An ancestral signalling pathway is conserved in intracellular symbioses-forming plant lineages
Plants are the foundation of terrestrial ecosystems, and their colonization of land was probably facilitated by mutualistic associations with arbuscular mycorrhizal fungi. Following this founding event, plant diversification has led to the emergence of a tremendous diversity of mutualistic symbioses...
Saved in:
Published in: | Nature plants Vol. 6; no. 3; pp. 280 - 289 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
01-03-2020
Nature Publishing Group |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Plants are the foundation of terrestrial ecosystems, and their colonization of land was probably facilitated by mutualistic associations with arbuscular mycorrhizal fungi. Following this founding event, plant diversification has led to the emergence of a tremendous diversity of mutualistic symbioses with microorganisms, ranging from extracellular associations to the most intimate intracellular associations, where fungal or bacterial symbionts are hosted inside plant cells. Here, through analysis of 271 transcriptomes and 116 plant genomes spanning the entire land-plant diversity, we demonstrate that a common symbiosis signalling pathway co-evolved with intracellular endosymbioses, from the ancestral arbuscular mycorrhiza to the more recent ericoid and orchid mycorrhizae in angiosperms and ericoid-like associations of bryophytes. By contrast, species forming exclusively extracellular symbioses, such as ectomycorrhizae, and those forming associations with cyanobacteria, have lost this signalling pathway. This work unifies intracellular symbioses, revealing conservation in their evolution across 450 million yr of plant diversification.
An extensive phylogenomics study based on hundreds of genomes and transcriptomes provides a new interpretation of the evolution of different types of symbiotic associations in land plants, and reveals a conserved ancestral symbiosis pathway. |
---|---|
AbstractList | Plants are the foundation of terrestrial ecosystems, and their colonization of land was probably facilitated by mutualistic associations with arbuscular mycorrhizal fungi. Following this founding event, plant diversification has led to the emergence of a tremendous diversity of mutualistic symbioses with microorganisms, ranging from extracellular associations to the most intimate intracellular associations, where fungal or bacterial symbionts are hosted inside plant cells. Here, through analysis of 271 transcriptomes and 116 plant genomes spanning the entire land-plant diversity, we demonstrate that a common symbiosis signalling pathway co-evolved with intracellular endosymbioses, from the ancestral arbuscular mycorrhiza to the more recent ericoid and orchid mycorrhizae in angiosperms and ericoid-like associations of bryophytes. By contrast, species forming exclusively extracellular symbioses, such as ectomycorrhizae, and those forming associations with cyanobacteria, have lost this signalling pathway. This work unifies intracellular symbioses, revealing conservation in their evolution across 450 million yr of plant diversification. An extensive phylogenomics study based on hundreds of genomes and transcriptomes provides a new interpretation of the evolution of different types of symbiotic associations in land plants, and reveals a conserved ancestral symbiosis pathway. Plants are the foundation of terrestrial ecosystems, and their colonization of land was probably facilitated by mutualistic associations with arbuscular mycorrhizal fungi. Following this founding event, plant diversification has led to the emergence of a tremendous diversity of mutualistic symbioses with microorganisms, ranging from extracellular associations to the most intimate intracellular associations, where fungal or bacterial symbionts are hosted inside plant cells. Here, through analysis of 271 transcriptomes and 116 plant genomes spanning the entire land-plant diversity, we demonstrate that a common symbiosis signalling pathway co-evolved with intracellular endosymbioses, from the ancestral arbuscular mycorrhiza to the more recent ericoid and orchid mycorrhizae in angiosperms and ericoid-like associations of bryophytes. By contrast, species forming exclusively extracellular symbioses, such as ectomycorrhizae, and those forming associations with cyanobacteria, have lost this signalling pathway. This work unifies intracellular symbioses, revealing conservation in their evolution across 450 million yr of plant diversification. Plants are the foundation of terrestrial ecosystems, and their colonization of land was probably facilitated by mutualistic associations with arbuscular mycorrhizal fungi. Following this founding event, plant diversification has led to the emergence of a tremendous diversity of mutualistic symbioses with microorganisms, ranging from extracellular associations to the most intimate intracellular associations, where fungal or bacterial symbionts are hosted inside plant cells. Here, through analysis of 271 transcriptomes and 116 plant genomes spanning the entire land-plant diversity, we demonstrate that a common symbiosis signalling pathway co-evolved with intracellular endosymbioses, from the ancestral arbuscular mycorrhiza to the more recent ericoid and orchid mycorrhizae in angiosperms and ericoid-like associations of bryophytes. By contrast, species forming exclusively extracellular symbioses, such as ectomycorrhizae, and those forming associations with cyanobacteria, have lost this signalling pathway. This work unifies intracellular symbioses, revealing conservation in their evolution across 450 million yr of plant diversification. An extensive phylogenomics study based on hundreds of genomes and transcriptomes provides a new interpretation of the evolution of different types of symbiotic associations in land plants, and reveals a conserved ancestral symbiosis pathway. |
Author | Radhakrishnan, Guru V. Eklund, D. Magnus Wong, Gane K. S. Vernié, Tatiana Libourel, Cyril Rich, Melanie K. Oldroyd, Giles E. D. Linde, Anna-Malin Cheng, Shifeng Cheema, Jitender Lagercrantz, Ulf Clemente, Hélène San Cottret, Ludovic Keller, Jean Vigneron, Nicolas Li, Fay-Wei Delaux, Pierre-Marc Mbadinga Mbadinga, Duchesse L. |
Author_xml | – sequence: 1 givenname: Guru V. orcidid: 0000-0003-0381-8804 surname: Radhakrishnan fullname: Radhakrishnan, Guru V. organization: John Innes Centre – sequence: 2 givenname: Jean orcidid: 0000-0002-5198-0331 surname: Keller fullname: Keller, Jean organization: LRSV, Université de Toulouse, CNRS, UPS – sequence: 3 givenname: Melanie K. surname: Rich fullname: Rich, Melanie K. organization: LRSV, Université de Toulouse, CNRS, UPS – sequence: 4 givenname: Tatiana orcidid: 0000-0003-1387-6370 surname: Vernié fullname: Vernié, Tatiana organization: LRSV, Université de Toulouse, CNRS, UPS – sequence: 5 givenname: Duchesse L. surname: Mbadinga Mbadinga fullname: Mbadinga Mbadinga, Duchesse L. organization: LRSV, Université de Toulouse, CNRS, UPS – sequence: 6 givenname: Nicolas surname: Vigneron fullname: Vigneron, Nicolas organization: LRSV, Université de Toulouse, CNRS, UPS – sequence: 7 givenname: Ludovic surname: Cottret fullname: Cottret, Ludovic organization: LIPM, Université de Toulouse, INRA, CNRS – sequence: 8 givenname: Hélène San orcidid: 0000-0002-1864-6577 surname: Clemente fullname: Clemente, Hélène San organization: LRSV, Université de Toulouse, CNRS, UPS – sequence: 9 givenname: Cyril orcidid: 0000-0002-4271-9596 surname: Libourel fullname: Libourel, Cyril organization: LRSV, Université de Toulouse, CNRS, UPS – sequence: 10 givenname: Jitender surname: Cheema fullname: Cheema, Jitender organization: John Innes Centre – sequence: 11 givenname: Anna-Malin surname: Linde fullname: Linde, Anna-Malin organization: Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University – sequence: 12 givenname: D. Magnus orcidid: 0000-0002-0576-7636 surname: Eklund fullname: Eklund, D. Magnus organization: Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University – sequence: 13 givenname: Shifeng surname: Cheng fullname: Cheng, Shifeng organization: Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences – sequence: 14 givenname: Gane K. S. orcidid: 0000-0001-6108-5560 surname: Wong fullname: Wong, Gane K. S. organization: BGI-Shenzhen, Department of Biological Sciences, University of Alberta, Department of Medicine, University of Alberta – sequence: 15 givenname: Ulf surname: Lagercrantz fullname: Lagercrantz, Ulf organization: Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University – sequence: 16 givenname: Fay-Wei orcidid: 0000-0002-0076-0152 surname: Li fullname: Li, Fay-Wei organization: Boyce Thompson Institute, Ithaca, Plant Biology Section, Cornell University – sequence: 17 givenname: Giles E. D. orcidid: 0000-0002-5245-6355 surname: Oldroyd fullname: Oldroyd, Giles E. D. email: gedo2@cam.ac.uk organization: John Innes Centre, Sainsbury Laboratory, University of Cambridge – sequence: 18 givenname: Pierre-Marc orcidid: 0000-0002-6211-157X surname: Delaux fullname: Delaux, Pierre-Marc email: pierre-marc.delaux@lrsv.ups-tlse.fr organization: LRSV, Université de Toulouse, CNRS, UPS |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32123350$$D View this record in MEDLINE/PubMed https://hal.inrae.fr/hal-02550894$$DView record in HAL https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-423871$$DView record from Swedish Publication Index |
BookMark | eNp1kVtv1DAQhS1URC_0B_CCIvFSJALju_O4KpQircQL8Ig1yTppqsRe7E2r_fc4zVIuEpIlW-NvzozOOSVHPnhHyAsKbylw8y4JKrQugUEJivJSPyEnDKTMFW2O_ngfk_OUbgGAaim5gmfkmDPKOJdwQr6vfIG-cWkXcShS33kcht53xRZ3N_e4L_pUNMEnF-_cpuh9Ppls3DBMA8Yi7ce6D8mlsg1xfOgb0O-KLOGwc-k5edrikNz54T4jX68-fLm8LtefP366XK3LRhi1KzlFqRoQojYUWgew4QplpahpKMNGtVWNjQGtkRmgNQNAKVuqwLTCKeb4GXmz6KZ7t51qu439iHFvA_b2ff9tZUPs7DRZwbjRNOOvF_wGh7_Y69XazjVgUoKpxN3MXizsNoYfUzbKjn2aDUDvwpQs4xpEJZhiGX31D3obppgdfaBUJaSSM0UXqokhpejaxw0o2Dlau0SblwA7R2t17nl5UJ7q0W0eO34FmQF2MCB_-c7F36P_r_oTiWyuuQ |
CitedBy_id | crossref_primary_10_1093_plcell_koac212 crossref_primary_10_1073_pnas_2105281118 crossref_primary_10_1093_pcp_pcac043 crossref_primary_10_1093_plphys_kiad672 crossref_primary_10_1093_plphys_kiad398 crossref_primary_10_1038_s41477_023_01441_w crossref_primary_10_1093_jxb_erad261 crossref_primary_10_1128_JB_00539_20 crossref_primary_10_1093_jxb_erac052 crossref_primary_10_1002_ecy_3720 crossref_primary_10_1111_pce_15007 crossref_primary_10_1073_pnas_2218329120 crossref_primary_10_1016_j_micres_2021_126788 crossref_primary_10_1016_j_molp_2023_12_005 crossref_primary_10_1093_jxb_erad412 crossref_primary_10_1007_s00344_023_10986_1 crossref_primary_10_1111_nph_19634 crossref_primary_10_1093_plcell_koae009 crossref_primary_10_1038_s41467_024_48787_z crossref_primary_10_1016_j_jplph_2022_153765 crossref_primary_10_7554_eLife_57088 crossref_primary_10_5802_crbiol_105 crossref_primary_10_1093_g3journal_jkae074 crossref_primary_10_3390_agronomy12112857 crossref_primary_10_1002_ajb2_16175 crossref_primary_10_3390_encyclopedia2030096 crossref_primary_10_1111_nph_18825 crossref_primary_10_1111_nph_18946 crossref_primary_10_1016_j_cub_2024_01_008 crossref_primary_10_1093_pcp_pcab126 crossref_primary_10_1093_plcell_koac219 crossref_primary_10_1016_j_cub_2023_10_048 crossref_primary_10_3390_ijms24021119 crossref_primary_10_1016_j_cub_2023_04_053 crossref_primary_10_1080_0028825X_2023_2228250 crossref_primary_10_1093_jxb_erac191 crossref_primary_10_1016_j_cub_2024_03_063 crossref_primary_10_1016_j_tplants_2020_09_008 crossref_primary_10_1016_j_crmicr_2024_100251 crossref_primary_10_1017_qpb_2021_18 crossref_primary_10_1126_science_abg0929 crossref_primary_10_1093_plphys_kiac325 crossref_primary_10_1007_s10709_023_00196_8 crossref_primary_10_1016_j_cub_2021_10_023 crossref_primary_10_1111_nph_19338 crossref_primary_10_3390_plants13091210 crossref_primary_10_7554_eLife_80741 crossref_primary_10_1038_s41477_022_01283_y crossref_primary_10_1242_dev_184762 crossref_primary_10_1186_s12870_023_04594_0 crossref_primary_10_1093_jxb_erac186 crossref_primary_10_1038_s41559_022_01885_x crossref_primary_10_1016_j_cub_2023_07_023 crossref_primary_10_1038_s41467_022_33908_3 crossref_primary_10_3390_plants10020203 crossref_primary_10_3390_ijms25020912 crossref_primary_10_1017_qpb_2022_3 crossref_primary_10_1126_science_ade1124 crossref_primary_10_1007_s00572_021_01033_6 crossref_primary_10_1016_j_cub_2021_04_002 crossref_primary_10_1038_s41598_022_10186_z crossref_primary_10_1111_nph_16610 crossref_primary_10_1111_nph_16973 crossref_primary_10_1016_j_isci_2023_106632 crossref_primary_10_1038_s41467_021_21094_7 crossref_primary_10_1038_s41467_022_31708_3 crossref_primary_10_1007_s11103_024_01422_3 crossref_primary_10_3390_jof7090719 crossref_primary_10_1093_plphys_kiad517 crossref_primary_10_1016_j_isci_2022_103754 crossref_primary_10_3390_plants10020251 crossref_primary_10_1093_plphys_kiab280 crossref_primary_10_1093_jxb_erac127 crossref_primary_10_1111_nph_18061 crossref_primary_10_3390_microorganisms10010075 crossref_primary_10_1080_07352689_2023_2256093 crossref_primary_10_3389_fmicb_2022_763014 crossref_primary_10_1038_s42003_023_04722_4 crossref_primary_10_1093_jxb_erac091 crossref_primary_10_1111_nph_17779 crossref_primary_10_1016_j_cub_2023_06_083 crossref_primary_10_1093_plphys_kiac258 crossref_primary_10_3390_jof6030148 crossref_primary_10_3390_cells10051050 crossref_primary_10_3390_ijms24021153 crossref_primary_10_1016_j_pbi_2023_102448 crossref_primary_10_3389_fpls_2021_795695 crossref_primary_10_3389_fpls_2022_880600 crossref_primary_10_1038_s41579_021_00509_8 crossref_primary_10_1111_nph_19423 crossref_primary_10_1016_j_cub_2021_01_058 crossref_primary_10_1093_jxb_erad360 crossref_primary_10_3389_fpls_2021_700200 crossref_primary_10_1038_s41598_024_53176_z crossref_primary_10_1126_science_abi8016 crossref_primary_10_1038_s41579_020_0402_3 crossref_primary_10_1016_j_gene_2020_145203 crossref_primary_10_1093_jxb_eraa539 crossref_primary_10_1105_tpc_19_00903 crossref_primary_10_1016_j_pbi_2021_102154 crossref_primary_10_1016_j_xplc_2022_100429 crossref_primary_10_1016_j_cub_2021_02_006 crossref_primary_10_1111_nph_19657 crossref_primary_10_1093_pcp_pcad124 crossref_primary_10_3389_fsufs_2021_660155 crossref_primary_10_1093_plcell_koad050 crossref_primary_10_1038_s41477_021_00888_z crossref_primary_10_1371_journal_pbio_3001982 crossref_primary_10_3389_fpls_2023_1108027 crossref_primary_10_1111_nph_19779 crossref_primary_10_1126_science_aba6605 crossref_primary_10_1016_j_pbi_2021_102026 crossref_primary_10_1111_ejss_13219 crossref_primary_10_1126_science_ade9204 |
Cites_doi | 10.1093/pcp/pct114 10.1016/j.pbi.2015.06.003 10.1038/nrmicro1987 10.1093/bioinformatics/btm071 10.1126/science.aat1743 10.1016/j.tplants.2013.01.008 10.1111/nph.13716 10.1038/nplants.2015.208 10.1016/j.cub.2007.06.037 10.1038/nrg.2016.39 10.1105/tpc.109.066233 10.1093/bioinformatics/btt086 10.1093/jxb/erx398 10.3389/fpls.2018.00267 10.1016/j.pbi.2016.03.015 10.1111/nph.13973 10.1038/nature03237 10.1111/j.1365-313X.2010.04341.x 10.1094/MPMI-01-18-0029-R 10.1073/pnas.0710618105 10.1111/nph.14533 10.1371/journal.pone.0064515 10.1038/nature11779 10.1038/ncomms1105 10.1126/science.aad4501 10.1186/1746-4811-10-21 10.1016/j.chom.2014.01.011 10.1016/j.cell.2017.09.030 10.1046/j.1469-8137.2003.00704.x 10.1093/pcp/pcy228 10.1073/pnas.1721629115 10.1007/s00572-005-0033-6 10.1111/nph.14161 10.1126/science.aan0081 10.1080/00380768.2001.10408433 10.1016/0303-2647(92)90025-T 10.1111/j.1365-313X.2010.04415.x 10.1111/j.1469-8137.2009.03137.x 10.1038/nature04812 10.1016/j.celrep.2015.01.025 10.3389/fpls.2018.01621 10.1105/tpc.108.062414 10.1038/nmeth.2474 10.1186/s13742-015-0069-2 10.1073/pnas.1721395115 10.1126/science.aam9970 10.1093/bioinformatics/btt702 10.1186/s12870-014-0333-0 10.1105/tpc.18.00676 10.1038/nrmicro2990 10.1371/journal.pgen.1004487 10.1073/pnas.1515426112 10.1111/nph.15440 10.1186/gb-2013-14-6-405 10.1017/S0953756203008141 10.7554/eLife.29107 10.1111/j.1365-313X.2009.04072.x 10.1093/bioinformatics/btv351 10.1038/s41477-018-0188-8 10.1111/nph.13753 10.1104/pp.114.255430 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2020 2020© The Author(s), under exclusive licence to Springer Nature Limited 2020 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020 – notice: 2020© The Author(s), under exclusive licence to Springer Nature Limited 2020 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7SN AFKRA BENPR BHPHI BKSAR C1K CCPQU DWQXO HCIFZ PCBAR PQEST PQQKQ PQUKI 7X8 1XC VOOES ADTPV AOWAS DF2 |
DOI | 10.1038/s41477-020-0613-7 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Ecology Abstracts ProQuest Central ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central SciTech Premium Collection Earth, Atmospheric & Aquatic Science Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) SwePub SwePub Articles SWEPUB Uppsala universitet |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database SciTech Premium Collection ProQuest One Community College Ecology Abstracts ProQuest One Academic Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE Earth, Atmospheric & Aquatic Science Collection |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 2055-0278 |
EndPage | 289 |
ExternalDocumentID | oai_DiVA_org_uu_423871 oai_HAL_hal_02550894v1 10_1038_s41477_020_0613_7 32123350 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Agence Nationale de la Recherche (French National Research Agency) grantid: ANR-17-CE20-0006-01; ANR-17-CE20-0006-01; ANR-10-LABX-41 funderid: https://doi.org/10.13039/501100001665 – fundername: Bill and Melinda Gates Foundation (Bill & Melinda Gates Foundation) grantid: OPP1172165; OPP1172165; OPP1172165; OPP1172165; OPP1172165 funderid: https://doi.org/10.13039/100000865 – fundername: National Science Foundation (NSF) grantid: DEB1831428 funderid: https://doi.org/10.13039/100000001 – fundername: Bill and Melinda Gates Foundation (Bill & Melinda Gates Foundation) – fundername: Vetenskapsrådet (Swedish Research Council) grantid: 2016-05180; 2011‐5609; 2014‐522 funderid: https://doi.org/10.13039/501100004359 – fundername: RCUK | Biotechnology and Biological Sciences Research Council (BBSRC) grantid: BB/S011005/1; BB/L014130/1 funderid: https://doi.org/10.13039/501100000268 – fundername: BGI-Shenzhen 10KP initiative – fundername: RCUK | Biotechnology and Biological Sciences Research Council (BBSRC) grantid: BB/S011005/1 – fundername: RCUK | Biotechnology and Biological Sciences Research Council (BBSRC) grantid: BB/L014130/1 |
GroupedDBID | 0R~ 4.4 5BI 8FE 8FH AAEEF AAHBH AARCD AAZLF ABJNI ABLJU ABVXF ACGFS ADBBV AENEX AFKRA AFSHS AFWHJ AGAYW AGEZK AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN BENPR BHPHI BKKNO BKSAR CCPQU EBS EJD FSGXE FZEXT HCIFZ HZ~ LK5 M7R NNMJJ O9- ODYON PCBAR RNT SHXYY SIXXV SNYQT TAOOD TBHMF TDRGL TSG AAYZH CGR CUY CVF ECM EIF NPM AAYXX ACBWK CITATION 7SN C1K DWQXO PQEST PQQKQ PQUKI 7X8 1XC VOOES ADTPV AOWAS DF2 |
ID | FETCH-LOGICAL-c486t-31a56c044b810fe00d36a59618c12ac6f9bac8077a2801b200a55f1608f4e62e3 |
ISSN | 2055-0278 2055-026X |
IngestDate | Tue Oct 01 22:35:18 EDT 2024 Fri Oct 25 06:52:19 EDT 2024 Fri Oct 25 12:17:41 EDT 2024 Tue Nov 19 07:10:00 EST 2024 Fri Nov 22 00:26:56 EST 2024 Wed Oct 16 00:45:01 EDT 2024 Fri Oct 11 20:47:04 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c486t-31a56c044b810fe00d36a59618c12ac6f9bac8077a2801b200a55f1608f4e62e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1387-6370 0000-0002-1864-6577 0000-0002-0576-7636 0000-0001-6108-5560 0000-0002-0076-0152 0000-0003-0381-8804 0000-0002-5245-6355 0000-0002-4271-9596 0000-0002-5198-0331 0000-0002-6211-157X 0000-0001-7418-7750 |
OpenAccessLink | https://hal.inrae.fr/hal-02550894 |
PMID | 32123350 |
PQID | 2376945652 |
PQPubID | 2069614 |
PageCount | 10 |
ParticipantIDs | swepub_primary_oai_DiVA_org_uu_423871 hal_primary_oai_HAL_hal_02550894v1 proquest_miscellaneous_2370494262 proquest_journals_2376945652 crossref_primary_10_1038_s41477_020_0613_7 pubmed_primary_32123350 springer_journals_10_1038_s41477_020_0613_7 |
PublicationCentury | 2000 |
PublicationDate | 2020-03-01 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature plants |
PublicationTitleAbbrev | Nat. Plants |
PublicationTitleAlternate | Nat Plants |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | YasumuraYCrumpton-TaylorMFuentesSHarberdNPStep-by-step acquisition of the gibberellin–DELLA growth-regulatory mechanism during land-plant evolutionCurr. Biol.200717122512301:CAS:528:DC%2BD2sXnslWjur4%3D17627823 SimãoFAWaterhouseRMIoannidisPKriventsevaEVZdobnovEMBUSCO: assessing genome assembly and annotation completeness with single-copy orthologsBioinformatics2015313210321226059717 DelauxPMSéjalon-DelmasNBécardGAnéJMEvolution of the plant–microbe symbiotic ‘toolkit’Trends Plant Sci.2013182983041:CAS:528:DC%2BC3sXivFyju7k%3D23462549 ReyTThe Medicago truncatula GRAS protein RAD1 supports arbuscular mycorrhiza symbiosis and Phytophthora palmivora susceptibilityJ. Exp. Bot.201768587158811:CAS:528:DC%2BC1cXhvVWrs7vN291864985854134 DelauxP-MAlgal ancestor of land plants was preadapted for symbiosisProc. Natl Acad. Sci. USA201511213390133951:CAS:528:DC%2BC2MXhs1SqurzJ264388704629359 PumplinNMedicago truncatula vapyrin is a novel protein required for arbuscular mycorrhizal symbiosisPlant J.2010614824941:CAS:528:DC%2BC3cXitFGqtLw%3D19912567 ParraGBradnamKKorfICEGMA: a pipeline to accurately annotate core genes in eukaryotic genomesBioinformatics200723106110671:CAS:528:DC%2BD2sXmtVKqur8%3D17332020 GriesmannMPhylogenomics reveals multiple losses of nitrogen-fixing root nodule symbiosisScience2018361eaat174329794220 Gensel, P. G. The Emerald Planet: How Plants Changed Earth’s History (Oxford Univ. Press, 2008). WangBPresence of three mycorrhizal genes in the common ancestor of land plants suggests a key role of mycorrhizas in the colonization of land by plantsNew Phytol.201018651452520059702 XueLNetwork of GRAS transcription factors involved in the control of arbuscule development in Lotus japonicusPlant Physiol.20151678548711:CAS:528:DC%2BC2MXkt1aqs7o%3D255608774348782 ParniskeMArbuscular mycorrhizae: the mother of plant root endosymbiosesNat. Rev. Microbiol.200867637751:CAS:528:DC%2BD1cXhtFWitL3J18794914 JinYIPD3 and IPD3L function redundantly in rhizobial and mycorrhizal symbiosesFront. Plant Sci.20189267296160505865340 FavrePA novel bioinformatics pipeline to discover genes related to arbuscular mycorrhizal symbiosis based on their evolutionary conservation pattern among higher plantsBMC Plant Biol.201414254652194274732 LiuCWA protein complex required for polar growth of rhizobial infection threadsNat. Commun.201910312537596599036 LiFWFern genomes elucidate land plant evolution and cyanobacterial symbiosesNat. Plants201844604721:CAS:528:DC%2BC1cXht1OjsrbM299675176786969 SinghSKatzerKLambertJCerriMParniskeMCYCLOPS, A DNA-binding transcriptional activator, orchestrates symbiotic root nodule developmentCell Host Microbe2014151391521:CAS:528:DC%2BC2cXisFCjtLo%3D24528861 Smith, S. & Read, D. Mycorrhizal Symbiosis (Academic Press, 2008). HealeyAFurtadoACooperTHenryRJA simple method for extracting next-generation sequencing quality genomic DNA from recalcitrant plant speciesPlant Methods20141018 DeyGJaimovichACollinsSRSekiAMeyerTSystematic discovery of human gene function and principles of modular organization through phylogenetic profilingCell Rep.20151099310061:CAS:528:DC%2BC2MXivVSjtbY%3D256837215016211 BravoABrandsMWewerVDörmannPHarrisonMJArbuscular mycorrhiza-specific enzymes FatM and RAM2 fine-tune lipid biosynthesis to promote development of arbuscular mycorrhizaNew Phytol.2017214163116451:CAS:528:DC%2BC2sXnt1Cgsr4%3D28380681 MartinFMUrozSBarkerDGAncestral alliances: plant mutualistic symbioses with fungi and bacteriaScience2017356eaad450128546156 LuginbuehlLHFatty acids in arbuscular mycorrhizal fungi are synthesized by the host plantScience2017356117511781:CAS:528:DC%2BC2sXpslCksbY%3D28596311 ParkH-JFlossDSLevesque-TremblayVBravoAHarrisonMJHyphal branching during arbuscule development requires RAM1Plant Physiol.2015169277427881:CAS:528:DC%2BC28Xmtlyguw%3D%3D265119164677905 BuendiaLWangTGirardinALefebvreBThe LysM receptor-like kinase SlLYK10 regulates the arbuscular mycorrhizal symbiosis in tomatoNew Phytol.20162101841951:CAS:528:DC%2BC28XjsFKkur0%3D26612325 Valdés-LópezOA novel positive regulator of the early stages of root nodule symbiosis identified by phosphoproteomicsPlant Cell Physiol.20196057558630476329 ReadDJPerez-MorenoJMycorrhizas and nutrient cycling in ecosystems—a journey towards relevance?New Phytol.200315747549233873410 DelauxPMComparative phylogenomics of symbiotic associationsNew Phytol.201721389941:CAS:528:DC%2BC28XhvFOhsbjP27582420 SvistoonoffSThe independent acquisition of plant root nitrogen-fixing symbiosis in fabids recruited the same genetic pathway for nodule organogenesisPLoS ONE20138e645151:CAS:528:DC%2BC3sXpslOgt74%3D237413363669324 GroscheCGenauACRensingSAEvolution of the symbiosis-specific GRAS regulatory network in bryophytesFront. Plant Sci.201891621304598006232258 DelauxPMComparative phylogenomics uncovers the impact of symbiotic associations on host genome evolutionPLoS Genet.201410e1004487250328234102449 O'CallaghanJamesConradMichaelSymbiotic interactions in the EVOLVE III ecosystem modelBiosystems19922641992091:STN:280:DyaK38zivFKlsQ%3D%3D1627731 ObaHTawarayKWagatsumaTArbuscular mycorrhizal colonization in Lupinus and related generaSoil Sci. Plant Nutr.200147685694 OldroydGEDSpeak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plantsNat. Rev. Microbiol.2013112522631:CAS:528:DC%2BC3sXktVKjtLc%3D23493145 BravoAYorkTPumplinNMuellerLAHarrisonMJGenes conserved for arbuscular mycorrhizal symbiosis identified through phylogenomicsNat. Plants20162152081:CAS:528:DC%2BC28XhsVKis7s%3D27249190 BrundrettMTedersooLMisdiagnosis of mycorrhizas and inappropriate recycling of data can lead to false conclusionsNew Phytol.2019221182430191568 Villarreal AJCCrandall-StotlerBJHartMLLongDGForrestLLDivergence times and the evolution of morphological complexity in an early land plant lineage (Marchantiopsida) with a slow molecular rateNew Phytol.2016209173417461:CAS:528:DC%2BC28Xit12msb0%3D26505145 MiuraCThe mycoheterotrophic symbiosis between orchids and mycorrhizal fungi possesses major components shared with mutualistic plant–mycorrhizal symbiosesMol. Plant Microbe Interact.201831103210471:CAS:528:DC%2BC1cXitlSmsr3E29649962 AlbalatRCañestroCEvolution by gene lossNat. Rev. Genet.2016173793911:CAS:528:DC%2BC28XmtFegtrs%3D27087500 WernerGDASymbiont switching and alternative resource acquisition strategies drive mutualism breakdownProc. Natl Acad. Sci. USA2018115522952341:CAS:528:DC%2BC1cXitlWru7zF297128575960305 BowmanJLInsights into land plant evolution garnered from the Marchantia polymorpha genomeCell20171712873041:CAS:528:DC%2BC2sXhs1WqsrfO28985561 JiangYPlants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungiScience2017356117211751:CAS:528:DC%2BC2sXpslCksbk%3D28596307 KottkeIHeterobasidiomycetes form symbiotic associations with hepatics: Jungermanniales have sebacinoid mycobionts while Aneura pinguis (Metzgeriales) is associated with a Tulasnella speciesMycol. Res.200310795796814531618 GleasonCNodulation independent of rhizobia induced by a calcium-activated kinase lacking autoinhibitionNature2006441114911521:CAS:528:DC%2BD28Xmtlaiu7g%3D16810256 LeggettRMClavijoBJClissoldLClarkMDCaccamoMNext clip: an analysis and read preparation tool for nextera long mate pair librariesBioinformatics2014305665681:CAS:528:DC%2BC2cXjtVClsL0%3D24297520 CopeKRThe ectomycorrhizal fungus Laccaria bicolor produces lipochitooligosaccharides and uses the common symbiosis pathway to colonize Populus rootsPlant Cell201931238624101:CAS:528:DC%2BB3cXktVKlu7k%3D314168236790088 Imaizumi-AnrakuHPlastid proteins crucial for symbiotic fungal and bacterial entry into plant rootsNature20054335275311:CAS:528:DC%2BD2MXpt1Cmtg%3D%3D15616514 GherbiHSymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and FrankiabacteriaProc. Natl Acad. Sci. USA2008105492849321:CAS:528:DC%2BD1cXktlSjsbo%3D183167352290763 GutjahrCArbuscular mycorrhiza-specific signaling in rice transcends the common symbiosis signaling pathwayPlant Cell200820298930051:CAS:528:DC%2BD1MXns1Gnug%3D%3D190335272613669 CapoenWCalcium spiking patterns and the role of the calcium/calmodulin-dependent kinase CCaMK in lateral root base nodulation of Sesbania rostrataPlant Cell200921152615401:CAS:528:DC%2BD1MXosVCqtL0%3D194705882700542 RobertsRJCarneiroMOSchatzMCThe advantages of SMRT sequencingGenome Biol.201314238227313953343 GurevichASavelievVVyahhiNTeslerGQUAST: Quality assessment tool for genome assembliesBioinformatics201329107210751:CAS:528:DC%2BC3sXlvVKitrw%3D234223393624806 TabachYIdentification of small RNA pathway genes using patterns of phylogenetic conservation and divergenceNature20134936946981:CAS:528:DC%2BC38XhvV2ntbbE23364702 HumphreysCPMutualistic mycorrhiza-like symbiosis in the most ancient group of land plantsNat. Commun.2010121045821 TakedaNTsuzukiSSuzakiTParniskeMKawaguchiMCERBERUS and NSP1 of Lotus japonicus are common symbiosis genes that modulate arbuscular mycorrhiza developmentPlant Cell Physiol.201354171117231:CAS:528:DC%2BC3sXhs1SmtbfJ23926062 LuoRErratum: SOAPdenovo2: an empirically improved memory-efficient short-read de novo assemblerGigascience2015430261612574496933 DelauxPMRadhakrishnanGOldroydGTracing the evolutionary path to nitrogen-fixing cropsCurr. Opin. Plant Biol.20152695991:CAS:528:DC%2BC2MXhtVektLzE26123396 KeymerALipid transfer from plants to arbuscular mycorrhiza fungieLife20176e29107287266315559270 SoltisPSSoltisDEAncient WGD events as drivers of key innovations in angiospermsCurr. Opin. Plant Biol.20163015916527064530 van VelzenRComparative genomics of the nonlegume Parasponia reveals insights into evolution of nitrogen-fixing rhizobium symbiosesProc. Natl Acad. Sci. USA2018115E4700E47091:CAS:528:DC%2BC1cXhvVGhtbzN297170405960304 HuismanRA symbiosis-dedicated SYNTAXIN OF PLANTS 13II isoform controls the formation of a stable host–microbe interface in symbiosisNew Phytol.2016211133813511:CAS:528:DC%2BC28Xht1Kku7%2FN27110912 ChinCSNonhybrid, finished microbial genom PM Delaux (613_CR9) 2015; 26 A Bravo (613_CR16) 2016; 2 C Grosche (613_CR22) 2018; 9 R van Velzen (613_CR11) 2018; 115 CW Liu (613_CR53) 2019; 10 CP Humphreys (613_CR25) 2010; 1 PS Soltis (613_CR49) 2016; 30 613_CR1 R Huisman (613_CR57) 2016; 211 A Keymer (613_CR20) 2017; 6 613_CR5 GDA Werner (613_CR4) 2018; 115 KR Cope (613_CR36) 2019; 31 N Pumplin (613_CR54) 2010; 61 JL Bowman (613_CR26) 2017; 171 O Valdés-López (613_CR50) 2019; 60 James O'Callaghan (613_CR34) 1992; 26 Y Yasumura (613_CR48) 2007; 17 PM Delaux (613_CR17) 2014; 10 JC Villarreal A (613_CR28) 2016; 209 P Favre (613_CR18) 2014; 14 L Xue (613_CR19) 2015; 167 C Miura (613_CR37) 2018; 31 Y Tabach (613_CR13) 2013; 493 P-M Delaux (613_CR23) 2015; 112 LH Luginbuehl (613_CR32) 2017; 356 H Imaizumi-Anraku (613_CR52) 2005; 433 M Parniske (613_CR2) 2008; 6 RJ Roberts (613_CR62) 2013; 14 R Luo (613_CR59) 2015; 4 H Oba (613_CR38) 2001; 47 S Svistoonoff (613_CR42) 2013; 8 FW Li (613_CR35) 2018; 4 GED Oldroyd (613_CR39) 2013; 11 B Wang (613_CR24) 2010; 186 H-J Park (613_CR31) 2015; 169 A Healey (613_CR58) 2014; 10 T Rey (613_CR30) 2017; 68 N Takeda (613_CR56) 2013; 54 N Feddermann (613_CR55) 2010; 64 G Parra (613_CR65) 2007; 23 C Gleason (613_CR45) 2006; 441 PM Delaux (613_CR3) 2013; 18 B Wang (613_CR8) 2006; 16 FM Martin (613_CR10) 2017; 356 Y Jiang (613_CR33) 2017; 356 A Bravo (613_CR21) 2017; 214 DJ Read (613_CR29) 2003; 157 I Kottke (613_CR6) 2003; 107 RM Leggett (613_CR60) 2014; 30 PM Delaux (613_CR14) 2017; 213 C Gutjahr (613_CR40) 2008; 20 R Albalat (613_CR12) 2016; 17 L Buendia (613_CR43) 2016; 210 FA Simão (613_CR61) 2015; 31 M Griesmann (613_CR7) 2018; 361 S Singh (613_CR46) 2014; 15 Y Jin (613_CR47) 2018; 9 CS Chin (613_CR63) 2013; 10 M Brundrett (613_CR27) 2019; 221 G Dey (613_CR15) 2015; 10 H Gherbi (613_CR41) 2008; 105 JD Murray (613_CR51) 2011; 65 W Capoen (613_CR44) 2009; 21 A Gurevich (613_CR64) 2013; 29 |
References_xml | – volume: 54 start-page: 1711 year: 2013 ident: 613_CR56 publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pct114 contributor: fullname: N Takeda – volume: 26 start-page: 95 year: 2015 ident: 613_CR9 publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2015.06.003 contributor: fullname: PM Delaux – volume: 6 start-page: 763 year: 2008 ident: 613_CR2 publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro1987 contributor: fullname: M Parniske – volume: 23 start-page: 1061 year: 2007 ident: 613_CR65 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm071 contributor: fullname: G Parra – volume: 361 start-page: eaat1743 year: 2018 ident: 613_CR7 publication-title: Science doi: 10.1126/science.aat1743 contributor: fullname: M Griesmann – volume: 18 start-page: 298 year: 2013 ident: 613_CR3 publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2013.01.008 contributor: fullname: PM Delaux – volume: 209 start-page: 1734 year: 2016 ident: 613_CR28 publication-title: New Phytol. doi: 10.1111/nph.13716 contributor: fullname: JC Villarreal A – volume: 2 start-page: 15208 year: 2016 ident: 613_CR16 publication-title: Nat. Plants doi: 10.1038/nplants.2015.208 contributor: fullname: A Bravo – volume: 17 start-page: 1225 year: 2007 ident: 613_CR48 publication-title: Curr. Biol. doi: 10.1016/j.cub.2007.06.037 contributor: fullname: Y Yasumura – volume: 169 start-page: 2774 year: 2015 ident: 613_CR31 publication-title: Plant Physiol. contributor: fullname: H-J Park – volume: 17 start-page: 379 year: 2016 ident: 613_CR12 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg.2016.39 contributor: fullname: R Albalat – volume: 21 start-page: 1526 year: 2009 ident: 613_CR44 publication-title: Plant Cell doi: 10.1105/tpc.109.066233 contributor: fullname: W Capoen – volume: 29 start-page: 1072 year: 2013 ident: 613_CR64 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt086 contributor: fullname: A Gurevich – volume: 68 start-page: 5871 year: 2017 ident: 613_CR30 publication-title: J. Exp. Bot. doi: 10.1093/jxb/erx398 contributor: fullname: T Rey – volume: 9 start-page: 267 year: 2018 ident: 613_CR47 publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.00267 contributor: fullname: Y Jin – volume: 30 start-page: 159 year: 2016 ident: 613_CR49 publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2016.03.015 contributor: fullname: PS Soltis – volume: 211 start-page: 1338 year: 2016 ident: 613_CR57 publication-title: New Phytol. doi: 10.1111/nph.13973 contributor: fullname: R Huisman – volume: 433 start-page: 527 year: 2005 ident: 613_CR52 publication-title: Nature doi: 10.1038/nature03237 contributor: fullname: H Imaizumi-Anraku – volume: 64 start-page: 470 year: 2010 ident: 613_CR55 publication-title: Plant J. doi: 10.1111/j.1365-313X.2010.04341.x contributor: fullname: N Feddermann – volume: 31 start-page: 1032 year: 2018 ident: 613_CR37 publication-title: Mol. Plant Microbe Interact. doi: 10.1094/MPMI-01-18-0029-R contributor: fullname: C Miura – volume: 105 start-page: 4928 year: 2008 ident: 613_CR41 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0710618105 contributor: fullname: H Gherbi – volume: 214 start-page: 1631 year: 2017 ident: 613_CR21 publication-title: New Phytol. doi: 10.1111/nph.14533 contributor: fullname: A Bravo – volume: 8 start-page: e64515 year: 2013 ident: 613_CR42 publication-title: PLoS ONE doi: 10.1371/journal.pone.0064515 contributor: fullname: S Svistoonoff – volume: 493 start-page: 694 year: 2013 ident: 613_CR13 publication-title: Nature doi: 10.1038/nature11779 contributor: fullname: Y Tabach – volume: 1 year: 2010 ident: 613_CR25 publication-title: Nat. Commun. doi: 10.1038/ncomms1105 contributor: fullname: CP Humphreys – volume: 356 start-page: eaad4501 year: 2017 ident: 613_CR10 publication-title: Science doi: 10.1126/science.aad4501 contributor: fullname: FM Martin – volume: 10 year: 2019 ident: 613_CR53 publication-title: Nat. Commun. contributor: fullname: CW Liu – volume: 10 start-page: 1 year: 2014 ident: 613_CR58 publication-title: Plant Methods doi: 10.1186/1746-4811-10-21 contributor: fullname: A Healey – volume: 15 start-page: 139 year: 2014 ident: 613_CR46 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2014.01.011 contributor: fullname: S Singh – volume: 171 start-page: 287 year: 2017 ident: 613_CR26 publication-title: Cell doi: 10.1016/j.cell.2017.09.030 contributor: fullname: JL Bowman – volume: 157 start-page: 475 year: 2003 ident: 613_CR29 publication-title: New Phytol. doi: 10.1046/j.1469-8137.2003.00704.x contributor: fullname: DJ Read – volume: 60 start-page: 575 year: 2019 ident: 613_CR50 publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcy228 contributor: fullname: O Valdés-López – volume: 115 start-page: 5229 year: 2018 ident: 613_CR4 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1721629115 contributor: fullname: GDA Werner – volume: 16 start-page: 299 year: 2006 ident: 613_CR8 publication-title: Mycorrhiza doi: 10.1007/s00572-005-0033-6 contributor: fullname: B Wang – volume: 213 start-page: 89 year: 2017 ident: 613_CR14 publication-title: New Phytol. doi: 10.1111/nph.14161 contributor: fullname: PM Delaux – volume: 356 start-page: 1175 year: 2017 ident: 613_CR32 publication-title: Science doi: 10.1126/science.aan0081 contributor: fullname: LH Luginbuehl – volume: 47 start-page: 685 year: 2001 ident: 613_CR38 publication-title: Soil Sci. Plant Nutr. doi: 10.1080/00380768.2001.10408433 contributor: fullname: H Oba – volume: 26 start-page: 199 issue: 4 year: 1992 ident: 613_CR34 publication-title: Biosystems doi: 10.1016/0303-2647(92)90025-T contributor: fullname: James O'Callaghan – volume: 65 start-page: 244 year: 2011 ident: 613_CR51 publication-title: Plant J. doi: 10.1111/j.1365-313X.2010.04415.x contributor: fullname: JD Murray – volume: 186 start-page: 514 year: 2010 ident: 613_CR24 publication-title: New Phytol. doi: 10.1111/j.1469-8137.2009.03137.x contributor: fullname: B Wang – volume: 441 start-page: 1149 year: 2006 ident: 613_CR45 publication-title: Nature doi: 10.1038/nature04812 contributor: fullname: C Gleason – volume: 10 start-page: 993 year: 2015 ident: 613_CR15 publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.01.025 contributor: fullname: G Dey – volume: 9 start-page: 1621 year: 2018 ident: 613_CR22 publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.01621 contributor: fullname: C Grosche – volume: 20 start-page: 2989 year: 2008 ident: 613_CR40 publication-title: Plant Cell doi: 10.1105/tpc.108.062414 contributor: fullname: C Gutjahr – volume: 10 start-page: 563 year: 2013 ident: 613_CR63 publication-title: Nat. Methods doi: 10.1038/nmeth.2474 contributor: fullname: CS Chin – volume: 4 start-page: 30 year: 2015 ident: 613_CR59 publication-title: Gigascience doi: 10.1186/s13742-015-0069-2 contributor: fullname: R Luo – volume: 115 start-page: E4700 year: 2018 ident: 613_CR11 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1721395115 contributor: fullname: R van Velzen – volume: 356 start-page: 1172 year: 2017 ident: 613_CR33 publication-title: Science doi: 10.1126/science.aam9970 contributor: fullname: Y Jiang – volume: 30 start-page: 566 year: 2014 ident: 613_CR60 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt702 contributor: fullname: RM Leggett – volume: 14 year: 2014 ident: 613_CR18 publication-title: BMC Plant Biol. doi: 10.1186/s12870-014-0333-0 contributor: fullname: P Favre – volume: 31 start-page: 2386 year: 2019 ident: 613_CR36 publication-title: Plant Cell doi: 10.1105/tpc.18.00676 contributor: fullname: KR Cope – volume: 11 start-page: 252 year: 2013 ident: 613_CR39 publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2990 contributor: fullname: GED Oldroyd – volume: 10 start-page: e1004487 year: 2014 ident: 613_CR17 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1004487 contributor: fullname: PM Delaux – volume: 112 start-page: 13390 year: 2015 ident: 613_CR23 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1515426112 contributor: fullname: P-M Delaux – ident: 613_CR1 – ident: 613_CR5 – volume: 221 start-page: 18 year: 2019 ident: 613_CR27 publication-title: New Phytol. doi: 10.1111/nph.15440 contributor: fullname: M Brundrett – volume: 14 year: 2013 ident: 613_CR62 publication-title: Genome Biol. doi: 10.1186/gb-2013-14-6-405 contributor: fullname: RJ Roberts – volume: 107 start-page: 957 year: 2003 ident: 613_CR6 publication-title: Mycol. Res. doi: 10.1017/S0953756203008141 contributor: fullname: I Kottke – volume: 6 start-page: e29107 year: 2017 ident: 613_CR20 publication-title: eLife doi: 10.7554/eLife.29107 contributor: fullname: A Keymer – volume: 61 start-page: 482 year: 2010 ident: 613_CR54 publication-title: Plant J. doi: 10.1111/j.1365-313X.2009.04072.x contributor: fullname: N Pumplin – volume: 31 start-page: 3210 year: 2015 ident: 613_CR61 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv351 contributor: fullname: FA Simão – volume: 4 start-page: 460 year: 2018 ident: 613_CR35 publication-title: Nat. Plants doi: 10.1038/s41477-018-0188-8 contributor: fullname: FW Li – volume: 210 start-page: 184 year: 2016 ident: 613_CR43 publication-title: New Phytol. doi: 10.1111/nph.13753 contributor: fullname: L Buendia – volume: 167 start-page: 854 year: 2015 ident: 613_CR19 publication-title: Plant Physiol. doi: 10.1104/pp.114.255430 contributor: fullname: L Xue |
SSID | ssj0001755360 |
Score | 2.5573113 |
Snippet | Plants are the foundation of terrestrial ecosystems, and their colonization of land was probably facilitated by mutualistic associations with arbuscular... |
SourceID | swepub hal proquest crossref pubmed springer |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 280 |
SubjectTerms | 42/44 45/23 631/1647/2217 631/181/757 631/449/2669 631/449/2676 Aquatic plants Biological Evolution Biomedical and Life Sciences Cyanobacteria - physiology Fungi - physiology Genome, Plant Genomes Life Sciences Microorganisms Mycorrhizae Plant diversity Plant Physiological Phenomena Plant Sciences Plants - microbiology Signal Transduction Symbiosis Symbiosis - physiology Terrestrial ecosystems Transcriptome yanobacteria / physiology |
Title | An ancestral signalling pathway is conserved in intracellular symbioses-forming plant lineages |
URI | https://link.springer.com/article/10.1038/s41477-020-0613-7 https://www.ncbi.nlm.nih.gov/pubmed/32123350 https://www.proquest.com/docview/2376945652 https://search.proquest.com/docview/2370494262 https://hal.inrae.fr/hal-02550894 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-423871 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfajQdeEN90DGQQvBAFnE-7jx0rVBSVB7aKJywncVikLUXJMtT_nrs4H-0qEHvgJaqcq2P5fj7fnc93hLyKRKRhI0nsOOKh7evIt4XQGLgWjDXYz4zF6IecfeWLb-J46k8Hg7YwSd_2XzkNbcBrvDl7A253nUID_AaewxO4Ds9_4vsEo4th8aMHw8LoDGWybmPp4V9qjQXMY4ygLq40pl3CfBGFQvd9HY9ari-ibFXq0kZltv7fOcy9hcooSJ5yU5dd1DlBDUEfMa8SDBTIyrOm8PHHqqis5dtesLd3Dz_pHph4vb92zepzvPJuzTv6pS7yzJzm19BSKJHUpq8CDNMuWKtN9Y3juu5gs06NR1fXYs9lAd4ZN4V9WhkdbkDR25S3pgxUs3W7phrRzq5gcsCXvuNzbtfDAiXG5v0W2AUm1kfynpCGVgKtRFrJh2TfBVEGknT_aD5ffOn9eDwIvLA7MPfEu53vbKk8wzMMuN21ZjZO4q9lra01nZO75E5jotCJwdY9MtD5fXLraAVmxPoB-T7JaQcw2gOMNgCjWUk7gNEsp1sAozsAozV-aAuwh-T0w_Tk_cxuinTYsS_CS9jDVRDGzPcj4bBUM5Z4oQqwjlDsuCoO03GkYsE4V8ArJ4KlqoIgdUImUl-HrvYekb18lesnhLpRige1sXZSDlLDi8AWSJjiYw22lUjYiLxp51H-NLlY5B8ZNiIvYaY7OsyiPpt8ltiGZjQTY__KGZHDlhGyWcOlxDixMRo67oi86F6D1MWpUrleVTUNJlZyQ6B5bBjYfcpDbdALYLhWy9G-87-M97Vh-taQj7PlRK6KH7KqJBg-gjsHN-r1Kbndr8NDsndZVPoZGZZJ9bwB8m_FrcYR |
link.rule.ids | 230,315,782,786,887,27933,27934,48346,48347,49651,49652 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9QwDLe4GxJ74fvjYEBA8MJUkX4mfSzcpkMce2Gg7YUoSVN2ErToug7df4-dXm8MEBJIfWqT1LLj-OfYcQCeGWkcGpIysEZkQeJMEkjpKHEtzR36z5xb2oecvRcHR3K6R2Vy4uEsjM92H0KSfqXuD4bLl20SJkIE5O6QDQrECLao2Hk0hq3i6Ph4er61ItI0zjYxzD_1vWCFRieUA_k7wPwpOPpLIVFvfPav_RfZ1-HqGmuyop8cN-CSq2_C5VcN4sHVLfhU1IxE7vc6GOVxaF-fm9Elxd_1ii1aZinXennmSrao8cGWtNFPmausXX01i6Z1bUCw1_f7glJiBFtxjWpvw4f9vcPXs2B920JgE5md4mKs08zyJDEy5JXjvIwzndKFMDaMtM2q3GgruRA6QqtmULt0mlZhxmWVuCxy8R0Y103t7gGLTEURN-vCSqD4Y4OgruRa5A5Bsiz5BF4M3Fff-qIaygfDY6l6finklyJ-KTGBpyifTTsqhz0r5orekT_EZZ6chRPYGcSn1krYKkr4yQmxRhN4svmM6kOs0rVrOt-GKuREGba524t986uYzHqcIrm7g2jPB_8Lvc_7qXKB5OniY6Ga5WfVdQoRLLqp9_9p1MdwZXb4bq7mbw7ePoDtyM8nyoTbgfHpsnMPYdSW3aO1KvwA7FUCCg |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfohhAvG98UBhgEL6BoTuLYztPU0VVFnQoSH-Jplu04UIklU9MM9b_nLh8dA4SEkPKU2I5zH7nf-c5nQp5bZT0YkixwVoqAe8sDpTwmriWpB_-ZMYfrkNP3cv5ZjY-wTM5BvxemyXbvQ5Ltngas0lSs9s-yvNskrvYrHnIpA3R90B4FckC2cVUMRHz7cDabv71YZpFJEotNPPNPfS9ZpMFXzIf8HWz-FCj9pahoY4gmu__9CTfITodB6agVmpvkii9ukauHJeDE9W1yMiooikKzBkIxv8M0dbspHl783azpoqIOc7CX5z6jiwIuaIkBAMxopdX61C7KylcBwuGm3zfgHkU4C_-u6g75ODn68HoadKcwBI4rsYKftEmEY5xbFbLcM5bFwiR4UIwLI-NEnlrjFJPSRGDtLGidSZI8FEzl3IvIx3fJVlEW_j6hkc0xEud8mEsQi9gC2MuYkakH8KwyNiQve07os7bYhm6C5LHSLb000EsjvbQckmfAq007LJM9HR1rvId-ElMpPw-HZK9npe6Us9KYCJQiko2G5OnmMagVksoUvqybNlg5JxLQ5l4rAptXxWju4wSm-6pn88Xgf5nvi1ZsLk15vPg00uXyi65rDcgW3NcH_zTqE3Lt3Xiij9_MZw_J9agRJ0yQ2yNbq2XtH5FBldWPO634AXMZCrc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+ancestral+signalling+pathway+is+conserved+in+intracellular+symbioses-forming+plant+lineages&rft.jtitle=Nature+plants&rft.au=Radhakrishnan%2C+Guru+V.&rft.au=Keller%2C+Jean&rft.au=Rich%2C+Melanie+K.&rft.au=Verni%C3%A9%2C+Tatiana&rft.date=2020-03-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2055-0278&rft.volume=6&rft.issue=3&rft.spage=280&rft.epage=289&rft_id=info:doi/10.1038%2Fs41477-020-0613-7&rft.externalDocID=10_1038_s41477_020_0613_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2055-0278&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2055-0278&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2055-0278&client=summon |