Simultaneous Estimation of Azimuth and Elevation Angles Using a Decision Tree-Based Method
This study addresses the problem of accurately predicting azimuth and elevation angles of signals impinging on an antenna array employing Machine Learning (ML). Using the information obtained at a receiving system when a transmitter’s signal hits it, a Decision Tree (DT) model is trained to estimate...
Saved in:
Published in: | Sensors (Basel, Switzerland) Vol. 23; no. 16; p. 7114 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-08-2023
MDPI |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | This study addresses the problem of accurately predicting azimuth and elevation angles of signals impinging on an antenna array employing Machine Learning (ML). Using the information obtained at a receiving system when a transmitter’s signal hits it, a Decision Tree (DT) model is trained to estimate azimuth and elevation angles simultaneously. Simulation results demonstrate the robustness of the proposed DT-based method, showcasing its ability to predict the Direction of Arrival (DOA) in diverse conditions beyond the ones present in the training dataset, i.e., the results display the model’s generalization capability. Additionally, the comparative analysis reveals that DT-based DOA estimation outperforms the state-of-the-art MUltiple SIgnal Classification (MUSIC) algorithm. Our results demonstrate an average reduction of over 90% in the prediction error and 50% in the prediction time achieved by our proposal when compared to the MUSIC algorithm. These results establish DTs as competitive alternatives for DOA estimation in signal reception systems. |
---|---|
AbstractList | This study addresses the problem of accurately predicting azimuth and elevation angles of signals impinging on an antenna array employing Machine Learning (ML). Using the information obtained at a receiving system when a transmitter’s signal hits it, a Decision Tree (DT) model is trained to estimate azimuth and elevation angles simultaneously. Simulation results demonstrate the robustness of the proposed DT-based method, showcasing its ability to predict the Direction of Arrival (DOA) in diverse conditions beyond the ones present in the training dataset, i.e., the results display the model’s generalization capability. Additionally, the comparative analysis reveals that DT-based DOA estimation outperforms the state-of-the-art MUltiple SIgnal Classification (MUSIC) algorithm. Our results demonstrate an average reduction of over 90% in the prediction error and 50% in the prediction time achieved by our proposal when compared to the MUSIC algorithm. These results establish DTs as competitive alternatives for DOA estimation in signal reception systems. |
Audience | Academic |
Author | de Figueiredo, Felipe A. P. Brito, Jose Marcos C. Carballeira, Anabel Reyes |
AuthorAffiliation | National Institute of Telecommunications INATEL, Av. João de Camargo, 510-Centro, Santa Rita do Sapucaí 37540-000, MG, Brazil brito@inatel.br (J.M.C.B.) |
AuthorAffiliation_xml | – name: National Institute of Telecommunications INATEL, Av. João de Camargo, 510-Centro, Santa Rita do Sapucaí 37540-000, MG, Brazil brito@inatel.br (J.M.C.B.) |
Author_xml | – sequence: 1 givenname: Anabel Reyes surname: Carballeira fullname: Carballeira, Anabel Reyes – sequence: 2 givenname: Felipe A. P. orcidid: 0000-0002-2167-7286 surname: de Figueiredo fullname: de Figueiredo, Felipe A. P. – sequence: 3 givenname: Jose Marcos C. orcidid: 0000-0003-3455-8363 surname: Brito fullname: Brito, Jose Marcos C. |
BookMark | eNpdkk1v1DAQhi1URD_gwD-IxAUOKf6MnRNaygKVijjQXrhYXnuc9SprFzupBL8eb1NVFPlg6513Hs-M5hQdxRQBodcEnzPW4_eFMtJJQvgzdEI45a2iFB_98z5Gp6XsMKaMMfUCHTPZ1QxBTtDPH2E_j5OJkObSrMsU9mYKKTbJN6s_NTZtGxNdsx7hbgms4jBCaW5KiENjmk9gQzno1xmg_WgKuOYbTNvkXqLn3owFXj3cZ-jm8_r64mt79f3L5cXqqrVcdVPrucDcAWBiqPWWSoslpVaC6IERzDEXltcGuTDcYdtRt8G9gM6BUZ1nhp2hy4Xrktnp21w7yL91MkHfCykP2uQp2BG0VZ3EQlHMKlZh3gtvNx3uvSC92XBZWR8W1u282YOzEKdsxifQp5EYtnpId7oWKpQgB8LbB0JOv2Yok96HYmEclxFrqoRUnHEpqvXNf9ZdmnOss7p38VqPOgDPF9dgagch-lQ_tvU42AdbF8GHqq9kRwWXfadqwrslweZUSgb_WD7B-rAv-nFf2F-0H7BX |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3398351 |
Cites_doi | 10.14209/sbrt.2022.1570824939 10.1109/TVT.2018.2851783 10.1002/9780471462422.eoct979 10.1109/JSTSP.2019.2938488 10.33012/2016.13395 10.3390/app10072415 10.1109/TNNLS.2014.2379930 10.1109/78.928686 10.1109/LSP.2012.2183592 10.1109/TVT.2019.2916171 10.1109/LAWP.2007.903491 10.1155/2019/5409612 10.1016/j.neucom.2019.10.009 10.1109/TSP.2021.3081047 10.1109/TAP.2018.2874430 10.1109/29.57542 10.1109/TAP.1986.1143830 10.1109/ICIoT48696.2020.9089657 10.1109/ICASSP.2015.7178484 10.1109/TAP.2009.2024485 10.1109/LCOMM.2019.2910253 10.1109/LSP.2020.2984914 10.1109/LSP.2019.2901641 10.1109/WPNC.2018.8555814 10.3390/s17061225 10.3390/s23041921 10.1109/TSP.2005.843717 10.1109/ICCS.2018.8689177 10.1109/TAP.2005.850735 10.20944/preprints202303.0282.v1 10.1109/LCOMM.2019.2929384 10.1109/TSP.2015.2465302 10.1109/ACCESS.2020.3005221 10.1109/29.32276 10.1016/j.sigpro.2019.07.025 10.1109/LAWP.2012.2223651 10.1109/TSP.2005.850882 10.1109/29.17564 10.3390/s21082767 10.1007/978-3-030-05318-5_1 10.1109/ISSPIT.2018.8642668 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PIMPY PQEST PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.3390/s23167114 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest One Academic ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Music |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_c86705820340480495fcb609f519ab47 A762547968 10_3390_s23167114 |
GrantInformation_xml | – fundername: Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) grantid: 2070.01.0004709/2021-28 – fundername: FCT/MCTES through national funds and when applicable co-funded EU funds grantid: UIDB/EEA/50008/2020 – fundername: Brazil 6G project of the Radiocommunication Reference Center (Centro de Referência em Radiocomunicações—CRR) of the National Institute of Telecommunications (Instituto Nacional de Telecomunicações—Inatel), Brazil grantid: 01245.020548/2021-07 – fundername: MCTI/CGI.br and the São Paulo Research Foundation (FAPESP) grantid: 2021/06946-0 – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES) and RNP, with resources from MCTIC grantid: 01250.075413/2018-04; 01245.010604/2020-14 – fundername: Huawei, under the project Advanced Academic Education in Telecommunications Networks and Systems grantid: PPA6001BRA23032110257684 – fundername: Brazilian National Council for Research and Development (CNPq) grantid: 313036/2020-9; 403827/2021-3 |
GroupedDBID | --- 123 2WC 3V. 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABJCF ABUWG ADBBV AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO ITC KB. KQ8 L6V M1P M48 M7S MODMG M~E OK1 P2P P62 PDBOC PIMPY PQQKQ PROAC PSQYO RIG RNS RPM TUS UKHRP XSB ~8M 7XB 8FK AZQEC DWQXO K9. PQEST PQUKI 7X8 5PM |
ID | FETCH-LOGICAL-c486t-f4504dee01a2cfc27c0722c7e59e3104045c423145a4d0c62db095e6dea86f3a3 |
IEDL.DBID | RPM |
ISSN | 1424-8220 |
IngestDate | Tue Oct 22 15:14:53 EDT 2024 Tue Sep 17 21:29:37 EDT 2024 Fri Oct 25 01:44:11 EDT 2024 Thu Oct 10 16:13:44 EDT 2024 Tue Nov 12 23:56:55 EST 2024 Thu Sep 26 16:15:46 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c486t-f4504dee01a2cfc27c0722c7e59e3104045c423145a4d0c62db095e6dea86f3a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2167-7286 0000-0003-3455-8363 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458517/ |
PMID | 37631651 |
PQID | 2857447387 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c86705820340480495fcb609f519ab47 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10458517 proquest_miscellaneous_2857843475 proquest_journals_2857447387 gale_infotracacademiconefile_A762547968 crossref_primary_10_3390_s23167114 |
PublicationCentury | 2000 |
PublicationDate | 2023-08-01 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_50 Wang (ref_28) 2015; 26 Huang (ref_33) 2018; 67 Athley (ref_15) 2005; 53 Barthelme (ref_31) 2021; 69 Stoica (ref_18) 1990; 38 ref_58 ref_13 ref_57 ref_56 ref_11 Pastorino (ref_37) 2005; 53 ref_55 ref_54 ref_53 ref_52 ref_51 Zhou (ref_12) 2019; 13 Huang (ref_41) 2019; 23 Pesavento (ref_14) 2001; 49 Donelli (ref_39) 2009; 57 Dai (ref_25) 2012; 11 Schmidt (ref_19) 1986; 34 ref_21 Liu (ref_44) 2018; 66 Malioutov (ref_24) 2005; 53 ref_29 Guo (ref_32) 2020; 27 Vallet (ref_22) 2015; 63 Stoica (ref_17) 1989; 37 Fu (ref_27) 2019; 68 ref_36 Xu (ref_23) 2012; 19 ref_34 Wu (ref_42) 2019; 26 ref_30 Dashtipour (ref_45) 2020; 380 Zhang (ref_26) 2019; 23 Roy (ref_20) 1989; 37 You (ref_46) 2020; 2020 Dong (ref_16) 2020; 166 ref_47 ref_43 Dhope (ref_9) 2010; 19 Zhang (ref_10) 2019; 2019 ref_40 ref_1 ref_3 ref_2 Randazzo (ref_38) 2007; 6 ref_49 ref_48 ref_8 ref_5 ref_4 ref_7 Zhu (ref_35) 2020; 8 ref_6 |
References_xml | – ident: ref_50 doi: 10.14209/sbrt.2022.1570824939 – ident: ref_49 – ident: ref_5 – ident: ref_55 – ident: ref_51 – volume: 67 start-page: 8549 year: 2018 ident: ref_33 article-title: Deep learning for super-resolution channel estimation and DOA estimation based massive MIMO system publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2018.2851783 contributor: fullname: Huang – ident: ref_58 doi: 10.1002/9780471462422.eoct979 – volume: 13 start-page: 931 year: 2019 ident: ref_12 article-title: FD-MIMO via pilot-data superposition: Tensor-based DOA estimation and system performance publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2019.2938488 contributor: fullname: Zhou – ident: ref_11 doi: 10.33012/2016.13395 – ident: ref_13 doi: 10.3390/app10072415 – volume: 26 start-page: 2583 year: 2015 ident: ref_28 article-title: Twin support vector machine for clustering publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2014.2379930 contributor: fullname: Wang – volume: 49 start-page: 1310 year: 2001 ident: ref_14 article-title: Maximum-likelihood direction-of-arrival estimation in the presence of unknown nonuniform noise publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.928686 contributor: fullname: Pesavento – volume: 19 start-page: 155 year: 2012 ident: ref_23 article-title: DOA estimation based on sparse signal recovery utilizing weighted l_{1}-norm penalty publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2012.2183592 contributor: fullname: Xu – volume: 68 start-page: 6686 year: 2019 ident: ref_27 article-title: A robust phase-ambiguity-immune DOA estimation scheme for antenna array publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2019.2916171 contributor: fullname: Fu – volume: 6 start-page: 379 year: 2007 ident: ref_38 article-title: Direction of arrival estimation based on support vector regression: Experimental validation and comparison with MUSIC publication-title: IEEE Antennas Wirel. Propag. Lett. doi: 10.1109/LAWP.2007.903491 contributor: fullname: Randazzo – ident: ref_1 – volume: 2019 start-page: 1 year: 2019 ident: ref_10 article-title: DOA-based localization method with multiple screening K-means clustering for multiple sources publication-title: Wirel. Commun. Mob. Comput. doi: 10.1155/2019/5409612 contributor: fullname: Zhang – volume: 380 start-page: 1 year: 2020 ident: ref_45 article-title: A hybrid Persian sentiment analysis framework: Integrating dependency grammar based rules and deep neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.10.009 contributor: fullname: Dashtipour – volume: 19 start-page: 445 year: 2010 ident: ref_9 article-title: Application of DOA estimation algorithms in smart antenna systems publication-title: Stud. Inform. Control. contributor: fullname: Dhope – volume: 69 start-page: 3075 year: 2021 ident: ref_31 article-title: A machine learning approach to DoA estimation and model order selection for antenna arrays with subarray sampling publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2021.3081047 contributor: fullname: Barthelme – volume: 66 start-page: 7315 year: 2018 ident: ref_44 article-title: Direction-of-arrival estimation based on deep neural networks with robustness to array imperfections publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/TAP.2018.2874430 contributor: fullname: Liu – volume: 38 start-page: 1132 year: 1990 ident: ref_18 article-title: Maximum likelihood methods for direction-of-arrival estimation publication-title: IEEE Trans. Acoust. Speech Signal Process. doi: 10.1109/29.57542 contributor: fullname: Stoica – volume: 34 start-page: 276 year: 1986 ident: ref_19 article-title: Multiple emitter location and signal parameter estimation publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/TAP.1986.1143830 contributor: fullname: Schmidt – ident: ref_52 – ident: ref_48 – ident: ref_4 doi: 10.1109/ICIoT48696.2020.9089657 – ident: ref_29 doi: 10.1109/ICASSP.2015.7178484 – volume: 57 start-page: 2279 year: 2009 ident: ref_39 article-title: An innovative multiresolution approach for DOA estimation based on a support vector classification publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/TAP.2009.2024485 contributor: fullname: Donelli – volume: 23 start-page: 1029 year: 2019 ident: ref_41 article-title: Toward wide-frequency-range direction finding with support vector regression publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2019.2910253 contributor: fullname: Huang – volume: 27 start-page: 570 year: 2020 ident: ref_32 article-title: DOA estimation method based on cascaded neural network for two closely spaced sources publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2020.2984914 contributor: fullname: Guo – volume: 26 start-page: 642 year: 2019 ident: ref_42 article-title: Coherent SVR learning for wideband direction-of-arrival estimation publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2019.2901641 contributor: fullname: Wu – ident: ref_30 doi: 10.1109/WPNC.2018.8555814 – ident: ref_40 doi: 10.3390/s17061225 – ident: ref_7 – ident: ref_8 doi: 10.3390/s23041921 – ident: ref_53 – volume: 53 start-page: 1359 year: 2005 ident: ref_15 article-title: Threshold region performance of maximum likelihood direction of arrival estimators publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2005.843717 contributor: fullname: Athley – ident: ref_34 doi: 10.1109/ICCS.2018.8689177 – ident: ref_3 – volume: 53 start-page: 2161 year: 2005 ident: ref_37 article-title: A smart antenna system for direction of arrival estimation based on a support vector regression publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/TAP.2005.850735 contributor: fullname: Pastorino – ident: ref_47 – ident: ref_2 doi: 10.20944/preprints202303.0282.v1 – volume: 23 start-page: 1845 year: 2019 ident: ref_26 article-title: A novel block sparse reconstruction method for DOA estimation with unknown mutual coupling publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2019.2929384 contributor: fullname: Zhang – volume: 63 start-page: 6407 year: 2015 ident: ref_22 article-title: Performance analysis of an improved MUSIC DoA estimator publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2015.2465302 contributor: fullname: Vallet – volume: 8 start-page: 124544 year: 2020 ident: ref_35 article-title: Two-dimensional DOA estimation via deep ensemble learning publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3005221 contributor: fullname: Zhu – volume: 37 start-page: 984 year: 1989 ident: ref_20 article-title: ESPRIT-estimation of signal parameters via rotational invariance techniques publication-title: IEEE Trans. Acoust. Speech Signal Process. doi: 10.1109/29.32276 contributor: fullname: Roy – volume: 2020 start-page: 1 year: 2020 ident: ref_46 article-title: A review on machine learning-based radio direction finding publication-title: Math. Probl. Eng. contributor: fullname: You – ident: ref_21 – volume: 166 start-page: 107232 year: 2020 ident: ref_16 article-title: DOA estimation with known waveforms in the presence of unknown time delays and Doppler shifts publication-title: Signal Process. doi: 10.1016/j.sigpro.2019.07.025 contributor: fullname: Dong – volume: 11 start-page: 1210 year: 2012 ident: ref_25 article-title: A sparse representation method for DOA estimation with unknown mutual coupling publication-title: IEEE Antennas Wirel. Propag. Lett. doi: 10.1109/LAWP.2012.2223651 contributor: fullname: Dai – ident: ref_6 – ident: ref_54 – volume: 53 start-page: 3010 year: 2005 ident: ref_24 article-title: A sparse signal reconstruction perspective for source localization with sensor arrays publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2005.850882 contributor: fullname: Malioutov – volume: 37 start-page: 720 year: 1989 ident: ref_17 article-title: MUSIC, maximum likelihood, and Cramer-Rao bound publication-title: IEEE Trans. Acoust. Speech Signal Process. doi: 10.1109/29.17564 contributor: fullname: Stoica – ident: ref_36 doi: 10.3390/s21082767 – ident: ref_56 doi: 10.1007/978-3-030-05318-5_1 – ident: ref_43 doi: 10.1109/ISSPIT.2018.8642668 – ident: ref_57 |
SSID | ssj0023338 |
Score | 2.4550583 |
Snippet | This study addresses the problem of accurately predicting azimuth and elevation angles of signals impinging on an antenna array employing Machine Learning... |
SourceID | doaj pubmedcentral proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database |
StartPage | 7114 |
SubjectTerms | Airports Antennas Antennas (Electronics) Comparative analysis correlation matrix decision tree direction of arrival Drones Internet of Things Localization Machine learning Methods Military bases Music Neural networks Parameter estimation Sensors Signal processing Simulation Surveillance Unmanned aerial vehicles |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVKeykHBKWIhYLcCqmnqIk9_tjjlm7VC1xaJNSLZTsTWqlKUXd74dczE2dXXThw4RpbiT0v9szYM2-E-OSicq3vNGcsuwowpypqrSu006QTJvIQ-Lzj4tJ9_e7P5kyTsy71xTFhhR64CO4ke-tqQ3pKA6c_kz3f5WTraUemR0xQ8shrv3KmRleLPucLj5Amp_5koTjhu2lgQ_sMJP1_b8V_hkc-0TfnL8WL0VCUszLAV2IL-z3x_Al94J7YGYo0vxbXl7ccFxh7JDdezmnRlnxEed_J2S9qW97I2LdyfoflAFbO-h93uJBDvICM8mwstCOvHhCrU1JsrfwylJbeF9_O51efL6qxZkKVwdtl1YGpoUWsm6hyl5XLtVMqOzRTJEuOZGgyWVANmAhtna1qExlZaFuM3nY66jdiu7_v8a2QBFN2CmJyPpGqS1zkCjqbUmNzVGAm4mgly_CzUGMEcilY4GEt8Ik4ZSmvOzCb9fCAMA4jxuFfGE_EMWMUeM0RIjmOqQM0TmavCjPa0Q24qfUTcbCCMYyLcRGUNw7AaU8vOlw30zLiu5GCzdDHgwZH0_Ib8G8MfbOlv70ZCLkbvm02jXv3Pyb7XuxySfsSZHggtpcPj_hBPFu0jx-Hf_w3w7_-sA priority: 102 providerName: Directory of Open Access Journals |
Title | Simultaneous Estimation of Azimuth and Elevation Angles Using a Decision Tree-Based Method |
URI | https://www.proquest.com/docview/2857447387 https://search.proquest.com/docview/2857843475 https://pubmed.ncbi.nlm.nih.gov/PMC10458517 https://doaj.org/article/c86705820340480495fcb609f519ab47 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6xPaByQDzFQqkMQuKUbuL3HrftVr0UIbVIiItlO067UputdrcXfj0zTrLqwo1r7CT2jMfzjT0PgC_Gc1PbRlDEsilkiqHwQogi6WkQIQW0EOi84_zSfPtpT-eUJkcPsTDZaT-GxVF7e3fULm6yb-X9XZwMfmKT7xcnFd3uqcpMRjBCcDjY6L2Zhb-yXQ4hgQb9ZM0p2Bth_z48JWmqtKp2lFDO1f_vjvy3l-QjtXP2Ap73eJHNunG9hCepfQXPHmURfA2_LhfkFujbhFY8m6PMduGIbNmw2W9s29ww39Zsfpu681c2a69xjiy7CzDPTvs6O-xqlVJxjHqtZhe5svQb-HE2vzo5L_qSCUWUVm-KRqpS1imVleexidzE0nAeTVLThEBOIuEiAqhKKi_rMmpeB8RYSdfJW90IL97CXrts0ztgyKVouPTB2ICaLlCNK9noECodPZdqDJ8HGrr7LjOGQ4uCaO62NB_DMVF324GSWecHy9W161nqotWmVAhFhKQIdzTZmhh0OW0QXfogzRi-Em8ciRxyIvo-cgDHScmr3Aw3dCXNVNsxHAzsc70srh23ykhphMUPfdo2oxTR1UjHm9zHSiENTsvusH1n6LstuDxzPu5hOb7__1c_wD7Vse88Cw9gb7N6SB9htK4fDvMpwWFe4n8AgtoALw |
link.rule.ids | 230,315,729,782,786,866,887,2108,27935,27936,53803,53805 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RIkE58CxioYBBSJzSTfze47bdahHdCqmLhLhYtuO0K7XZah8Xfj1jJ1l14dZrxokfM5OZsWc-A3xRlqpSVyxWLKuMB-8yyxjLghw45oLDCCHud4wv1PkvfTKKMDmyq4VJSfvezQ7r65vDenaVcitvb3y_yxPr_5gcF_F0TxSqvwMPUWFz1kXpbaCFnekGRYhhSN9f0ljujY7_HjyK-lRIUWyZoYTW__8_-d88yTuG5_TZfYf8HJ62riYZNvQX8CDUL-HJHQDCV_D7YhYzCm0d5uslGaG6N5WMZF6R4R-kra6IrUsyug7N1i0Z1pfYF0mZBsSSk_aKHjJdhJAdoUksySRdSr0PP09H0-Nx1t62kHmu5SqruMh5GUJeWOorT5XPFaVeBTEI6ANynIBH36vgwvIy95KWDt2zIMtgtayYZa9ht57X4Q0QZLBXlFuntEMj6eL1WLySzhXSW8pFDz53i29uG1ANg8FIZJbZMKsHR5EtmwYRBzs9mC8uTbu0xmupcoFeDOOxOB6jvco7mQ8qdEyt46oHXyNTTdRWZKG3bdEBjjPiXpkh2gLB1UDqHhx0fDetGi8N1UJxrpjGD33akFEB46lKw5vURnPGFU5Lb8nL1tC3KSgmCcq7E4u393_1IzweTydn5uzb-fd3sEdR_JsExQPYXS3W4T3sLMv1h6QhfwHXXRT1 |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIlXlQHmKhVIMQuKUJvF7e9t2d1UErSq1SIiLZTtOu1KbXe3jwq9nnMeqCzd6jZ3EzucvM2PPA-CzslQVumQxYlklPHiXWMZYEmTfMRccWghxv-P0Up3_1MNRTJNz1MXC1E773k0Oq9u7w2pyU_tWzu582vmJpRdnJ3k83RO5SmdFmW7BYyRtJjpLvTW28IW6ySTE0KxPFzSGfKPyvws7kVO5FPmGKKoz9v_7X_7bV_Ke8BnvPWTYz-Bpq3KSQdPnOTwK1Qt4ci8R4Uv4dTmJnoW2CtPVgoyQ9k1EI5mWZPAb25Y3xFYFGd2GZguXDKprfB-pPQ6IJcO2VA-5moeQHKNoLMhZXZz6FfwYj65OTpO26kLiuZbLpOQi40UIWW6pLz1VPlOUehVEP6AuyHESHnWwnAvLi8xLWjhU04IsgtWyZJa9hu1qWoU3QBBoryi3TmmHwtLFMlm8lM7l0lvKRQ8-dQCYWZNcw6BREgEza8B6cByhWXeI-bDrC9P5tWk_r_FaqkygNsN4DJJHq6_0Tmb9EhVU67jqwZcIrImsRRi9bYMPcJwx_5UZoEwQXPWl7sF-h71p6bwwVAvFuWIaH_Rx3YxEjKcrDTZ1H80ZVzgtvbFmNoa-2YJLpU7p3S2Nt_9_6wfYuRiOzfev59_ewS5FBjR-ivuwvZyvwnvYWhSrg5okfwCS7Bd1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneous+Estimation+of+Azimuth+and+Elevation+Angles+Using+a+Decision+Tree-Based+Method&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Anabel+Reyes+Carballeira&rft.au=Felipe+A+P+de+Figueiredo&rft.au=Brito%2C+Jose+Marcos+C&rft.date=2023-08-01&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=16&rft.spage=7114&rft_id=info:doi/10.3390%2Fs23167114&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |