitors has been associated with renal dysfunction, suggesting compromised renal microvasculature. We investigated the impact of the PA inhibitor epsilon amino‐cap...
Saved in:
Published in: | British journal of pharmacology Vol. 141; no. 6; pp. 971 - 978 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford, UK
Blackwell Publishing Ltd
01-03-2004
Nature Publishing |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The renal medulla is a major source of plasminogen activators (PA), recently shown to induce vasodilation in vitro. Treatment with PA inhibitors has been associated with renal dysfunction, suggesting compromised renal microvasculature. We investigated the impact of the PA inhibitor epsilon amino‐caproic acid (EACA) upon vascular tone in vitro, and studied the effect of both tPA and EACA upon intrarenal hemodynamics in vivo.
In vitro experiments were carried out in isolated aortic rings and with cultured vascular smooth muscle cells. Studies of renal microcirculation and morphology were conducted in anesthetized Sprague–Dawley rats.
In isolated aortic rings, EACA (but not the other inhibitors of the fibrinolytic system PAI‐1 or α‐2 antiplasmin) reduced the half‐maximal effective concentration of phenylephrine (PE) required to induce contraction (from 32 nM in control solution to 2 and 0.1 nM at EACA concentrations of 1 and 10 μM, respectively). Using reteplase (retavase) in the same model, we also provide evidence that the vasoactivity of tPA is in part kringle‐dependent. In cultured vascular smooth muscle cells, Ca2+ internalization following PE was enhanced by EACA, and retarded by tPA.
In anesthetized rats, EACA (150 mg kg−1) did not affect systemic blood pressure, total renal or cortical blood flow. However, the outer medullary blood flow declined 12±2% below the baseline (P<0.03). By contrast, tPA (2 mg kg−1), transiently increased outer medullary blood flow by 8±5% (P<0.02). Fibrin microthrombi were not found within the renal microvasculature in EACA‐treated animals.
In conclusion, both fibrinolytic and antifibrinolytic agents modulate medullary renal blood flow with reciprocal effects of vasodilation (PA) and vasoconstriction (EACA). In vitro studies suggest that these hemodynamic responses are related to direct modulation of the vascular tone.
British Journal of Pharmacology (2004) 141, 971–978. doi:10.1038/sj.bjp.0705714 |
---|---|
AbstractList | The renal medulla is a major source of plasminogen activators (PA), recently shown to induce vasodilation
in vitro
. Treatment with PA inhibitors has been associated with renal dysfunction, suggesting compromised renal microvasculature. We investigated the impact of the PA inhibitor epsilon amino-caproic acid (EACA) upon vascular tone
in vitro
, and studied the effect of both tPA and EACA upon intrarenal hemodynamics
in vivo
.
In vitro
experiments were carried out in isolated aortic rings and with cultured vascular smooth muscle cells. Studies of renal microcirculation and morphology were conducted in anesthetized Sprague–Dawley rats.
In isolated aortic rings, EACA (but not the other inhibitors of the fibrinolytic system PAI-1 or
α
-2 antiplasmin) reduced the half-maximal effective concentration of phenylephrine (PE) required to induce contraction (from 32 n
M
in control solution to 2 and 0.1 n
M
at EACA concentrations of 1 and 10
μ
M
, respectively). Using reteplase (retavase) in the same model, we also provide evidence that the vasoactivity of tPA is in part kringle-dependent. In cultured vascular smooth muscle cells, Ca
2+
internalization following PE was enhanced by EACA, and retarded by tPA.
In anesthetized rats, EACA (150 mg kg
−1
) did not affect systemic blood pressure, total renal or cortical blood flow. However, the outer medullary blood flow declined 12±2% below the baseline (
P
<0.03). By contrast, tPA (2 mg kg
−1
), transiently increased outer medullary blood flow by 8±5% (
P
<0.02). Fibrin microthrombi were not found within the renal microvasculature in EACA-treated animals.
In conclusion, both fibrinolytic and antifibrinolytic agents modulate medullary renal blood flow with reciprocal effects of vasodilation (PA) and vasoconstriction (EACA).
In vitro
studies suggest that these hemodynamic responses are related to direct modulation of the vascular tone. 1. The renal medulla is a major source of plasminogen activators (PA), recently shown to induce vasodilation in vitro. Treatment with PA inhibitors has been associated with renal dysfunction, suggesting compromised renal microvasculature. We investigated the impact of the PA inhibitor epsilon amino-caproic acid (EACA) upon vascular tone in vitro, and studied the effect of both tPA and EACA upon intrarenal hemodynamics in vivo. 2. In vitro experiments were carried out in isolated aortic rings and with cultured vascular smooth muscle cells. Studies of renal microcirculation and morphology were conducted in anesthetized Sprague-Dawley rats. 3. In isolated aortic rings, EACA (but not the other inhibitors of the fibrinolytic system PAI-1 or alpha-2 antiplasmin) reduced the half-maximal effective concentration of phenylephrine (PE) required to induce contraction (from 32 nm in control solution to 2 and 0.1 nm at EACA concentrations of 1 and 10 microm, respectively). Using reteplase (retavase) in the same model, we also provide evidence that the vasoactivity of tPA is in part kringle-dependent. In cultured vascular smooth muscle cells, Ca(2+) internalization following PE was enhanced by EACA, and retarded by tPA. 4. In anesthetized rats, EACA (150 mg x kg(-1)) did not affect systemic blood pressure, total renal or cortical blood flow. However, the outer medullary blood flow declined 12+/-2% below the baseline (P<0.03). By contrast, tPA (2 mg x kg(-1)), transiently increased outer medullary blood flow by 8+/-5% (P<0.02). Fibrin microthrombi were not found within the renal microvasculature in EACA-treated animals. 5. In conclusion, both fibrinolytic and antifibrinolytic agents modulate medullary renal blood flow with reciprocal effects of vasodilation (PA) and vasoconstriction (EACA). In vitro studies suggest that these hemodynamic responses are related to direct modulation of the vascular tone. The renal medulla is a major source of plasminogen activators (PA), recently shown to induce vasodilation in vitro . Treatment with PA inhibitors has been associated with renal dysfunction, suggesting compromised renal microvasculature. We investigated the impact of the PA inhibitor epsilon amino‐caproic acid (EACA) upon vascular tone in vitro , and studied the effect of both tPA and EACA upon intrarenal hemodynamics in vivo . In vitro experiments were carried out in isolated aortic rings and with cultured vascular smooth muscle cells. Studies of renal microcirculation and morphology were conducted in anesthetized Sprague–Dawley rats. In isolated aortic rings, EACA (but not the other inhibitors of the fibrinolytic system PAI‐1 or α ‐2 antiplasmin) reduced the half‐maximal effective concentration of phenylephrine (PE) required to induce contraction (from 32 n M in control solution to 2 and 0.1 n M at EACA concentrations of 1 and 10 μ M , respectively). Using reteplase (retavase) in the same model, we also provide evidence that the vasoactivity of tPA is in part kringle‐dependent. In cultured vascular smooth muscle cells, Ca 2+ internalization following PE was enhanced by EACA, and retarded by tPA. In anesthetized rats, EACA (150 mg kg −1 ) did not affect systemic blood pressure, total renal or cortical blood flow. However, the outer medullary blood flow declined 12±2% below the baseline ( P <0.03). By contrast, tPA (2 mg kg −1 ), transiently increased outer medullary blood flow by 8±5% ( P <0.02). Fibrin microthrombi were not found within the renal microvasculature in EACA‐treated animals. In conclusion, both fibrinolytic and antifibrinolytic agents modulate medullary renal blood flow with reciprocal effects of vasodilation (PA) and vasoconstriction (EACA). In vitro studies suggest that these hemodynamic responses are related to direct modulation of the vascular tone. British Journal of Pharmacology (2004) 141 , 971–978. doi: 10.1038/sj.bjp.0705714 The renal medulla is a major source of plasminogen activators (PA), recently shown to induce vasodilation in vitro. Treatment with PA inhibitors has been associated with renal dysfunction, suggesting compromised renal microvasculature. We investigated the impact of the PA inhibitor epsilon amino‐caproic acid (EACA) upon vascular tone in vitro, and studied the effect of both tPA and EACA upon intrarenal hemodynamics in vivo. In vitro experiments were carried out in isolated aortic rings and with cultured vascular smooth muscle cells. Studies of renal microcirculation and morphology were conducted in anesthetized Sprague–Dawley rats. In isolated aortic rings, EACA (but not the other inhibitors of the fibrinolytic system PAI‐1 or α‐2 antiplasmin) reduced the half‐maximal effective concentration of phenylephrine (PE) required to induce contraction (from 32 nM in control solution to 2 and 0.1 nM at EACA concentrations of 1 and 10 μM, respectively). Using reteplase (retavase) in the same model, we also provide evidence that the vasoactivity of tPA is in part kringle‐dependent. In cultured vascular smooth muscle cells, Ca2+ internalization following PE was enhanced by EACA, and retarded by tPA. In anesthetized rats, EACA (150 mg kg−1) did not affect systemic blood pressure, total renal or cortical blood flow. However, the outer medullary blood flow declined 12±2% below the baseline (P<0.03). By contrast, tPA (2 mg kg−1), transiently increased outer medullary blood flow by 8±5% (P<0.02). Fibrin microthrombi were not found within the renal microvasculature in EACA‐treated animals. In conclusion, both fibrinolytic and antifibrinolytic agents modulate medullary renal blood flow with reciprocal effects of vasodilation (PA) and vasoconstriction (EACA). In vitro studies suggest that these hemodynamic responses are related to direct modulation of the vascular tone. British Journal of Pharmacology (2004) 141, 971–978. doi:10.1038/sj.bjp.0705714 1. The renal medulla is a major source of plasminogen activators (PA), recently shown to induce vasodilation in vitro. Treatment with PA inhibitors has been associated with renal dysfunction, suggesting compromised renal microvasculature. We investigated the impact of the PA inhibitor epsilon amino-caproic acid (EACA) upon vascular tone in vitro, and studied the effect of both tPA and EACA upon intrarenal hemodynamics in vivo. 2. In vitro experiments were carried out in isolated aortic rings and with cultured vascular smooth muscle cells. Studies of renal microcirculation and morphology were conducted in anesthetized Sprague-Dawley rats. 3. In isolated aortic rings, EACA (but not the other inhibitors of the fibrinolytic system PAI-1 or alpha-2 antiplasmin) reduced the half-maximal effective concentration of phenylephrine (PE) required to induce contraction (from 32 nm in control solution to 2 and 0.1 nm at EACA concentrations of 1 and 10 microm, respectively). Using reteplase (retavase) in the same model, we also provide evidence that the vasoactivity of tPA is in part kringle-dependent. In cultured vascular smooth muscle cells, Ca(2+) internalization following PE was enhanced by EACA, and retarded by tPA. 4. In anesthetized rats, EACA (150 mg x kg(-1)) did not affect systemic blood pressure, total renal or cortical blood flow. However, the outer medullary blood flow declined 12+/-2% below the baseline (P<0.03). By contrast, tPA (2 mg x kg(-1)), transiently increased outer medullary blood flow by 8+/-5% (P<0.02). Fibrin microthrombi were not found within the renal microvasculature in EACA-treated animals. 5. In conclusion, both fibrinolytic and antifibrinolytic agents modulate medullary renal blood flow with reciprocal effects of vasodilation (PA) and vasoconstriction (EACA). In vitro studies suggest that these hemodynamic responses are related to direct modulation of the vascular tone. |
Author | Shina, Ahuva Hanna, Zohair Nassar, Taher Akkawi, Sa'ed Goldfarb, Marina Rosen, Seymour Heyman, Samuel N Higazi, Abd‐Al Roof |
AuthorAffiliation | 2 2 Department of Biochemistry, Hadassah Hospital, Ein Kerem, Jerusalem, Israel 3 3 The Renal Unit, Bikur Holim Hospital, Jerusalem, Israel 4 4 Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, U.S.A 5 5 The Hebrew University Medical School, Jerusalem, Israel 1 1 Department of Medicine, Hadassah University Hospital, Mt Scopus, P.O. Box 24035, Jerusalem 91240, Israel |
AuthorAffiliation_xml | – name: 1 1 Department of Medicine, Hadassah University Hospital, Mt Scopus, P.O. Box 24035, Jerusalem 91240, Israel – name: 2 2 Department of Biochemistry, Hadassah Hospital, Ein Kerem, Jerusalem, Israel – name: 4 4 Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, U.S.A – name: 3 3 The Renal Unit, Bikur Holim Hospital, Jerusalem, Israel – name: 5 5 The Hebrew University Medical School, Jerusalem, Israel |
Author_xml | – sequence: 1 givenname: Samuel N surname: Heyman fullname: Heyman, Samuel N – sequence: 2 givenname: Zohair surname: Hanna fullname: Hanna, Zohair – sequence: 3 givenname: Taher surname: Nassar fullname: Nassar, Taher – sequence: 4 givenname: Ahuva surname: Shina fullname: Shina, Ahuva – sequence: 5 givenname: Sa'ed surname: Akkawi fullname: Akkawi, Sa'ed – sequence: 6 givenname: Marina surname: Goldfarb fullname: Goldfarb, Marina – sequence: 7 givenname: Seymour surname: Rosen fullname: Rosen, Seymour – sequence: 8 givenname: Abd‐Al Roof surname: Higazi fullname: Higazi, Abd‐Al Roof |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15624035$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/14993107$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUhS1URKeFLUtkIVHBIoOd2LHDAqlUQJEq0UVZW45_WkeJPbWdQfMUfWU8mogCG1ZenO-ec6_PCTjywRsAXmK0xqjh79Ow7ofNGjFEGSZPwAoT1la04fgIrBBCrMKY82NwktKAUBEZfQaOMem6BiO2Ag83dwZa10fnw7jLTsG0S9lMUOZs_CyzSXArk5pHGWEu2R-gsdaonGCwMLuUZgM3o0xTMbg1HkqV3VbmEOHbfH3-DkqvodyLSm5iKP5SOQ2Dh9F4OcLJqRiUi_uA7IJ_Dp5aOSbzYnlPwY8vn28uLqur71-_XZxfVYpwhirbasqVbrUxdc1oh_q-Zi1GSNmWKlLXPbedxFw32rKuU63mTUO4Zp3GFBHWnIKPB9_N3E9GK-NzlKPYRDfJuBNBOvG34t2duA1bgSkjNcfF4GwxiOF-NimLySVlxlF6E-YkGGYUdTUp4Ot_wCHMsdyeRI1ZjQih-3XWB6j8RkrR2N-bYCT2RYs0iFK0WIouA6_-3P8RX5otwJsFKO3J0UbplUuPHG1rghpauObA_XSj2f0nVny6viRtmfsFxt_HNQ |
CODEN | BJPCBM |
CitedBy_id | crossref_primary_10_1016_j_bcp_2012_10_011 crossref_primary_10_1038_s41598_017_15807_6 crossref_primary_10_21272_eumj_2021_9_1__54_65 crossref_primary_10_1111_nep_13516 crossref_primary_10_3390_ijms20030619 crossref_primary_10_1177_0271678X211058261 crossref_primary_10_3389_fphys_2019_00493 crossref_primary_10_1053_j_jvca_2012_03_030 crossref_primary_10_1002_jcla_24120 crossref_primary_10_1016_j_mehy_2006_02_006 crossref_primary_10_1016_j_jff_2020_103925 crossref_primary_10_1161_CIRCRESAHA_109_215723 crossref_primary_10_1177_0271678X19883599 |
Cites_doi | 10.1152/ajprenal.1994.267.6.F1063 10.1016/S1053-0770(98)90099-4 10.1172/JCI307 10.3171/jns.1979.51.1.0094 10.1161/01.STR.31.4.940 10.1111/j.1549-8719.1999.tb00102.x 10.1038/ki.1996.523 10.1006/jmbi.1994.1106 10.1177/106002809703100109 10.1038/ki.1997.20 10.1097/00000539-200011000-00008 10.1016/S0003-4975(98)00071-X 10.7326/0003-4819-70-6-1191 10.1016/0016-5085(78)90845-4 10.1074/jbc.M207172200 10.1016/0741-5214(93)90548-Z 10.1096/fasebj.14.10.1411 10.1182/blood-2003-05-1685 10.1016/S0272-6386(86)80172-X 10.1073/pnas.89.17.8087 10.1016/S0002-9343(98)00058-8 10.1161/01.CIR.95.1.46 10.1159/000020678 10.1097/00007890-199609270-00021 10.1016/0002-9343(66)90057-X 10.1056/NEJM196905152802006 10.2165/00002018-199818010-00003 10.1038/ki.1991.153 10.1016/S0360-3016(98)00161-8 10.1056/NEJM199503093321006 10.1159/000020679 10.1074/jbc.274.35.24873 10.1182/blood-2002-04-1080 10.1002/jcb.240320302 10.1111/j.1476-5381.1992.tb13395.x 10.1055/s-2007-1013861 |
ContentType | Journal Article |
Copyright | 2004 British Pharmacological Society 2004 INIST-CNRS Copyright Nature Publishing Group Mar 2004 Copyright 2004, Nature Publishing Group 2004 Nature Publishing Group |
Copyright_xml | – notice: 2004 British Pharmacological Society – notice: 2004 INIST-CNRS – notice: Copyright Nature Publishing Group Mar 2004 – notice: Copyright 2004, Nature Publishing Group 2004 Nature Publishing Group |
DBID | IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7QP 7RV 7TK 7X7 7XB 88E 8AO 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P NAPCQ PQEST PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1038/sj.bjp.0705714 |
DatabaseName | Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts ProQuest Nursing and Allied Health Journals Neurosciences Abstracts Health Medical collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Biological Science Database Nursing & Allied Health Premium ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef ProQuest Central Student ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE ProQuest Central Student |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1476-5381 |
EndPage | 978 |
ExternalDocumentID | 984047981 10_1038_sj_bjp_0705714 14993107 15624035 BPH4640 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .3N .55 .GJ 05W 0R~ 1OC 23N 24P 2WC 31~ 33P 36B 3O- 3SF 3V. 4.4 52U 52V 53G 5GY 6J9 7RV 7X7 8-0 8-1 88E 8AO 8FE 8FH 8FI 8FJ 8R4 8R5 8UM A00 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABDBF ABPVW ABQWH ABUWG ABXGK ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS ATUGU AZBYB AZVAB B0M BAFTC BAWUL BBNVY BENPR BFHJK BHBCM BHPHI BKEYQ BMXJE BPHCQ BRXPI BVXVI C45 CAG CCPQU COF CS3 DCZOG DIK DRFUL DRMAN DRSTM DU5 E3Z EAD EAP EAS EBC EBD EBS ECV EJD EMB EMK EMOBN ENC ESX EX3 F5P FUBAC FYUFA G-S GODZA GX1 H.X HCIFZ HGLYW HMCUK HYE HZ~ J5H KBYEO LATKE LEEKS LH4 LITHE LK8 LOXES LSO LUTES LW6 LYRES M1P M7P MEWTI MK0 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM MY~ N9A NAPCQ NF~ O66 O9- OIG OK1 OVD P2P P2W P4E PQQKQ PROAC PSQYO Q.N Q2X QB0 RIG ROL RPM RWI SJN SUPJJ SV3 TEORI TR2 TUS UKHRP UPT WBKPD WH7 WHWMO WIH WIJ WIK WIN WOHZO WOW WVDHM WXSBR X7M XV2 Y6R YHG ZGI ZXP ZZTAW ~8M ~S- 08R AAJUZ AAPBV AAUGY AAVGM ABCVL ABHUG ABPTK ABWRO ACXME ADAWD ADDAD AFVGU AGJLS IQODW ZA5 CGR CUY CVF ECM EIF NPM AAMNL AAYXX CITATION 7QP 7TK 7XB 8FK AZQEC DWQXO GNUQQ K9. PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c4870-f6d58cd6dee227590bb276100cf65c422b8f9a18d3df799c6d83348d79d150473 |
IEDL.DBID | RPM |
ISSN | 0007-1188 |
IngestDate | Tue Sep 17 21:15:37 EDT 2024 Fri Aug 16 05:44:16 EDT 2024 Thu Oct 10 18:52:34 EDT 2024 Thu Nov 21 20:55:27 EST 2024 Sat Sep 28 07:43:48 EDT 2024 Sun Oct 22 16:04:46 EDT 2023 Sat Aug 24 00:51:32 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | medulla Calcium Hemostatic Rat tissue plasminogen activator Smooth muscle Aminocaproic acid Inorganic element Kidney t-Plasminogen activator Microcirculation Laser dopplerometry Blood vessel Antifibrinolytic laser Doppler vascular smooth muscle Serine endopeptidases Enzyme Rodentia Pharmacology Fibrinolysis Peptidases Vertebrata Mammalia Urinary system Animal Reteplase Hydrolases Circulatory system Hemodynamics Fibrinolytic |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4870-f6d58cd6dee227590bb276100cf65c422b8f9a18d3df799c6d83348d79d150473 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1038/sj.bjp.0705714 |
PMID | 14993107 |
PQID | 217204457 |
PQPubID | 42104 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_1574281 proquest_miscellaneous_71750924 proquest_journals_217204457 crossref_primary_10_1038_sj_bjp_0705714 pubmed_primary_14993107 pascalfrancis_primary_15624035 wiley_primary_10_1038_sj_bjp_0705714_BPH4640 |
PublicationCentury | 2000 |
PublicationDate | March 2004 |
PublicationDateYYYYMMDD | 2004-03-01 |
PublicationDate_xml | – month: 03 year: 2004 text: March 2004 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Basingstoke – name: England – name: London |
PublicationTitle | British journal of pharmacology |
PublicationTitleAlternate | Br J Pharmacol |
PublicationYear | 2004 |
Publisher | Blackwell Publishing Ltd Nature Publishing |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Nature Publishing |
References | 1990; 33 1991; 39 1994; 235 2004; 103 1969; 70 1986; 32 1978; 75 1966; 8 1993; 41 2000a; 8 2000b; 8 1996; 50 1992; 107 1972; 80 2000; 91 1995; 332 1998; 41 1993; 1 1999; 6 1998; 65 1995; 3 1993; 264 1979; 51 1994; 267 1998; 18 1997; 95 1997; 51 1969; 280 1993; 18 2000; 14 1986; 8 1997; 31 1991; 21 2002b; 277 2000; 31 1999; 274 1996; 271 1996; 62 1998; 104 1982 2002a; 100 1998; 102 1992; 89 1966; 41 1998; 12 10940726 - Exp Nephrol. 2000 Jul-Oct;8(4-5):266-74 8997390 - Am J Physiol. 1996 Dec;271(6 Pt 2):F1166-72 4339871 - Acta Pathol Microbiol Scand A. 1972;80(3):403-11 8824484 - Transplantation. 1996 Sep 27;62(6):828-30 8211928 - Thorac Cardiovasc Surg. 1993 Aug;41(4):237-41 8994415 - Circulation. 1997 Jan 7;95(1):46-52 9576407 - Am J Med. 1998 Apr;104(4):343-8 3812474 - Am J Kidney Dis. 1986 Dec;8(6):441-4 8081964 - Exp Nephrol. 1993 May-Jun;1(3):152-7 2107050 - Clin Nephrol. 1990 Feb;33(2):55-60 8995730 - Kidney Int. 1997 Jan;51(1):164-72 1325644 - Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8087-91 8264050 - J Vasc Surg. 1993 Dec;18(6):939-45; discussion 945-6 10940727 - Exp Nephrol. 2000 Jul-Oct;8(4-5):275-82 12171938 - J Biol Chem. 2002 Oct 25;277(43):40499-504 4307065 - Ann Intern Med. 1969 Jun;70(6):1191-9 9727060 - J Clin Invest. 1998 Sep 1;102(5):919-28 98390 - Gastroenterology. 1978 Sep;75(3):425-31 3097031 - J Cell Biochem. 1986;32(3):169-78 14512309 - Blood. 2004 Feb 1;103(3):897-902 4957166 - Curr Ther Res Clin Exp. 1966 Jul;8(7):336-42 1910125 - Kidney Int. 1991 Jun;39(6):1213-7 1806459 - Haemostasis. 1991;21(5):305-12 8997467 - Ann Pharmacother. 1997 Jan;31(1):56-8 9466086 - Drug Saf. 1998 Jan;18(1):21-41 8107091 - J Mol Biol. 1994 Feb 4;235(5):1548-59 5778426 - N Engl J Med. 1969 May 15;280(20):1102-4 9801976 - J Cardiothorac Vasc Anesth. 1998 Oct;12(5):548-52 10754003 - Stroke. 2000 Apr;31(4):940-5 8943484 - Kidney Int. 1996 Dec;50(6):2011-9 10455160 - J Biol Chem. 1999 Aug 27;274(35):24873-80 11049888 - Anesth Analg. 2000 Nov;91(5):1085-90 448423 - J Neurosurg. 1979 Jul;51(1):94-7 10501093 - Microcirculation. 1999 Sep;6(3):199-203 7810693 - Am J Physiol. 1994 Dec;267(6 Pt 2):F1063-8 9563397 - Ann Thorac Surg. 1998 Apr;65(4 Suppl):S9-19; discussion S27-8 9719126 - Int J Radiat Oncol Biol Phys. 1998 Jul 15;41(5):1149-56 7845430 - N Engl J Med. 1995 Mar 9;332(10):647-55 10877834 - FASEB J. 2000 Jul;14(10):1411-22 1467844 - Br J Pharmacol. 1992 Dec;107(4):983-90 6005907 - Am J Med. 1966 Dec;41(6):1000-6 8447474 - Am J Physiol. 1993 Feb;264(2 Pt 2):H617-24 12393692 - Blood. 2002 Dec 1;100(12):4026-32 8574590 - New Horiz. 1995 Nov;3(4):597-607 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 MYHRE‐JENSEN O. (e_1_2_7_29_1) 1972; 80 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 JAMISON R.L. (e_1_2_7_24_1) 1982 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_26_1 e_1_2_7_27_1 HEYMAN S.N. (e_1_2_7_21_1) 1995; 3 e_1_2_7_28_1 DURANTE W. (e_1_2_7_14_1) 1993; 264 DINOUR D. (e_1_2_7_11_1) 1993; 1 SWARTZ C. (e_1_2_7_43_1) 1966; 8 SMOKOVITIS A. (e_1_2_7_40_1) 1991; 21 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 RONDEAU E. (e_1_2_7_37_1) 1990; 33 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 e_1_2_7_39_1 GURBANOV K. (e_1_2_7_17_1) 1996; 271 |
References_xml | – volume: 12 start-page: 548 year: 1998 end-page: 552 article-title: Aprotenin epsilon‐aminocaproic acid for aortic surgery using deep hypothermic circulatory arrest publication-title: J. Cardiothorac. Vasc. Anesth. – volume: 3 start-page: 597 year: 1995 end-page: 607 article-title: The role of medullary ischemia in acute renal failure publication-title: New Horizons – volume: 21 start-page: 305 year: 1991 end-page: 312 article-title: Sex‐related differences in plasminogen activator activity and plasminogen activator inhibition of human and animal kidneys: effect of orchidectomy or ovariectomy publication-title: Haemostasis – volume: 271 start-page: F1166 year: 1996 end-page: F1172 article-title: Differential regulation of renal regional blood flow by endothelin‐1 publication-title: Am. J. Physiol. – volume: 6 start-page: 199 year: 1999 end-page: 203 article-title: Tissue oxygenation modifies nitric oxide bioavailability publication-title: Microcirculation – volume: 8 start-page: 275 year: 2000b end-page: 282 article-title: Endotoxin‐induced renal failure: II. A role for tubular hypoxic damage publication-title: Exp. Nephrol. – volume: 91 start-page: 1085 year: 2000 end-page: 1090 article-title: The association of epsilon‐aminocaproic acid with postoperative decrease in creatinine clearance in 1502 coronary bypass patients publication-title: Anesth. Analg. – volume: 51 start-page: 164 year: 1997 end-page: 172 article-title: Modulation of plasminogen activator inhibitor‐1 : a new mechanism for the anti‐fibrotic effect of renin–angiotensin inhibition publication-title: Kidney Int. – volume: 31 start-page: 940 year: 2000 end-page: 945 article-title: Postischemic attenuation of cerebral artery reactivity is increased in the presence of tissue plasminogen activator publication-title: Stroke – volume: 277 start-page: 40499 year: 2002b end-page: 40504 article-title: Binding of urokinase to low density lipoprotein‐related receptor (LRP) regulates vascular smooth muscle cell contraction publication-title: J. Biol. Chem. – volume: 103 start-page: 897 year: 2004 end-page: 902 article-title: and effect of tPA and PAI‐1 on blood vessel tone publication-title: Blood – volume: 50 start-page: 2011 year: 1996 end-page: 2019 article-title: Different expression of the plasminogen activation system in renal thrombotic microangiopathy and the normal human kidney publication-title: Kidney Int. – volume: 14 start-page: 1411 year: 2000 end-page: 1422 article-title: Urokinase‐derived peptides regulate vascular smooth muscle contraction and publication-title: FASEB J. – volume: 80 start-page: 403 year: 1972 end-page: 411 article-title: Renal microthrombosis. Incidence in 500 consecutive autopsies. Clinico‐pathological relations publication-title: Acta Pathol. Microbiol. Scand. – volume: 70 start-page: 1191 year: 1969 end-page: 1199 article-title: Consumption coagulopathy and acute renal failure due to gram‐negative septicemia after abortion. Complete recovery with heparin therapy publication-title: Ann. Intern. Med. – start-page: 55 year: 1982 end-page: 76 – volume: 102 start-page: 919 year: 1998 end-page: 928 article-title: Coordinated induction of plasminogen activator inhibitor‐1 (PAI‐1) and inhibition of plasminogen activator gene expression by hypoxia promotes pulmonary vascular fibrin deposition publication-title: J. Clin. Invest. – volume: 235 start-page: 1548 year: 1994 end-page: 1559 article-title: Solution structure of the kringle domain from urokinase‐type plasminogen activator publication-title: J. Mol. Biol. – volume: 8 start-page: 336 year: 1966 end-page: 342 article-title: Cardiac and renal hemodynamic effects of the antifibrinolytic agent, epsilon aminocaproic acid publication-title: Curr. Ther. Res. Clin. Exp. – volume: 8 start-page: 441 year: 1986 end-page: 444 article-title: Acute renal failure due to high grade obstruction following therapy with epsilon‐aminocaproic acid publication-title: Am. J. Kidney Dis. – volume: 51 start-page: 94 year: 1979 end-page: 97 article-title: Recurrent subarachnoid hemorrhage associated with aminocaproic acid therapy and acute renal artery thrombosis. Case report publication-title: J. Neurosurg. – volume: 104 start-page: 343 year: 1998 end-page: 348 article-title: Independent association between acute renal failure and mortality following cardiac surgery publication-title: Am. J. Med. – volume: 95 start-page: 46 year: 1997 end-page: 52 article-title: Antagonists of the mannose receptor and the LDL receptor‐related protein dramatically delay the clearance of tissue plasminogen activator publication-title: Circulation – volume: 62 start-page: 828 year: 1996 end-page: 830 article-title: The coagulo‐lytic system and endothelial function in cyclosporine‐treated kidney allograft recipients publication-title: Transplantation – volume: 41 start-page: 1000 year: 1966 end-page: 1006 article-title: Thrombotic thrombocytopenic purpura with acute anuric renal failure publication-title: Am. J. Med. – volume: 280 start-page: 1102 year: 1969 end-page: 1104 article-title: Glomerular capillary thrombosis and acute renal failure after epsilon‐amino caproic acid therapy publication-title: N. Engl. J. Med. – volume: 332 start-page: 647 year: 1995 end-page: 655 article-title: Hypoxia of the renal medulla – its implications for disease publication-title: N. Engl. J. Med. – volume: 8 start-page: 266 year: 2000a end-page: 274 article-title: Endotoxin‐induced renal failure: I. A role for altered renal microcirculation publication-title: Exp. Nephrol. – volume: 32 start-page: 169 year: 1986 end-page: 178 article-title: Structure and function of human tissue‐type plasminogen activator (t‐PA) publication-title: J. Cell. Biochem. – volume: 264 start-page: H617 year: 1993 end-page: H624 article-title: Plasmin potentiates induction of nitric oxide synthesis by the interleukine‐1 beta in vascular smooth muscle cells publication-title: Am. J. Physiol. – volume: 18 start-page: 939 year: 1993 end-page: 945 article-title: Ambient oxygen tension modulates endothelial fibrinolysis publication-title: J. Vasc. Surg. – volume: 107 start-page: 983 year: 1992 end-page: 990 article-title: Endothelium‐dependent increase in vascular sensitivity to phenylephrine in long‐term streptozotocin diabetic rat aorta publication-title: Br. J. Pharmacol. – volume: 33 start-page: 55 year: 1990 end-page: 60 article-title: Plasminogen activator inhibitor 1 in renal fibrin deposits of human nephropathies publication-title: Clin. Nephrol. – volume: 65 start-page: S9 year: 1998 end-page: S19 article-title: Aprotenin lysine analogues: the debate continuous publication-title: Ann. Thorac. Surg. – volume: 41 start-page: 237 year: 1993 end-page: 241 article-title: Acute renal failure after coronary surgery – a study of incidence and risk factors in 2009 consecutive patients publication-title: Thorac. Cardiovasc. Surg. – volume: 1 start-page: 152 year: 1993 end-page: 157 article-title: Adenosine: an emerging role in the control of renal medullary oxygenation publication-title: Exp. Nephrol. – volume: 31 start-page: 56 year: 1997 end-page: 58 article-title: Rhabdomyolysis induced by epsilon‐aminocaproic acid publication-title: Ann. Pharmacother. – volume: 18 start-page: 21 year: 1998 end-page: 41 article-title: A risk–benefit assessment of aprotenin in cardiac surgical procedures publication-title: Drug Saf. – volume: 41 start-page: 1149 year: 1998 end-page: 1156 article-title: A morphometric analysis of glomerular and tubular alterations following fast‐neutron irradiation of the pig and monkey kidney publication-title: Int. J. Radiat. Oncol. Biol. Phys. – volume: 267 start-page: F1063 year: 1994 end-page: F1068 article-title: Determinants of intrarenal oxygenation: 2. Hemodynamic effects publication-title: Am. J. Physiol. – volume: 75 start-page: 425 year: 1978 end-page: 431 article-title: Vasodilation, fibrinolysis and thrombosis with intraarterial infusion of urokinase in the canine superior mesenteric artery publication-title: Gastroenterology – volume: 89 start-page: 8087 year: 1992 end-page: 8091 article-title: ‐nitrosylation of tissue‐type plasminogen activator confers vasodilatory and antiplatelet properties on the enzyme publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 100 start-page: 4026 year: 2002a end-page: 4032 article-title: Human alpha‐defensin regulates smooth muscle cell contraction. A role for low‐density lipoprotein receptor‐related protein/alpha 2‐macroglobulin receptor publication-title: Blood – volume: 39 start-page: 1213 year: 1991 end-page: 1217 article-title: Urinary procoagulant and fibrinolytic activity in human glomerulonephritis. Relationship with renal function publication-title: Kidney Int. – volume: 274 start-page: 24873 year: 1999 end-page: 24880 article-title: Truncation of the C terminus of the rat brain Na–Ca exchanger RBE‐1 (NCX1.4) impairs surface expression of the protein publication-title: J. Biol. Chem. – ident: e_1_2_7_4_1 doi: 10.1152/ajprenal.1994.267.6.F1063 – ident: e_1_2_7_15_1 doi: 10.1016/S1053-0770(98)90099-4 – volume: 271 start-page: F1166 year: 1996 ident: e_1_2_7_17_1 article-title: Differential regulation of renal regional blood flow by endothelin‐1 publication-title: Am. J. Physiol. contributor: fullname: GURBANOV K. – ident: e_1_2_7_34_1 doi: 10.1172/JCI307 – ident: e_1_2_7_44_1 doi: 10.3171/jns.1979.51.1.0094 – ident: e_1_2_7_8_1 doi: 10.1161/01.STR.31.4.940 – ident: e_1_2_7_22_1 doi: 10.1111/j.1549-8719.1999.tb00102.x – ident: e_1_2_7_45_1 doi: 10.1038/ki.1996.523 – ident: e_1_2_7_27_1 doi: 10.1006/jmbi.1994.1106 – volume: 21 start-page: 305 year: 1991 ident: e_1_2_7_40_1 article-title: Sex‐related differences in plasminogen activator activity and plasminogen activator inhibition of human and animal kidneys: effect of orchidectomy or ovariectomy publication-title: Haemostasis contributor: fullname: SMOKOVITIS A. – ident: e_1_2_7_39_1 doi: 10.1177/106002809703100109 – ident: e_1_2_7_33_1 doi: 10.1038/ki.1997.20 – ident: e_1_2_7_41_1 doi: 10.1097/00000539-200011000-00008 – ident: e_1_2_7_38_1 doi: 10.1016/S0003-4975(98)00071-X – ident: e_1_2_7_9_1 doi: 10.7326/0003-4819-70-6-1191 – start-page: 55 volume-title: Urinary Concentration Mechanism. Structure and Function year: 1982 ident: e_1_2_7_24_1 contributor: fullname: JAMISON R.L. – ident: e_1_2_7_18_1 doi: 10.1016/0016-5085(78)90845-4 – ident: e_1_2_7_32_1 doi: 10.1074/jbc.M207172200 – volume: 33 start-page: 55 year: 1990 ident: e_1_2_7_37_1 article-title: Plasminogen activator inhibitor 1 in renal fibrin deposits of human nephropathies publication-title: Clin. Nephrol. contributor: fullname: RONDEAU E. – ident: e_1_2_7_16_1 doi: 10.1016/0741-5214(93)90548-Z – ident: e_1_2_7_19_1 doi: 10.1096/fasebj.14.10.1411 – ident: e_1_2_7_30_1 doi: 10.1182/blood-2003-05-1685 – volume: 80 start-page: 403 year: 1972 ident: e_1_2_7_29_1 article-title: Renal microthrombosis. Incidence in 500 consecutive autopsies. Clinico‐pathological relations publication-title: Acta Pathol. Microbiol. Scand. contributor: fullname: MYHRE‐JENSEN O. – volume: 264 start-page: H617 year: 1993 ident: e_1_2_7_14_1 article-title: Plasmin potentiates induction of nitric oxide synthesis by the interleukine‐1 beta in vascular smooth muscle cells publication-title: Am. J. Physiol. contributor: fullname: DURANTE W. – ident: e_1_2_7_35_1 doi: 10.1016/S0272-6386(86)80172-X – ident: e_1_2_7_42_1 doi: 10.1073/pnas.89.17.8087 – ident: e_1_2_7_7_1 doi: 10.1016/S0002-9343(98)00058-8 – volume: 1 start-page: 152 year: 1993 ident: e_1_2_7_11_1 article-title: Adenosine: an emerging role in the control of renal medullary oxygenation publication-title: Exp. Nephrol. contributor: fullname: DINOUR D. – ident: e_1_2_7_3_1 doi: 10.1161/01.CIR.95.1.46 – ident: e_1_2_7_20_1 doi: 10.1159/000020678 – ident: e_1_2_7_28_1 doi: 10.1097/00007890-199609270-00021 – volume: 8 start-page: 336 year: 1966 ident: e_1_2_7_43_1 article-title: Cardiac and renal hemodynamic effects of the antifibrinolytic agent, epsilon aminocaproic acid publication-title: Curr. Ther. Res. Clin. Exp. contributor: fullname: SWARTZ C. – ident: e_1_2_7_13_1 doi: 10.1016/0002-9343(66)90057-X – ident: e_1_2_7_6_1 doi: 10.1056/NEJM196905152802006 – ident: e_1_2_7_12_1 doi: 10.2165/00002018-199818010-00003 – volume: 3 start-page: 597 year: 1995 ident: e_1_2_7_21_1 article-title: The role of medullary ischemia in acute renal failure publication-title: New Horizons contributor: fullname: HEYMAN S.N. – ident: e_1_2_7_10_1 doi: 10.1038/ki.1991.153 – ident: e_1_2_7_36_1 doi: 10.1016/S0360-3016(98)00161-8 – ident: e_1_2_7_5_1 doi: 10.1056/NEJM199503093321006 – ident: e_1_2_7_23_1 doi: 10.1159/000020679 – ident: e_1_2_7_25_1 doi: 10.1074/jbc.274.35.24873 – ident: e_1_2_7_31_1 doi: 10.1182/blood-2002-04-1080 – ident: e_1_2_7_46_1 doi: 10.1002/jcb.240320302 – ident: e_1_2_7_26_1 doi: 10.1111/j.1476-5381.1992.tb13395.x – ident: e_1_2_7_2_1 doi: 10.1055/s-2007-1013861 |
SSID | ssj0014775 |
Score | 1.8564222 |
Snippet | The renal medulla is a major source of plasminogen activators (PA), recently shown to induce vasodilation in vitro. Treatment with PA inhibitors has been... 1. The renal medulla is a major source of plasminogen activators (PA), recently shown to induce vasodilation in vitro. Treatment with PA inhibitors has been... The renal medulla is a major source of plasminogen activators (PA), recently shown to induce vasodilation in vitro . Treatment with PA inhibitors has been... |
SourceID | pubmedcentral proquest crossref pubmed pascalfrancis wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 971 |
SubjectTerms | aminocaproic acid Aminocaproic Acid - pharmacology Animals Aorta Biological and medical sciences calcium Calcium - metabolism Cells, Cultured Fibrinolytic Agents - pharmacology Hemodynamics Humans In Vitro Techniques Isometric Contraction - drug effects Kidney Kidney Medulla - blood supply Kidney Medulla - drug effects laser Doppler Medical sciences medulla microcirculation Microcirculation - drug effects Muscle, Smooth, Vascular - physiology Perfusion Pharmacology. Drug treatments Plasminogen Inactivators - pharmacology rat Rats Rats, Sprague-Dawley Renal Circulation - drug effects reteplase tissue plasminogen activator Tissue Plasminogen Activator - pharmacology vascular smooth muscle Vasoconstriction - drug effects |
SummonAdditionalLinks | – databaseName: Wiley-Blackwell dbid: 33P link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEA96T4J4fts7PfMgp8L2bNOkSX079Y59koIn-Fbyibt43WW7K-xf4b_sTNvtWhREfCvko00y0_wmmfkNIS-cYNzkxsVMZyaG_TaNtVMiFjxLVEiDVwbPdKef5Mcv6sMF0uQMUfwdP8Rw4Iaa0f6vUcG1afowcXRcb-ZnZr48A5EVss1kDaZCG8ORlcM1ApeyS2GATIipUjvWxky9GTcf7Uq3l7qBCQpdZos_Qc_fPSh_Rbbt1nR5-P-Dukvu9LCUnndydI_c8PV9clp2vNbbCb3ah2k1E3pKyz3j9fYB-QHFNGDwQL34toU6tCOIpkjeWW8QztKdyytF9u-3tPcjoYtA1-3a0yXg-GvoACSaYrTFdzwOoK_W5flrqmtHNRZaDbME_Ws7c3RR05XHz75Gr0I7W9k-F9lD8vny4ur9NO4zPcQWDKYkDrkTyrrcec-YFEViDJMA7BIbcmE5Y0aFQqfKZS7IorC5UxhB7GThANBymT0iBzV8_RNCkQGNM82M8PDovQGLzYWgJUBh56yJyMvdSlfLjtCjai_iM1U18wpmv-pnPyInI0HYVwfMyJNMROR4JxlVr_lNhQm_Es6FjMjzoRRUFu9hdO0Xm6YCCxpgGoMXPO6kaN8z2J-At6GtHMnXUAHJwMcl9exrSwqeCgmWZBqRSStffxlb9a6c8pwnR_9W_Zjc6jyX0AfvKTlYrzb-GbnZuM1Jq3g_AThnNeg priority: 102 providerName: Wiley-Blackwell |
Title | The fibrinolytic system attenuates vascular tone: effects of tissue plasminogen activator (tPA) and aminocaproic acid on renal microcirculation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1038%2Fsj.bjp.0705714 https://www.ncbi.nlm.nih.gov/pubmed/14993107 https://www.proquest.com/docview/217204457 https://search.proquest.com/docview/71750924 https://pubmed.ncbi.nlm.nih.gov/PMC1574281 |
Volume | 141 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bixMxFD7YfRJEvDuu1jzIqtBp55JMUt_WvVARZcAVfBtyxZbtdOi0Qn-Ff9mTuWwtCoIvw0BCLnNOyHcmX74D8MqwhKpMmTCRqQpxv41DaQQLGU0j4WJnhfL_dGdf-Odv4vzCy-Sw_i5MQ9rXaj4ur5fjcv694VZWSz3peWKT_NNZzDCgE_FkAAPEhn2I3h0dUM7btAVe_TAWoldqTMWkXozVohqjlzMeNxl5EO8jvuEHm9KdStb4fVyb2OJvyPNPAuXvwLbZmS7vwd0OUpLTduj34ZYtH8BJ3mpS70bkan_Fqh6RE5Lv1ap3D-EnFhPnif_l6nqHdUgr7ky88Ga59VCU9HRV4pW735GOA0JWjmwau5EKMfgSG0BvJP6mxA8fypM3m_z0LZGlIdIXaolTxPalnhuyKsna-mEvPSNQz9e6yyP2CL5eXlydzcIuS0OoMdiJQpcZJrTJjLVJwtk0UirhCMoi7TKmaZIo4aYyFiY1jk-nOjPC3_41fGoQjFKePoajEkf_FIhXL6OJTBSz-GqtwmjLOCc5wlhjtArgdW-momrFOIrmED0VRb0o0LZFZ9sAhgdW3FdHvEejlAVw3Ju16FZtXfhkXRGljAfw8qYUl5s_Q5GlXW3rAqNfhFgJdvCkdYF9y50vBcAPnOOmghfyPixB_24EvTt_DmDUuNE_5la8z2c0o9Gz_-7oGG63BCRPpXsOR5v11r6AQW22QxikaY7P8w8fh826-gV9Hyi4 |
link.rule.ids | 230,315,729,782,786,887,1408,27934,27935,46065,46489,53802,53804 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9NAFB50fVAQ76t1dXceZFVo1lxmMhPfqu5ScV0CVvAtzBVb3LQ0rdBf4V_2nFxag4IIvhVmMk0m38l8Z-ac7xDyzPKY6VTbIFaJDmC9jQJlJQ84S0LpI--kxj3d8Sdx8UW-O0WZnFGXC9PoQ2w33NAy6u81GjhuSLd54hi5Xs1O9GxxApjlAktZX2MpkwjsJMm3BwlMiKaIAWohRlJ2uo2JfNW_vrcu3VyoCqbIN7Ut_kQ-f4-h_JXb1ovT2e3_8Fh3yK2WmdJRA6W75Ior75HjvJG23gzpZJepVQ3pMc13oteb--QHNFOP-QPl_NsG-tBGI5qifme5RkZLu6hXigLgr2kbSkLnnq7q108XQOUvYQAANcWEi--4I0BfrPLRS6pKSxU2GgXTBOMrM7V0XtKlw9u-xMBCM12athzZA_L57HTydhy0xR4CAz5TGPjUcmlsap2LY8GzUOtYALcLjU-5YXGspc9UJG1ivcgyk1qJScRWZBY4LRPJPtkr4e4fEYoiaCxWseYOfjqnwWmz3isBbNhaowfkefeqi0Wj6VHUZ_GJLKpZAbNftLM_IIc9JOy6A21kYcIH5KCDRtEaf1Vgza-QMS4G5GjbClaLRzGqdPN1VYATDUwthj942MBoNzK4oEC54VrRA9i2A-qB91vK6ddaFzziApzJaECGNcD-8mzFm3wMFhM-_rfuR-T6ePLxvDh_f_HhgNxoApkwJO8J2Vst1-4puVrZ9WFthT8BmEU6EQ |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9QwFA66ggji_VJXd_Mgq8J07SVpUt9Wd4cRZSm4gm8lV5zB7QzTGWF-hX_Zc9pOx6Ig4lshlzbJOc13knO-Q8hzyxOmM23DRKU6hP02DpWVPOQsjaSPvZMaz3Qnn8T5F3l6hjQ5fRR_yw_RH7ihZjT_a1TwhfVdmDg6rtezYz1bHIPIcoGZrK8xwOLo1JemRX-PwIRocxggFWIs5Za2MZWvh-0H29LNhaphhnyb2uJP2PN3F8pfoW2zN41v__-o7pBbHS6lJ60g3SVXXHWPHBUtsfVmRC92cVr1iB7RYkd5vblPfkAx9Rg9UM2_baAObRmiKbJ3VmvEs3Tr80qR_vsN7RxJ6NzTVbP4dAFA_hI6AJGmGG7xHc8D6MtVcfKKqspShYVGwSxB_8pMLZ1XdOnwsy_RrdBMl6ZLRvaAfB6fXbybhF2qh9CAxRSFPrNcGptZ55JE8DzSOhGA7CLjM25YkmjpcxVLm1ov8txkVmIIsRW5BUTLRPqQ7FXw9Y8JRQo0lqhEcwePzmkw2az3SgAWttbogLzYrnS5aBk9yuYmPpVlPSth9stu9gNyMBCEXXUAjSxKeUD2t5JRdqpfl5jxK2KMi4Ac9qWgs3gRoyo3X9clmNCA0xJ4waNWinY9gwEKgBvaioF89RWQDXxYUk2_NqzgMRdgSsYBGTXy9ZexlW-LCctY9OTfqh-S68XpuPz4_vzDPrnRejGhP95Tsrdart0zcrW264NGB38CqmY4tw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+fibrinolytic+system+attenuates+vascular+tone%3A+effects+of+tissue+plasminogen+activator+%28tPA%29+and+aminocaproic+acid+on+renal+microcirculation&rft.jtitle=British+journal+of+pharmacology&rft.au=Heyman%2C+Samuel+N&rft.au=Hanna%2C+Zohair&rft.au=Nassar%2C+Taher&rft.au=Shina%2C+Ahuva&rft.date=2004-03-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0007-1188&rft.eissn=1476-5381&rft.volume=141&rft.issue=6&rft.spage=971&rft.epage=978&rft_id=info:doi/10.1038%2Fsj.bjp.0705714&rft.externalDBID=10.1038%252Fsj.bjp.0705714&rft.externalDocID=BPH4640 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-1188&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-1188&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-1188&client=summon |