Simultaneous Estimation of Azimuth and Elevation Angles Using a Decision Tree-Based Method

This study addresses the problem of accurately predicting azimuth and elevation angles of signals impinging on an antenna array employing Machine Learning (ML). Using the information obtained at a receiving system when a transmitter’s signal hits it, a Decision Tree (DT) model is trained to estimate...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 23; no. 16; p. 7114
Main Authors: Carballeira, Anabel Reyes, de Figueiredo, Felipe A. P., Brito, Jose Marcos C.
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-08-2023
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This study addresses the problem of accurately predicting azimuth and elevation angles of signals impinging on an antenna array employing Machine Learning (ML). Using the information obtained at a receiving system when a transmitter’s signal hits it, a Decision Tree (DT) model is trained to estimate azimuth and elevation angles simultaneously. Simulation results demonstrate the robustness of the proposed DT-based method, showcasing its ability to predict the Direction of Arrival (DOA) in diverse conditions beyond the ones present in the training dataset, i.e., the results display the model’s generalization capability. Additionally, the comparative analysis reveals that DT-based DOA estimation outperforms the state-of-the-art MUltiple SIgnal Classification (MUSIC) algorithm. Our results demonstrate an average reduction of over 90% in the prediction error and 50% in the prediction time achieved by our proposal when compared to the MUSIC algorithm. These results establish DTs as competitive alternatives for DOA estimation in signal reception systems.
AbstractList This study addresses the problem of accurately predicting azimuth and elevation angles of signals impinging on an antenna array employing Machine Learning (ML). Using the information obtained at a receiving system when a transmitter’s signal hits it, a Decision Tree (DT) model is trained to estimate azimuth and elevation angles simultaneously. Simulation results demonstrate the robustness of the proposed DT-based method, showcasing its ability to predict the Direction of Arrival (DOA) in diverse conditions beyond the ones present in the training dataset, i.e., the results display the model’s generalization capability. Additionally, the comparative analysis reveals that DT-based DOA estimation outperforms the state-of-the-art MUltiple SIgnal Classification (MUSIC) algorithm. Our results demonstrate an average reduction of over 90% in the prediction error and 50% in the prediction time achieved by our proposal when compared to the MUSIC algorithm. These results establish DTs as competitive alternatives for DOA estimation in signal reception systems.
Audience Academic
Author de Figueiredo, Felipe A. P.
Brito, Jose Marcos C.
Carballeira, Anabel Reyes
AuthorAffiliation National Institute of Telecommunications INATEL, Av. João de Camargo, 510-Centro, Santa Rita do Sapucaí 37540-000, MG, Brazil brito@inatel.br (J.M.C.B.)
AuthorAffiliation_xml – name: National Institute of Telecommunications INATEL, Av. João de Camargo, 510-Centro, Santa Rita do Sapucaí 37540-000, MG, Brazil brito@inatel.br (J.M.C.B.)
Author_xml – sequence: 1
  givenname: Anabel Reyes
  surname: Carballeira
  fullname: Carballeira, Anabel Reyes
– sequence: 2
  givenname: Felipe A. P.
  orcidid: 0000-0002-2167-7286
  surname: de Figueiredo
  fullname: de Figueiredo, Felipe A. P.
– sequence: 3
  givenname: Jose Marcos C.
  orcidid: 0000-0003-3455-8363
  surname: Brito
  fullname: Brito, Jose Marcos C.
BookMark eNpdkk1v1DAQhi1URD_gwD-IxAUOKf6MnRNaygKVijjQXrhYXnuc9SprFzupBL8eb1NVFPlg6513Hs-M5hQdxRQBodcEnzPW4_eFMtJJQvgzdEI45a2iFB_98z5Gp6XsMKaMMfUCHTPZ1QxBTtDPH2E_j5OJkObSrMsU9mYKKTbJN6s_NTZtGxNdsx7hbgms4jBCaW5KiENjmk9gQzno1xmg_WgKuOYbTNvkXqLn3owFXj3cZ-jm8_r64mt79f3L5cXqqrVcdVPrucDcAWBiqPWWSoslpVaC6IERzDEXltcGuTDcYdtRt8G9gM6BUZ1nhp2hy4Xrktnp21w7yL91MkHfCykP2uQp2BG0VZ3EQlHMKlZh3gtvNx3uvSC92XBZWR8W1u282YOzEKdsxifQp5EYtnpId7oWKpQgB8LbB0JOv2Yok96HYmEclxFrqoRUnHEpqvXNf9ZdmnOss7p38VqPOgDPF9dgagch-lQ_tvU42AdbF8GHqq9kRwWXfadqwrslweZUSgb_WD7B-rAv-nFf2F-0H7BX
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3398351
Cites_doi 10.14209/sbrt.2022.1570824939
10.1109/TVT.2018.2851783
10.1002/9780471462422.eoct979
10.1109/JSTSP.2019.2938488
10.33012/2016.13395
10.3390/app10072415
10.1109/TNNLS.2014.2379930
10.1109/78.928686
10.1109/LSP.2012.2183592
10.1109/TVT.2019.2916171
10.1109/LAWP.2007.903491
10.1155/2019/5409612
10.1016/j.neucom.2019.10.009
10.1109/TSP.2021.3081047
10.1109/TAP.2018.2874430
10.1109/29.57542
10.1109/TAP.1986.1143830
10.1109/ICIoT48696.2020.9089657
10.1109/ICASSP.2015.7178484
10.1109/TAP.2009.2024485
10.1109/LCOMM.2019.2910253
10.1109/LSP.2020.2984914
10.1109/LSP.2019.2901641
10.1109/WPNC.2018.8555814
10.3390/s17061225
10.3390/s23041921
10.1109/TSP.2005.843717
10.1109/ICCS.2018.8689177
10.1109/TAP.2005.850735
10.20944/preprints202303.0282.v1
10.1109/LCOMM.2019.2929384
10.1109/TSP.2015.2465302
10.1109/ACCESS.2020.3005221
10.1109/29.32276
10.1016/j.sigpro.2019.07.025
10.1109/LAWP.2012.2223651
10.1109/TSP.2005.850882
10.1109/29.17564
10.3390/s21082767
10.1007/978-3-030-05318-5_1
10.1109/ISSPIT.2018.8642668
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PIMPY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s23167114
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest One Academic
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Music
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_c86705820340480495fcb609f519ab47
A762547968
10_3390_s23167114
GrantInformation_xml – fundername: Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)
  grantid: 2070.01.0004709/2021-28
– fundername: FCT/MCTES through national funds and when applicable co-funded EU funds
  grantid: UIDB/EEA/50008/2020
– fundername: Brazil 6G project of the Radiocommunication Reference Center (Centro de Referência em Radiocomunicações—CRR) of the National Institute of Telecommunications (Instituto Nacional de Telecomunicações—Inatel), Brazil
  grantid: 01245.020548/2021-07
– fundername: MCTI/CGI.br and the São Paulo Research Foundation (FAPESP)
  grantid: 2021/06946-0
– fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES) and RNP, with resources from MCTIC
  grantid: 01250.075413/2018-04; 01245.010604/2020-14
– fundername: Huawei, under the project Advanced Academic Education in Telecommunications Networks and Systems
  grantid: PPA6001BRA23032110257684
– fundername: Brazilian National Council for Research and Development (CNPq)
  grantid: 313036/2020-9; 403827/2021-3
GroupedDBID ---
123
2WC
3V.
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ABUWG
ADBBV
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
ITC
KB.
KQ8
L6V
M1P
M48
M7S
MODMG
M~E
OK1
P2P
P62
PDBOC
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TUS
UKHRP
XSB
~8M
7XB
8FK
AZQEC
DWQXO
K9.
PQEST
PQUKI
7X8
5PM
ID FETCH-LOGICAL-c486t-f4504dee01a2cfc27c0722c7e59e3104045c423145a4d0c62db095e6dea86f3a3
IEDL.DBID RPM
ISSN 1424-8220
IngestDate Tue Oct 22 15:14:53 EDT 2024
Tue Sep 17 21:29:37 EDT 2024
Fri Oct 25 01:44:11 EDT 2024
Thu Oct 10 16:13:44 EDT 2024
Tue Nov 12 23:56:55 EST 2024
Thu Sep 26 16:15:46 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c486t-f4504dee01a2cfc27c0722c7e59e3104045c423145a4d0c62db095e6dea86f3a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2167-7286
0000-0003-3455-8363
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458517/
PMID 37631651
PQID 2857447387
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_c86705820340480495fcb609f519ab47
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10458517
proquest_miscellaneous_2857843475
proquest_journals_2857447387
gale_infotracacademiconefile_A762547968
crossref_primary_10_3390_s23167114
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
Wang (ref_28) 2015; 26
Huang (ref_33) 2018; 67
Athley (ref_15) 2005; 53
Barthelme (ref_31) 2021; 69
Stoica (ref_18) 1990; 38
ref_58
ref_13
ref_57
ref_56
ref_11
Pastorino (ref_37) 2005; 53
ref_55
ref_54
ref_53
ref_52
ref_51
Zhou (ref_12) 2019; 13
Huang (ref_41) 2019; 23
Pesavento (ref_14) 2001; 49
Donelli (ref_39) 2009; 57
Dai (ref_25) 2012; 11
Schmidt (ref_19) 1986; 34
ref_21
Liu (ref_44) 2018; 66
Malioutov (ref_24) 2005; 53
ref_29
Guo (ref_32) 2020; 27
Vallet (ref_22) 2015; 63
Stoica (ref_17) 1989; 37
Fu (ref_27) 2019; 68
ref_36
Xu (ref_23) 2012; 19
ref_34
Wu (ref_42) 2019; 26
ref_30
Dashtipour (ref_45) 2020; 380
Zhang (ref_26) 2019; 23
Roy (ref_20) 1989; 37
You (ref_46) 2020; 2020
Dong (ref_16) 2020; 166
ref_47
ref_43
Dhope (ref_9) 2010; 19
Zhang (ref_10) 2019; 2019
ref_40
ref_1
ref_3
ref_2
Randazzo (ref_38) 2007; 6
ref_49
ref_48
ref_8
ref_5
ref_4
ref_7
Zhu (ref_35) 2020; 8
ref_6
References_xml – ident: ref_50
  doi: 10.14209/sbrt.2022.1570824939
– ident: ref_49
– ident: ref_5
– ident: ref_55
– ident: ref_51
– volume: 67
  start-page: 8549
  year: 2018
  ident: ref_33
  article-title: Deep learning for super-resolution channel estimation and DOA estimation based massive MIMO system
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2018.2851783
  contributor:
    fullname: Huang
– ident: ref_58
  doi: 10.1002/9780471462422.eoct979
– volume: 13
  start-page: 931
  year: 2019
  ident: ref_12
  article-title: FD-MIMO via pilot-data superposition: Tensor-based DOA estimation and system performance
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2019.2938488
  contributor:
    fullname: Zhou
– ident: ref_11
  doi: 10.33012/2016.13395
– ident: ref_13
  doi: 10.3390/app10072415
– volume: 26
  start-page: 2583
  year: 2015
  ident: ref_28
  article-title: Twin support vector machine for clustering
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2014.2379930
  contributor:
    fullname: Wang
– volume: 49
  start-page: 1310
  year: 2001
  ident: ref_14
  article-title: Maximum-likelihood direction-of-arrival estimation in the presence of unknown nonuniform noise
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.928686
  contributor:
    fullname: Pesavento
– volume: 19
  start-page: 155
  year: 2012
  ident: ref_23
  article-title: DOA estimation based on sparse signal recovery utilizing weighted l_{1}-norm penalty
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2012.2183592
  contributor:
    fullname: Xu
– volume: 68
  start-page: 6686
  year: 2019
  ident: ref_27
  article-title: A robust phase-ambiguity-immune DOA estimation scheme for antenna array
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2019.2916171
  contributor:
    fullname: Fu
– volume: 6
  start-page: 379
  year: 2007
  ident: ref_38
  article-title: Direction of arrival estimation based on support vector regression: Experimental validation and comparison with MUSIC
  publication-title: IEEE Antennas Wirel. Propag. Lett.
  doi: 10.1109/LAWP.2007.903491
  contributor:
    fullname: Randazzo
– ident: ref_1
– volume: 2019
  start-page: 1
  year: 2019
  ident: ref_10
  article-title: DOA-based localization method with multiple screening K-means clustering for multiple sources
  publication-title: Wirel. Commun. Mob. Comput.
  doi: 10.1155/2019/5409612
  contributor:
    fullname: Zhang
– volume: 380
  start-page: 1
  year: 2020
  ident: ref_45
  article-title: A hybrid Persian sentiment analysis framework: Integrating dependency grammar based rules and deep neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.10.009
  contributor:
    fullname: Dashtipour
– volume: 19
  start-page: 445
  year: 2010
  ident: ref_9
  article-title: Application of DOA estimation algorithms in smart antenna systems
  publication-title: Stud. Inform. Control.
  contributor:
    fullname: Dhope
– volume: 69
  start-page: 3075
  year: 2021
  ident: ref_31
  article-title: A machine learning approach to DoA estimation and model order selection for antenna arrays with subarray sampling
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2021.3081047
  contributor:
    fullname: Barthelme
– volume: 66
  start-page: 7315
  year: 2018
  ident: ref_44
  article-title: Direction-of-arrival estimation based on deep neural networks with robustness to array imperfections
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.2018.2874430
  contributor:
    fullname: Liu
– volume: 38
  start-page: 1132
  year: 1990
  ident: ref_18
  article-title: Maximum likelihood methods for direction-of-arrival estimation
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/29.57542
  contributor:
    fullname: Stoica
– volume: 34
  start-page: 276
  year: 1986
  ident: ref_19
  article-title: Multiple emitter location and signal parameter estimation
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.1986.1143830
  contributor:
    fullname: Schmidt
– ident: ref_52
– ident: ref_48
– ident: ref_4
  doi: 10.1109/ICIoT48696.2020.9089657
– ident: ref_29
  doi: 10.1109/ICASSP.2015.7178484
– volume: 57
  start-page: 2279
  year: 2009
  ident: ref_39
  article-title: An innovative multiresolution approach for DOA estimation based on a support vector classification
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.2009.2024485
  contributor:
    fullname: Donelli
– volume: 23
  start-page: 1029
  year: 2019
  ident: ref_41
  article-title: Toward wide-frequency-range direction finding with support vector regression
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2019.2910253
  contributor:
    fullname: Huang
– volume: 27
  start-page: 570
  year: 2020
  ident: ref_32
  article-title: DOA estimation method based on cascaded neural network for two closely spaced sources
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2020.2984914
  contributor:
    fullname: Guo
– volume: 26
  start-page: 642
  year: 2019
  ident: ref_42
  article-title: Coherent SVR learning for wideband direction-of-arrival estimation
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2019.2901641
  contributor:
    fullname: Wu
– ident: ref_30
  doi: 10.1109/WPNC.2018.8555814
– ident: ref_40
  doi: 10.3390/s17061225
– ident: ref_7
– ident: ref_8
  doi: 10.3390/s23041921
– ident: ref_53
– volume: 53
  start-page: 1359
  year: 2005
  ident: ref_15
  article-title: Threshold region performance of maximum likelihood direction of arrival estimators
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2005.843717
  contributor:
    fullname: Athley
– ident: ref_34
  doi: 10.1109/ICCS.2018.8689177
– ident: ref_3
– volume: 53
  start-page: 2161
  year: 2005
  ident: ref_37
  article-title: A smart antenna system for direction of arrival estimation based on a support vector regression
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.2005.850735
  contributor:
    fullname: Pastorino
– ident: ref_47
– ident: ref_2
  doi: 10.20944/preprints202303.0282.v1
– volume: 23
  start-page: 1845
  year: 2019
  ident: ref_26
  article-title: A novel block sparse reconstruction method for DOA estimation with unknown mutual coupling
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2019.2929384
  contributor:
    fullname: Zhang
– volume: 63
  start-page: 6407
  year: 2015
  ident: ref_22
  article-title: Performance analysis of an improved MUSIC DoA estimator
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2015.2465302
  contributor:
    fullname: Vallet
– volume: 8
  start-page: 124544
  year: 2020
  ident: ref_35
  article-title: Two-dimensional DOA estimation via deep ensemble learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3005221
  contributor:
    fullname: Zhu
– volume: 37
  start-page: 984
  year: 1989
  ident: ref_20
  article-title: ESPRIT-estimation of signal parameters via rotational invariance techniques
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/29.32276
  contributor:
    fullname: Roy
– volume: 2020
  start-page: 1
  year: 2020
  ident: ref_46
  article-title: A review on machine learning-based radio direction finding
  publication-title: Math. Probl. Eng.
  contributor:
    fullname: You
– ident: ref_21
– volume: 166
  start-page: 107232
  year: 2020
  ident: ref_16
  article-title: DOA estimation with known waveforms in the presence of unknown time delays and Doppler shifts
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2019.07.025
  contributor:
    fullname: Dong
– volume: 11
  start-page: 1210
  year: 2012
  ident: ref_25
  article-title: A sparse representation method for DOA estimation with unknown mutual coupling
  publication-title: IEEE Antennas Wirel. Propag. Lett.
  doi: 10.1109/LAWP.2012.2223651
  contributor:
    fullname: Dai
– ident: ref_6
– ident: ref_54
– volume: 53
  start-page: 3010
  year: 2005
  ident: ref_24
  article-title: A sparse signal reconstruction perspective for source localization with sensor arrays
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2005.850882
  contributor:
    fullname: Malioutov
– volume: 37
  start-page: 720
  year: 1989
  ident: ref_17
  article-title: MUSIC, maximum likelihood, and Cramer-Rao bound
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/29.17564
  contributor:
    fullname: Stoica
– ident: ref_36
  doi: 10.3390/s21082767
– ident: ref_56
  doi: 10.1007/978-3-030-05318-5_1
– ident: ref_43
  doi: 10.1109/ISSPIT.2018.8642668
– ident: ref_57
SSID ssj0023338
Score 2.4550583
Snippet This study addresses the problem of accurately predicting azimuth and elevation angles of signals impinging on an antenna array employing Machine Learning...
SourceID doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
StartPage 7114
SubjectTerms Airports
Antennas
Antennas (Electronics)
Comparative analysis
correlation matrix
decision tree
direction of arrival
Drones
Internet of Things
Localization
Machine learning
Methods
Military bases
Music
Neural networks
Parameter estimation
Sensors
Signal processing
Simulation
Surveillance
Unmanned aerial vehicles
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVKeykHBKWIhYLcCqmnqIk9_tjjlm7VC1xaJNSLZTsTWqlKUXd74dczE2dXXThw4RpbiT0v9szYM2-E-OSicq3vNGcsuwowpypqrSu006QTJvIQ-Lzj4tJ9_e7P5kyTsy71xTFhhR64CO4ke-tqQ3pKA6c_kz3f5WTraUemR0xQ8shrv3KmRleLPucLj5Amp_5koTjhu2lgQ_sMJP1_b8V_hkc-0TfnL8WL0VCUszLAV2IL-z3x_Al94J7YGYo0vxbXl7ccFxh7JDdezmnRlnxEed_J2S9qW97I2LdyfoflAFbO-h93uJBDvICM8mwstCOvHhCrU1JsrfwylJbeF9_O51efL6qxZkKVwdtl1YGpoUWsm6hyl5XLtVMqOzRTJEuOZGgyWVANmAhtna1qExlZaFuM3nY66jdiu7_v8a2QBFN2CmJyPpGqS1zkCjqbUmNzVGAm4mgly_CzUGMEcilY4GEt8Ik4ZSmvOzCb9fCAMA4jxuFfGE_EMWMUeM0RIjmOqQM0TmavCjPa0Q24qfUTcbCCMYyLcRGUNw7AaU8vOlw30zLiu5GCzdDHgwZH0_Ib8G8MfbOlv70ZCLkbvm02jXv3Pyb7XuxySfsSZHggtpcPj_hBPFu0jx-Hf_w3w7_-sA
  priority: 102
  providerName: Directory of Open Access Journals
Title Simultaneous Estimation of Azimuth and Elevation Angles Using a Decision Tree-Based Method
URI https://www.proquest.com/docview/2857447387
https://search.proquest.com/docview/2857843475
https://pubmed.ncbi.nlm.nih.gov/PMC10458517
https://doaj.org/article/c86705820340480495fcb609f519ab47
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6xPaByQDzFQqkMQuKUbuL3HrftVr0UIbVIiItlO067UputdrcXfj0zTrLqwo1r7CT2jMfzjT0PgC_Gc1PbRlDEsilkiqHwQogi6WkQIQW0EOi84_zSfPtpT-eUJkcPsTDZaT-GxVF7e3fULm6yb-X9XZwMfmKT7xcnFd3uqcpMRjBCcDjY6L2Zhb-yXQ4hgQb9ZM0p2Bth_z48JWmqtKp2lFDO1f_vjvy3l-QjtXP2Ap73eJHNunG9hCepfQXPHmURfA2_LhfkFujbhFY8m6PMduGIbNmw2W9s29ww39Zsfpu681c2a69xjiy7CzDPTvs6O-xqlVJxjHqtZhe5svQb-HE2vzo5L_qSCUWUVm-KRqpS1imVleexidzE0nAeTVLThEBOIuEiAqhKKi_rMmpeB8RYSdfJW90IL97CXrts0ztgyKVouPTB2ICaLlCNK9noECodPZdqDJ8HGrr7LjOGQ4uCaO62NB_DMVF324GSWecHy9W161nqotWmVAhFhKQIdzTZmhh0OW0QXfogzRi-Em8ciRxyIvo-cgDHScmr3Aw3dCXNVNsxHAzsc70srh23ykhphMUPfdo2oxTR1UjHm9zHSiENTsvusH1n6LstuDxzPu5hOb7__1c_wD7Vse88Cw9gb7N6SB9htK4fDvMpwWFe4n8AgtoALw
link.rule.ids 230,315,729,782,786,866,887,2108,27935,27936,53803,53805
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RIkE58CxioYBBSJzSTfze47bdahHdCqmLhLhYtuO0K7XZah8Xfj1jJ1l14dZrxokfM5OZsWc-A3xRlqpSVyxWLKuMB-8yyxjLghw45oLDCCHud4wv1PkvfTKKMDmyq4VJSfvezQ7r65vDenaVcitvb3y_yxPr_5gcF_F0TxSqvwMPUWFz1kXpbaCFnekGRYhhSN9f0ljujY7_HjyK-lRIUWyZoYTW__8_-d88yTuG5_TZfYf8HJ62riYZNvQX8CDUL-HJHQDCV_D7YhYzCm0d5uslGaG6N5WMZF6R4R-kra6IrUsyug7N1i0Z1pfYF0mZBsSSk_aKHjJdhJAdoUksySRdSr0PP09H0-Nx1t62kHmu5SqruMh5GUJeWOorT5XPFaVeBTEI6ANynIBH36vgwvIy95KWDt2zIMtgtayYZa9ht57X4Q0QZLBXlFuntEMj6eL1WLySzhXSW8pFDz53i29uG1ANg8FIZJbZMKsHR5EtmwYRBzs9mC8uTbu0xmupcoFeDOOxOB6jvco7mQ8qdEyt46oHXyNTTdRWZKG3bdEBjjPiXpkh2gLB1UDqHhx0fDetGi8N1UJxrpjGD33akFEB46lKw5vURnPGFU5Lb8nL1tC3KSgmCcq7E4u393_1IzweTydn5uzb-fd3sEdR_JsExQPYXS3W4T3sLMv1h6QhfwHXXRT1
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIlXlQHmKhVIMQuKUJvF7e9t2d1UErSq1SIiLZTtOu1KbXe3jwq9nnMeqCzd6jZ3EzucvM2PPA-CzslQVumQxYlklPHiXWMZYEmTfMRccWghxv-P0Up3_1MNRTJNz1MXC1E773k0Oq9u7w2pyU_tWzu582vmJpRdnJ3k83RO5SmdFmW7BYyRtJjpLvTW28IW6ySTE0KxPFzSGfKPyvws7kVO5FPmGKKoz9v_7X_7bV_Ke8BnvPWTYz-Bpq3KSQdPnOTwK1Qt4ci8R4Uv4dTmJnoW2CtPVgoyQ9k1EI5mWZPAb25Y3xFYFGd2GZguXDKprfB-pPQ6IJcO2VA-5moeQHKNoLMhZXZz6FfwYj65OTpO26kLiuZbLpOQi40UIWW6pLz1VPlOUehVEP6AuyHESHnWwnAvLi8xLWjhU04IsgtWyZJa9hu1qWoU3QBBoryi3TmmHwtLFMlm8lM7l0lvKRQ8-dQCYWZNcw6BREgEza8B6cByhWXeI-bDrC9P5tWk_r_FaqkygNsN4DJJHq6_0Tmb9EhVU67jqwZcIrImsRRi9bYMPcJwx_5UZoEwQXPWl7sF-h71p6bwwVAvFuWIaH_Rx3YxEjKcrDTZ1H80ZVzgtvbFmNoa-2YJLpU7p3S2Nt_9_6wfYuRiOzfev59_ewS5FBjR-ivuwvZyvwnvYWhSrg5okfwCS7Bd1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneous+Estimation+of+Azimuth+and+Elevation+Angles+Using+a+Decision+Tree-Based+Method&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Anabel+Reyes+Carballeira&rft.au=Felipe+A+P+de+Figueiredo&rft.au=Brito%2C+Jose+Marcos+C&rft.date=2023-08-01&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=16&rft.spage=7114&rft_id=info:doi/10.3390%2Fs23167114&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon