A framework for image-based classification of mitotic cells in asynchronous populations

High content screening (HCS) has emerged an important tool for drug discovery because it combines rich readouts of cellular responses in a single experiment. Inclusion of cell cycle analysis into HCS is essential to identify clinically suitable anticancer drugs that disrupt the aberrant mitotic acti...

Full description

Saved in:
Bibliographic Details
Published in:Assay and drug development technologies Vol. 10; no. 2; p. 161
Main Authors: Slattery, Scott D, Newberg, Justin Y, Szafran, Adam T, Hall, Rebecca M, Brinkley, Bill R, Mancini, Michael A
Format: Journal Article
Language:English
Published: United States 01-04-2012
Subjects:
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract High content screening (HCS) has emerged an important tool for drug discovery because it combines rich readouts of cellular responses in a single experiment. Inclusion of cell cycle analysis into HCS is essential to identify clinically suitable anticancer drugs that disrupt the aberrant mitotic activity of cells. One challenge for integration of cell cycle analysis into HCS is that cells must be chemically synchronized to specific phases, adding experimental complexity to high content screens. To address this issue, we have developed a rules-based method that utilizes mitotic phosphoprotein monoclonal 2 (MPM-2) marker and works consistently in different experimental conditions and in asynchronous populations. Further, the performance of the rules-based method is comparable to established machine learning approaches for classifying cell cycle data, indicating the robustness of the features we use in the framework. As such, we suggest the use of MPM-2 analysis and its associated expressive features for integration into HCS approaches.
AbstractList High content screening (HCS) has emerged an important tool for drug discovery because it combines rich readouts of cellular responses in a single experiment. Inclusion of cell cycle analysis into HCS is essential to identify clinically suitable anticancer drugs that disrupt the aberrant mitotic activity of cells. One challenge for integration of cell cycle analysis into HCS is that cells must be chemically synchronized to specific phases, adding experimental complexity to high content screens. To address this issue, we have developed a rules-based method that utilizes mitotic phosphoprotein monoclonal 2 (MPM-2) marker and works consistently in different experimental conditions and in asynchronous populations. Further, the performance of the rules-based method is comparable to established machine learning approaches for classifying cell cycle data, indicating the robustness of the features we use in the framework. As such, we suggest the use of MPM-2 analysis and its associated expressive features for integration into HCS approaches.
Author Brinkley, Bill R
Szafran, Adam T
Slattery, Scott D
Mancini, Michael A
Newberg, Justin Y
Hall, Rebecca M
Author_xml – sequence: 1
  givenname: Scott D
  surname: Slattery
  fullname: Slattery, Scott D
  organization: Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, Texas 77030, USA
– sequence: 2
  givenname: Justin Y
  surname: Newberg
  fullname: Newberg, Justin Y
– sequence: 3
  givenname: Adam T
  surname: Szafran
  fullname: Szafran, Adam T
– sequence: 4
  givenname: Rebecca M
  surname: Hall
  fullname: Hall, Rebecca M
– sequence: 5
  givenname: Bill R
  surname: Brinkley
  fullname: Brinkley, Bill R
– sequence: 6
  givenname: Michael A
  surname: Mancini
  fullname: Mancini, Michael A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22084958$$D View this record in MEDLINE/PubMed
BookMark eNo1j0lLxDAYQIMozqJHr5I_0Jq1X3ocBh2FAS-KxyHNotE2KUmLzL9XXE7v8njwVug0pugQuqKkpkS1N9pONSOU1oS3cIKWVEqoFGWwQKtS3glhhIM4RwvGiBKtVEv0ssE-68F9pvyBfco4DPrVVZ0uzmLT61KCD0ZPIUWcPB7ClKZgsHF9X3CIWJdjNG85xTQXPKZx7n_ccoHOvO6Lu_zjGj3f3T5t76v94-5hu9lXRqhmqlpJnYQGhKHAwbTSKKVBig4IVaChodZry5lSygndEU6kYdR2AMQKxxlbo-vf7jh3g7OHMX8P5OPh_5B9AV1HUxw
CitedBy_id crossref_primary_10_3390_biomedicines10040779
crossref_primary_10_1038_s41598_022_09180_2
crossref_primary_10_1089_adt_2016_740
crossref_primary_10_1002_npr2_12221
crossref_primary_10_1371_journal_pone_0114749
crossref_primary_10_1016_j_stem_2019_08_005
crossref_primary_10_1177_0192623316629805
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1089/adt.2011.0397
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1557-8127
ExternalDocumentID 22084958
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: K12DK083014
– fundername: NCI NIH HHS
  grantid: P30 CA125123
– fundername: NIDDK NIH HHS
  grantid: P30 DK56338
– fundername: NIEHS NIH HHS
  grantid: RC2 ES018789
– fundername: NIEHS NIH HHS
  grantid: 1RC2ES018789-01
– fundername: NICHD NIH HHS
  grantid: U54 HD007495
– fundername: NIDDK NIH HHS
  grantid: P30 DK056338
GroupedDBID ---
0R~
1-M
23N
34G
39C
4.4
5GY
ABBKN
ABJNI
ACGFS
ACIWK
ACPRK
ADBBV
AENEX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BNQNF
CAG
CGR
COF
CS3
CUY
CVF
EBS
ECM
EIF
EJD
EMOBN
F5P
IAO
IER
IHR
IM4
INH
INR
ITC
MV1
NPM
NQHIM
O9-
P2P
PQQKQ
RIG
RML
UE5
ID FETCH-LOGICAL-c486t-951e57674c1737c95c88a754b70187a761dfad32888e4ab0305c21db770d4e322
IngestDate Sat Sep 28 07:50:46 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c486t-951e57674c1737c95c88a754b70187a761dfad32888e4ab0305c21db770d4e322
OpenAccessLink https://europepmc.org/articles/pmc3323936?pdf=render
PMID 22084958
ParticipantIDs pubmed_primary_22084958
PublicationCentury 2000
PublicationDate 2012-Apr
PublicationDateYYYYMMDD 2012-04-01
PublicationDate_xml – month: 04
  year: 2012
  text: 2012-Apr
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Assay and drug development technologies
PublicationTitleAlternate Assay Drug Dev Technol
PublicationYear 2012
References 7749193 - Mol Biol Cell. 1995 Jan;6(1):119-34
7690961 - Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8407-11
7569953 - Science. 1995 Oct 6;270(5233):86-90
19854275 - J Struct Biol. 2010 Apr;170(1):1-9
6379644 - Proc Natl Acad Sci U S A. 1984 Jul;81(14):4439-43
16602586 - IEEE Trans Biomed Eng. 2006 Apr;53(4):762-6
19713763 - Cell Cycle. 2009 Sep 15;8(18):2984-94
12637748 - Science. 2003 Mar 14;299(5613):1743-7
12719470 - J Cell Biol. 2003 Apr 28;161(2):267-80
15499654 - Cell Motil Cytoskeleton. 2004 Dec;59(4):249-63
20863917 - Biochim Biophys Acta. 2010 Oct-Dec;1799(10-12):829-39
8900469 - Cytometry. 1996 Apr 1;23(4):272-8
9378753 - J Cell Sci. 1997 Sep;110 ( Pt 17):2013-25
6574461 - Proc Natl Acad Sci U S A. 1983 May;80(10):2926-30
2662192 - Proc Natl Acad Sci U S A. 1989 Jul;86(13):4982-6
8019000 - Mol Biol Cell. 1994 Feb;5(2):135-45
19797680 - Genome Res. 2009 Nov;19(11):2113-24
20360735 - Nature. 2010 Apr 1;464(7289):721-7
17435170 - J Biomol Screen. 2007 Jun;12(4):490-6
1506421 - J Cell Sci. 1992 Jul;102 ( Pt 3):387-92
References_xml
SSID ssj0020374
Score 2.007011
Snippet High content screening (HCS) has emerged an important tool for drug discovery because it combines rich readouts of cellular responses in a single experiment....
SourceID pubmed
SourceType Index Database
StartPage 161
SubjectTerms Algorithms
Anaphase - physiology
Aurora Kinases
Automation
Cell Cycle
Cell Nucleus - ultrastructure
Cells - classification
Coloring Agents
Cytokinesis - physiology
Cytological Techniques
DNA - chemistry
High-Throughput Screening Assays - methods
Humans
Image Processing, Computer-Assisted - methods
Immunochemistry
Microscopy
Mitosis - physiology
Protein-Serine-Threonine Kinases - metabolism
Reproducibility of Results
Support Vector Machine
Tissue Fixation
Title A framework for image-based classification of mitotic cells in asynchronous populations
URI https://www.ncbi.nlm.nih.gov/pubmed/22084958
Volume 10
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jj9owFLagvfQy6jKd6SofKi4QlYQkfjkiSsWlFRJU0xvylhHSkEEFDvTX93mJE6iqTg-9RMgWKMn7_Bbz-XuEfMjjkmclqEiD5BFG_DISDKtWLmAkWM5ELG3rhAX7-h0-TdNpp1N3amrG_qulcQxtbU7O_oO1w4_iAH5Gm-MVrY7XB9l93C9rvpWlEK436DEiE6xUX5pU2XCDQp64wQVtJFvN_r1lxvLdsZJGMNdQY7ehu9euncSiSbmTbVI_Drf1uSvLKtjXO_UtbuLizmp4OlKZlYIILGN0sTW_zLYVq_ohs1785PggTuBA8U1D5p5x90-JB4bfzvUbF4YBEvgu2jvbDCNk7LQBgjcetlCXtFxr7ETbf3P5QzCKqVztvR7ryPF9W6bebqytk2QIWA7C32fPFLjrqS7pYj5lUu7Jl1DUG_0er92Kd_Lx5D6M0rT_7lnVYrOX5VNy4csOOnZ4eUY6unpOenOnW34c0GVzDG83oD06bxTNjy_IzZgGUFEEFW2Bip6Cit6X1IOKWlDRdUXboKItUF2Sb5-ny8ks8h05IplCvo8wHdeZkX-SMRsxWWQSgLMsNcsbGGd5rEquRgkA6JQLE0xkEivB2FClGmPHS_Kouq_0NaFCpDkIKCSUSapzgR6jiIVkaSEl5Ll4Ra7cC1ttnezKqn6Vr_8484Y8aYD2ljwucU3rd6S7U4f31mq_AApncUI
link.rule.ids 782
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+framework+for+image-based+classification+of+mitotic+cells+in+asynchronous+populations&rft.jtitle=Assay+and+drug+development+technologies&rft.au=Slattery%2C+Scott+D&rft.au=Newberg%2C+Justin+Y&rft.au=Szafran%2C+Adam+T&rft.au=Hall%2C+Rebecca+M&rft.date=2012-04-01&rft.eissn=1557-8127&rft.volume=10&rft.issue=2&rft.spage=161&rft_id=info:doi/10.1089%2Fadt.2011.0397&rft_id=info%3Apmid%2F22084958&rft_id=info%3Apmid%2F22084958&rft.externalDocID=22084958