Concise Review: Embryonic Stem Cells Versus Induced Pluripotent Stem Cells: The Game Is On
Extraordinary advances in pluripotent stem cell research have initiated an era of hope for regenerative strategies to treat human disease. Besides embryonic stem cells, the discovery of induced pluripotent stem cells widened the possibility of patient‐specific cell therapy, drug discovery, and disea...
Saved in:
Published in: | Stem cells (Dayton, Ohio) Vol. 30; no. 1; pp. 10 - 14 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01-01-2012
Oxford University Press |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Extraordinary advances in pluripotent stem cell research have initiated an era of hope for regenerative strategies to treat human disease. Besides embryonic stem cells, the discovery of induced pluripotent stem cells widened the possibility of patient‐specific cell therapy, drug discovery, and disease modeling. Although similar, it has become clear that these two pluripotent cell types display significant differences. In this review, we explore current knowledge of the molecular and functional similarities and differences between these two cell types to emphasize the necessity for thorough characterization of their properties as well as their differentiation capabilities in the pluripotent state. Such comparative studies will be crucial for determining the more suitable cell type for future stem cell‐based therapies for human degenerative diseases. STEM CELLS 2012;30:10–14 |
---|---|
AbstractList | Extraordinary advances in pluripotent stem cell research have initiated an era of hope for regenerative strategies to treat human disease. Besides embryonic stem cells, the discovery of induced pluripotent stem cells widened the possibility of patient-specific cell therapy, drug discovery, and disease modeling. Although similar, it has become clear that these two pluripotent cell types display significant differences. In this review, we explore current knowledge of the molecular and functional similarities and differences between these two cell types to emphasize the necessity for thorough characterization of their properties as well as their differentiation capabilities in the pluripotent state. Such comparative studies will be crucial for determining the more suitable cell type for future stem cell-based therapies for human degenerative diseases. Extraordinary advances in pluripotent stem cell research have initiated an era of hope for regenerative strategies to treat human disease. Besides embryonic stem cells, the discovery of induced pluripotent stem cells widened the possibility of patient-specific cell therapy, drug discovery, and disease modeling. Although similar, it has become clear that these two pluripotent cell types display significant differences. In this review, we explore current knowledge of the molecular and functional similarities and differences between these two cell types to emphasize the necessity for thorough characterization of their properties as well as their differentiation capabilities in the pluripotent state. Such comparative studies will be crucial for determining the more suitable cell type for future stem cell-based therapies for human degenerative diseases. STEM CELLS 2012;30:10-14 |
Author | Puri, Mira C. Nagy, Andras |
Author_xml | – sequence: 1 givenname: Mira C. surname: Puri fullname: Puri, Mira C. organization: Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada – sequence: 2 givenname: Andras surname: Nagy fullname: Nagy, Andras email: nagy@lunenfeld.ca organization: Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22102565$$D View this record in MEDLINE/PubMed |
BookMark | eNp10F1LHDEUBuBQLPWjBX-BBLywN6P5mHx5J-t2u6LVrVsL3oSZzBkcnclsk53a_feN7FZKoVc5kIeXc95dtOV7DwjtU3JMCWEncQndsdL6DdqhIjdZbqjeSjORMhPEmG20G-MjITQXWr9D24xRwoQUO-h-1HvXRMBf4WcDz6d43JVh1fvG4dsUikfQthHfQYhDxFNfDQ4qfNMOoVn0S_DLv9Qpnj8AnhQd4GnE1_49elsXbYQPm3cPffs0no8-Z5fXk-no7DJzuZY6qzR3VcVr6Zh0NUhnashJWSiuK0aZKEgNqpRcasPLMp1QC8oIr5gBwhU3fA8drXMXof8xQFzarokubVR46IdoDeWKmpzpJA__kY_9EHxazlIltVacSpHUx7VyoY8xQG0XoemKsLKU2Je67UvdNtWd6MEmcCg7qF7hn34TyNbguWlh9d8gezsfX60DN75JX79efRGerFRcCfv9y8RemNn57OZC2hn_DZ5dmMQ |
CitedBy_id | crossref_primary_10_1038_s41392_023_01704_0 crossref_primary_10_2174_1574888X14666190823144424 crossref_primary_10_3389_fddsv_2021_773424 crossref_primary_10_1155_2016_3162363 crossref_primary_10_17547_kjsr_2017_25_1_1 crossref_primary_10_1039_C4TX00043A crossref_primary_10_3390_cells9102270 crossref_primary_10_1016_j_jcyt_2024_02_022 crossref_primary_10_3390_ijms15057139 crossref_primary_10_1016_j_biopha_2020_110730 crossref_primary_10_3390_ijms20215495 crossref_primary_10_1016_j_jconrel_2014_04_011 crossref_primary_10_1111_j_1749_6632_2012_06629_x crossref_primary_10_1186_s12967_023_04591_9 crossref_primary_10_1016_j_microc_2024_110141 crossref_primary_10_3390_cells11172745 crossref_primary_10_3390_ijms21238910 crossref_primary_10_3906_biy_1506_95 crossref_primary_10_1155_2013_786475 crossref_primary_10_1038_s42003_021_02237_4 crossref_primary_10_1155_2015_132172 crossref_primary_10_1186_1471_2164_15_488 crossref_primary_10_1016_j_stemcr_2013_11_006 crossref_primary_10_3389_fphar_2020_00396 crossref_primary_10_1002_stem_1250 crossref_primary_10_1155_2015_948040 crossref_primary_10_1002_jhbp_891 crossref_primary_10_1007_s11427_018_9543_1 crossref_primary_10_1590_s0100_736x2017000900020 crossref_primary_10_1128_JVI_02105_20 crossref_primary_10_1016_j_isci_2024_109855 crossref_primary_10_1172_JCI61974 crossref_primary_10_1016_j_isci_2024_109018 crossref_primary_10_1038_nature11807 crossref_primary_10_1038_srep36109 crossref_primary_10_4236_jbise_2016_94017 crossref_primary_10_1371_journal_pone_0085864 crossref_primary_10_5966_sctm_2014_0083 crossref_primary_10_1007_s00018_012_0994_5 crossref_primary_10_1007_s12015_013_9457_0 crossref_primary_10_1172_JCI64124 crossref_primary_10_1016_j_trac_2022_116696 crossref_primary_10_1161_CIRCRESAHA_113_302021 crossref_primary_10_3390_ijms22052619 crossref_primary_10_1002_bies_201300127 crossref_primary_10_3390_ijms20112711 crossref_primary_10_3390_jcm3041146 crossref_primary_10_1002_cbin_11672 crossref_primary_10_1002_jcb_24477 crossref_primary_10_1016_j_exphem_2013_06_005 crossref_primary_10_1002_mus_24320 crossref_primary_10_3389_fcell_2020_00178 crossref_primary_10_1152_physrev_00036_2015 crossref_primary_10_1186_s13287_024_03636_0 crossref_primary_10_1016_j_procbio_2016_05_024 crossref_primary_10_1016_j_tice_2016_05_008 crossref_primary_10_3389_fcell_2016_00017 crossref_primary_10_1016_j_molmed_2013_01_004 crossref_primary_10_3390_biomedicines10081999 crossref_primary_10_1177_1073858413493148 crossref_primary_10_3389_fnins_2020_00655 crossref_primary_10_1038_s41585_021_00480_2 crossref_primary_10_3390_molecules21091188 crossref_primary_10_3390_biomedicines10020208 crossref_primary_10_2139_ssrn_4611989 crossref_primary_10_1186_ar4470 crossref_primary_10_1038_nrendo_2013_145 crossref_primary_10_1039_C5TB02645H crossref_primary_10_1016_j_bbagen_2012_08_025 crossref_primary_10_3390_ijms17040530 crossref_primary_10_1097_PHM_0000000000000141 crossref_primary_10_5812_gct_110381 crossref_primary_10_1186_scrt326 crossref_primary_10_17650_1683_3295_2019_21_3_83_92 crossref_primary_10_1002_adhm_201900722 crossref_primary_10_1007_s12265_012_9376_5 crossref_primary_10_1186_scrt121 crossref_primary_10_1186_scrt443 crossref_primary_10_1002_cyto_a_22069 crossref_primary_10_1016_j_bcp_2013_10_019 crossref_primary_10_1002_pmic_201400300 crossref_primary_10_1186_s13287_024_03701_8 crossref_primary_10_1016_j_intimp_2014_06_011 crossref_primary_10_1186_s13287_015_0237_4 crossref_primary_10_1097_SCS_0b013e318252f41b crossref_primary_10_1038_srep08480 crossref_primary_10_1002_jcb_28933 crossref_primary_10_1002_term_1918 crossref_primary_10_3390_ijms24043624 crossref_primary_10_1186_s13287_023_03394_5 crossref_primary_10_4070_kcj_2016_46_1_79 crossref_primary_10_1089_scd_2014_0136 crossref_primary_10_1016_j_yexcr_2020_112294 |
Cites_doi | 10.1172/JCI44635 10.1126/science.282.5391.1145 10.1038/nature08267 10.1038/ng.471 10.1038/nbt922 10.1038/ng.710 10.1016/j.cell.2008.02.008 10.1038/28615 10.1038/nrg2937 10.1038/cr.2010.125 10.1038/nbt1285 10.1038/nbt.1509 10.1038/nbt.1684 10.1371/journal.pone.0007076 10.1038/ncb0511-497 10.1073/pnas.022438099 10.1016/j.neuron.2011.05.007 10.1038/nature07056 10.1016/j.stem.2010.12.003 10.1038/nature09798 10.1002/stem.635 10.1016/j.cell.2006.07.024 10.1038/nature05934 10.1016/j.stem.2010.06.016 10.1016/j.stem.2010.07.017 10.1038/nature01079 10.1016/j.stem.2009.06.008 10.1038/385810a0 10.1002/stem.471 10.1038/nbt.1667 10.5962/bhl.title.101564 10.1038/nbt.1554 10.1371/journal.pone.0021355 10.1016/j.stem.2010.06.015 10.1038/nbt.1510 10.1016/j.cell.2007.11.019 10.1016/j.anireprosci.2005.12.001 10.1038/nature09871 10.1038/nature09342 10.1089/scd.2008.0247 10.1002/stem.321 10.1038/182064a0 10.1038/nature09017 10.1038/nature06534 10.1038/nrc3034 10.1038/nbt1383 10.1073/pnas.0910012107 10.1371/journal.pone.0008975 10.1016/j.stem.2011.06.007 10.1038/nrg2955 |
ContentType | Journal Article |
Copyright | Copyright © 2011 AlphaMed Press Copyright © 2011 AlphaMed Press. |
Copyright_xml | – notice: Copyright © 2011 AlphaMed Press – notice: Copyright © 2011 AlphaMed Press. |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 7QP 7QR 7TK 7TM 8FD FR3 K9. P64 RC3 7X8 |
DOI | 10.1002/stem.788 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Genetics Abstracts |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1549-4918 |
EndPage | 14 |
ExternalDocumentID | 3967213941 10_1002_stem_788 22102565 STEM788 ark_67375_WNG_J9QDQPJ6_Q |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Genome and Life Sciences (GL2) Program – fundername: Ontario Ministry of Research and Innovation – fundername: Cell Network (Canada) |
GroupedDBID | --- .GJ 05W 0R~ 123 18M 1OB 1OC 24P 2WC 31~ 3WU 4.4 53G 5RE 5WD 8-0 8-1 A00 AABZA AACZT AAESR AAIHA AAONW AAPGJ AAPXW AARHZ AAUAY AAVAP AAWDT AAZKR ABCUV ABEJV ABHFT ABLJU ABMNT ABNHQ ABPTD ABXVV ACFRR ACGFO ACGFS ACIWK ACPOU ACPRK ACUFI ACUTJ ACXQS ACZBC ADBBV ADGKP ADIPN ADKYN ADQBN ADVEK ADXAS ADZMN AENEX AEUQT AFBPY AFFZL AFGWE AFRAH AFYAG AFZJQ AGMDO AHMBA AIURR AJAOE AJEEA ALMA_UNASSIGNED_HOLDINGS AMYDB APJGH ATGXG AVNTJ AZBYB AZVAB BAWUL BCRHZ BEYMZ BMXJE BRXPI BSCLL CS3 DCZOG DIK DU5 E3Z EBS EJD EMB EMOBN F5P FD6 G-S GODZA GX1 H13 HHY HZ~ IH2 KOP KSI KSN LATKE LEEKS LH4 LITHE LMP LOXES LUTES LW6 LYRES MY~ N9A NNB NOMLY O66 O9- OBOKY OCZFY OIG OJZSN OK1 OPAEJ OVD OWPYF P2P P2W P4E PALCI PQQKQ RAO RIWAO RJQFR ROL ROX RWI SUPJJ SV3 TEORI TMA TR2 WBKPD WOHZO WOQ WYB WYJ XV2 ZGI ZXP ZZTAW ~S- AASNB CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 7QP 7QR 7TK 7TM 8FD FR3 K9. P64 RC3 7X8 |
ID | FETCH-LOGICAL-c4868-d83cdd3f6c26cfe6c9fe40ba738d2125a0fe7b636893bb014f51203d29e037393 |
ISSN | 1066-5099 |
IngestDate | Fri Oct 25 04:03:06 EDT 2024 Tue Nov 19 04:48:49 EST 2024 Fri Nov 22 00:23:12 EST 2024 Tue Oct 15 23:44:40 EDT 2024 Sat Aug 24 00:51:58 EDT 2024 Wed Oct 30 09:59:45 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Copyright © 2011 AlphaMed Press. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4868-d83cdd3f6c26cfe6c9fe40ba738d2125a0fe7b636893bb014f51203d29e037393 |
Notes | Genome and Life Sciences (GL2) Program Ontario Ministry of Research and Innovation ark:/67375/WNG-J9QDQPJ6-Q ArticleID:STEM788 Cell Network (Canada) istex:89DBF1C3A555C4ECB2FA9D19900C99248CF83B3B First published online in S Disclosure of potential conflicts of interest is found at the end of this article. C Author contributions: M.C.P. and A.N.: researched and wrote this review. EXPRESS Telephone: 416‐586‐4800, ext. 3246; Fax: 416‐586‐5130 http://www.mshri.on.ca/nagy/ TEM November 18, 2011. ELLS ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
OpenAccessLink | https://academic.oup.com/stmcls/article-pdf/30/1/10/40771891/stmcls_30_1_10.pdf |
PMID | 22102565 |
PQID | 1768873165 |
PQPubID | 1046343 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_913719428 proquest_journals_1768873165 crossref_primary_10_1002_stem_788 pubmed_primary_22102565 wiley_primary_10_1002_stem_788_STEM788 istex_primary_ark_67375_WNG_J9QDQPJ6_Q |
PublicationCentury | 2000 |
PublicationDate | January 2012 |
PublicationDateYYYYMMDD | 2012-01-01 |
PublicationDate_xml | – month: 01 year: 2012 text: January 2012 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States – name: Oxford |
PublicationTitle | Stem cells (Dayton, Ohio) |
PublicationTitleAlternate | STEM CELLS |
PublicationYear | 2012 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Oxford University Press |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Oxford University Press |
References | Mikkelsen TS, Hanna J, Zhang X et al. Dissecting direct reprogramming through integrative genomic analysis. Nature 2008; 454: 49-55. Ben-David U, Benvenisty N. The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer 2011; 11: 268-277. Spits C, Mateizel I, Geens M et al. Recurrent chromosomal abnormalities in human embryonic stem cells. Nat Biotechnol 2008; 26: 1361-1363. Bjorklund LM, Sánchez-Pernaute R, Chung S et al. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci USA 2002; 99: 2344-2349. Gutierrez-Aranda I, Ramos-Mejia V, Bueno C et al. Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection. Stem Cells 2010; 28: 1568-1570. Wilmut I, Beaujean N, de Sousa PA et al. Somatic cell nuclear transfer. Nature 2002; 419: 583-586. Loewer S, Cabili MN, Guttman M et al. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat Genet 2010; 42: 1113-1117. Park I-H, Zhao R, West JA et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 2007; 451: 141-146. Bar-Nur O, Russ HA, Efrat S et al. Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell Stem Cell 2011; 9: 17-23. Stadtfeld M, Apostolou E, Akutsu H et al. Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature 2010; 465: 175-181. Guenther MG, Frampton GM, Soldner F et al. Chromatin structure and gene expression programs of human embryonic and induced pluripotent stem cells. Cell Stem Cell 2010; 7: 249-257. Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature 2007; 448: 313-317. Gurdon JB, Elsdale T, Fishberg M. Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature 1958; 182: 64-65. Polo JM, Liu S, Figueroa ME et al. Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol 2010; 28: 848-855. Miura K, Okada Y, Aoi T et al. Variation in the safety of induced pluripotent stem cell lines. Nat Biotechnol 2009; 27: 743-745. Vajta G, Gjerris M. Science and technology of farm animal cloning: State of the art. Anim Reprod Sci 2006; 92: 211-230. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663-676. Lister R, Pelizzola M, Kida YS et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 2011; 470: 68-73. Li Y, Yokohama-Tamaki T, Tanaka TS. Short-term serum-free culture reveals that inhibition of Gsk3β induces the tumor-like growth of mouse embryonic stem cells. PLoS One 2011; 6: e21355. Aboody K, Capela A, Niazi N et al. Translating stem cell studies to the clinic for CNS repair: Current state of the art and the need for a Rosetta Stone. Neuron 2011; 70: 597-613. Wilson KD, Venkatasubrahmanyam S, Jia F et al. MicroRNA profiling of human-induced pluripotent stem cells. Stem Cells Dev 2009; 18: 749-757. Wilmut I, Schnieke AE, McWhir J et al. Viable offspring derived from fetal and adult mammalian cells. Nature 1997; 385: 810-813. Takahashi K, Tanabe K, Ohnuki M et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131: 861-872. Kim K, Doi A, Wen B et al. Epigenetic memory in induced pluripotent stem cells. Nature 2010; 467: 285-290. Weissman A. Essays Upon Heredity and Kindred Biological Problems. Oxford: Clarendon Press, 1889. Mayshar Y, Ben-David U, Lavon N et al. Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell 2010; 7: 521-531. Zhao XY, Li W, Lv Z et al. iPS cells produce viable mice through tetraploid complementation. Nature 2009; 461: 86-90. Plath K, Lowry WE. Progress in understanding reprogramming to the induced pluripotent state. Nat Rev Genet 2011; 12: 253-265. Meissner A. Epigenetic modifications in pluripotent and differentiated cells. Nat Biotechnol 2010; 28: 1079-1088. Lefort N, Feyeux M, Bas C et al. Human embryonic stem cells reveal recurrent genomic instability at 20q11.21. Nat Biotechnol 2008; 26: 1364-1366. Laurent LC, Ulitsky I, Slavin I et al. Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell 2011; 8: 106-118. Thomson JA, Itskovitz-Eldor J, Shapiro SS et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282: 1145-1147. Kokkinaki M, Sahibzada N, Golestaneh N. Human induced pluripotent stem-derived retinal pigment epithelium (RPE) cells exhibit ion transport, membrane potential, polarized vascular endothelial growth factor secretion, and gene expression pattern similar to native RPE. Stem Cells 2011; 29: 825-835. Feng Q, Lu S-J, Klimanskaya I et al. Hemangioblastic derivatives from human induced pluripotent stem cells exhibit limited expansion and early senescence. Stem Cells 2010; 28: 704-712. Osafune K, Caron L, Borowiak M et al. Marked differences in differentiation propensity among human embryonic stem cell lines. Nat Biotechnol 2008; 26: 313-315. Wakayama T, Perry AC, Zuccotti M et al. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 1998; 394: 369-374. Wu SM, Hochedlinger K. Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nat Cell Biol 2011; 13: 497-505. Narsinh KH, Sun N, Sanchez-Freire V et al. Single cell transcriptional profiling reveals heterogeneity of human induced pluripotent stem cells. J Clin Invest 2011; 121: 1217-1221. Murry CE, Keller G. Differentiation of embryonic stem cells to clinically relevant populations: Lessons from embryonic development. Cell 2008; 132: 661-680. Hussein SM, Batada NN, Vuoristo S et al. Copy number variation and selection during reprogramming to pluripotency. Nature 2011; 470: 58-62. Draper JS, Smith K, Gokhale P et al. Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol 2003; 22: 53-54. Newman AM, Cooper JB. Lab-specific gene expression signatures in pluripotent stem cells. Cell Stem Cell 2010; 7: 258-262. Marchetto MCN, Yeo GW, Kainohana O et al. Transcriptional signature and memory retention of human-induced pluripotent stem cells. PLoS One 2009; 4: e7076. Baker DEC, Harrison NJ, Maltby E et al. Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat Biotechnol 2007; 25: 207-215. Ghosh Z, Wilson KD, Wu Y et al. Persistent donor cell gene expression among human induced pluripotent stem cells contributes to differences with human embryonic stem cells. PLoS One 2010; 5: e8975. Chin MH, Mason MJ, Xie W et al. Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell 2009; 5: 111-123. Hu BY, Weick JP, Yu J et al. Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci USA 2010; 107: 4335-4340. Ramos-Mejia V, Munoz-Lopez M, Garcia-Perez JL et al. iPSC lines that do not silence the expression of the ectopic reprogramming factors may display enhanced propensity to genomic instability. Cell Res 2010; 20: 1092-1095. Doi A, Park I-H, Wen B et al. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet 2009; 41: 1350-1353. González F, Boue S, Belmonte JCI. Methods for making induced pluripotent stem cells: Reprogramming à la carte. Nat Rev Genet 2011; 12: 231-242. 2006; 92 2009; 41 2007; 448 2010; 107 2010; 467 2002; 99 2010; 465 2011; 11 2011; 13 2011; 12 2002; 419 2011; 470 2011; 6 2011; 8 2009; 27 1958; 182 1998; 394 2011; 9 2010; 20 2010; 42 2010; 28 2007; 451 2011; 70 1997; 385 2007; 131 2008; 26 2009; 5 2009; 4 2008; 454 2009; 461 2006; 126 2008; 132 2010; 5 2011; 29 2010; 7 1998; 282 2007; 25 2003; 22 2009; 18 2011; 121 1889 e_1_2_10_23_2 e_1_2_10_44_2 e_1_2_10_21_2 e_1_2_10_42_2 e_1_2_10_40_2 e_1_2_10_2_2 e_1_2_10_18_2 e_1_2_10_39_2 e_1_2_10_4_2 e_1_2_10_16_2 e_1_2_10_37_2 e_1_2_10_6_2 e_1_2_10_14_2 e_1_2_10_35_2 e_1_2_10_11_2 e_1_2_10_34_2 e_1_2_10_8_2 e_1_2_10_32_2 e_1_2_10_30_2 e_1_2_10_51_2 e_1_2_10_29_2 e_1_2_10_27_2 e_1_2_10_48_2 e_1_2_10_25_2 e_1_2_10_46_2 e_1_2_10_22_2 e_1_2_10_45_2 e_1_2_10_20_2 e_1_2_10_43_2 e_1_2_10_41_2 e_1_2_10_19_2 e_1_2_10_3_2 e_1_2_10_17_2 e_1_2_10_5_2 e_1_2_10_15_2 e_1_2_10_38_2 e_1_2_10_7_2 e_1_2_10_13_2 e_1_2_10_36_2 e_1_2_10_9_2 e_1_2_10_12_2 e_1_2_10_33_2 e_1_2_10_10_2 e_1_2_10_31_2 e_1_2_10_50_2 e_1_2_10_28_2 e_1_2_10_26_2 e_1_2_10_49_2 e_1_2_10_24_2 e_1_2_10_47_2 |
References_xml | – volume: 7 start-page: 249 year: 2010 end-page: 257 article-title: Chromatin structure and gene expression programs of human embryonic and induced pluripotent stem cells publication-title: Cell Stem Cell – volume: 107 start-page: 4335 year: 2010 end-page: 4340 article-title: Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency publication-title: Proc Natl Acad Sci USA – volume: 70 start-page: 597 year: 2011 end-page: 613 article-title: Translating stem cell studies to the clinic for CNS repair: Current state of the art and the need for a Rosetta Stone publication-title: Neuron – volume: 282 start-page: 1145 year: 1998 end-page: 1147 article-title: Embryonic stem cell lines derived from human blastocysts publication-title: Science – volume: 7 start-page: 258 year: 2010 end-page: 262 article-title: Lab‐specific gene expression signatures in pluripotent stem cells publication-title: Cell Stem Cell – volume: 470 start-page: 58 year: 2011 end-page: 62 article-title: Copy number variation and selection during reprogramming to pluripotency publication-title: Nature – volume: 12 start-page: 231 year: 2011 end-page: 242 article-title: Methods for making induced pluripotent stem cells: Reprogramming à la carte publication-title: Nat Rev Genet – volume: 28 start-page: 1079 year: 2010 end-page: 1088 article-title: Epigenetic modifications in pluripotent and differentiated cells publication-title: Nat Biotechnol – year: 1889 – volume: 42 start-page: 1113 year: 2010 end-page: 1117 article-title: Large intergenic non‐coding RNA‐RoR modulates reprogramming of human induced pluripotent stem cells publication-title: Nat Genet – volume: 131 start-page: 861 year: 2007 end-page: 872 article-title: Induction of pluripotent stem cells from adult human fibroblasts by defined factors publication-title: Cell – volume: 385 start-page: 810 year: 1997 end-page: 813 article-title: Viable offspring derived from fetal and adult mammalian cells publication-title: Nature – volume: 41 start-page: 1350 year: 2009 end-page: 1353 article-title: Differential methylation of tissue‐ and cancer‐specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts publication-title: Nat Genet – volume: 454 start-page: 49 year: 2008 end-page: 55 article-title: Dissecting direct reprogramming through integrative genomic analysis publication-title: Nature – volume: 20 start-page: 1092 year: 2010 end-page: 1095 article-title: iPSC lines that do not silence the expression of the ectopic reprogramming factors may display enhanced propensity to genomic instability publication-title: Cell Res – volume: 121 start-page: 1217 year: 2011 end-page: 1221 article-title: Single cell transcriptional profiling reveals heterogeneity of human induced pluripotent stem cells publication-title: J Clin Invest – volume: 92 start-page: 211 year: 2006 end-page: 230 article-title: Science and technology of farm animal cloning: State of the art publication-title: Anim Reprod Sci – volume: 4 start-page: e7076 year: 2009 article-title: Transcriptional signature and memory retention of human‐induced pluripotent stem cells publication-title: PLoS One – volume: 29 start-page: 825 year: 2011 end-page: 835 article-title: Human induced pluripotent stem‐derived retinal pigment epithelium (RPE) cells exhibit ion transport, membrane potential, polarized vascular endothelial growth factor secretion, and gene expression pattern similar to native RPE publication-title: Stem Cells – volume: 11 start-page: 268 year: 2011 end-page: 277 article-title: The tumorigenicity of human embryonic and induced pluripotent stem cells publication-title: Nat Rev Cancer – volume: 27 start-page: 743 year: 2009 end-page: 745 article-title: Variation in the safety of induced pluripotent stem cell lines publication-title: Nat Biotechnol – volume: 419 start-page: 583 year: 2002 end-page: 586 article-title: Somatic cell nuclear transfer publication-title: Nature – volume: 5 start-page: e8975 year: 2010 article-title: Persistent donor cell gene expression among human induced pluripotent stem cells contributes to differences with human embryonic stem cells publication-title: PLoS One – volume: 22 start-page: 53 year: 2003 end-page: 54 article-title: Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells publication-title: Nat Biotechnol – volume: 13 start-page: 497 year: 2011 end-page: 505 article-title: Harnessing the potential of induced pluripotent stem cells for regenerative medicine publication-title: Nat Cell Biol – volume: 394 start-page: 369 year: 1998 end-page: 374 article-title: Full‐term development of mice from enucleated oocytes injected with cumulus cell nuclei publication-title: Nature – volume: 28 start-page: 1568 year: 2010 end-page: 1570 article-title: Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection publication-title: Stem Cells – volume: 6 start-page: e21355 year: 2011 article-title: Short‐term serum‐free culture reveals that inhibition of Gsk3β induces the tumor‐like growth of mouse embryonic stem cells publication-title: PLoS One – volume: 28 start-page: 704 year: 2010 end-page: 712 article-title: Hemangioblastic derivatives from human induced pluripotent stem cells exhibit limited expansion and early senescence publication-title: Stem Cells – volume: 12 start-page: 253 year: 2011 end-page: 265 article-title: Progress in understanding reprogramming to the induced pluripotent state publication-title: Nat Rev Genet – volume: 99 start-page: 2344 year: 2002 end-page: 2349 article-title: Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model publication-title: Proc Natl Acad Sci USA – volume: 126 start-page: 663 year: 2006 end-page: 676 article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors publication-title: Cell – volume: 26 start-page: 313 year: 2008 end-page: 315 article-title: Marked differences in differentiation propensity among human embryonic stem cell lines publication-title: Nat Biotechnol – volume: 8 start-page: 106 year: 2011 end-page: 118 article-title: Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture publication-title: Cell Stem Cell – volume: 26 start-page: 1364 year: 2008 end-page: 1366 article-title: Human embryonic stem cells reveal recurrent genomic instability at 20q11.21 publication-title: Nat Biotechnol – volume: 26 start-page: 1361 year: 2008 end-page: 1363 article-title: Recurrent chromosomal abnormalities in human embryonic stem cells publication-title: Nat Biotechnol – volume: 448 start-page: 313 year: 2007 end-page: 317 article-title: Generation of germline‐competent induced pluripotent stem cells publication-title: Nature – volume: 470 start-page: 68 year: 2011 end-page: 73 article-title: Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells publication-title: Nature – volume: 9 start-page: 17 year: 2011 end-page: 23 article-title: Epigenetic memory and preferential lineage‐specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells publication-title: Cell Stem Cell – volume: 18 start-page: 749 year: 2009 end-page: 757 article-title: MicroRNA profiling of human‐induced pluripotent stem cells publication-title: Stem Cells Dev – volume: 451 start-page: 141 year: 2007 end-page: 146 article-title: Reprogramming of human somatic cells to pluripotency with defined factors publication-title: Nature – volume: 182 start-page: 64 year: 1958 end-page: 65 article-title: Sexually mature individuals of from the transplantation of single somatic nuclei publication-title: Nature – volume: 5 start-page: 111 year: 2009 end-page: 123 article-title: Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures publication-title: Cell Stem Cell – volume: 7 start-page: 521 year: 2010 end-page: 531 article-title: Identification and classification of chromosomal aberrations in human induced pluripotent stem cells publication-title: Cell Stem Cell – volume: 465 start-page: 175 year: 2010 end-page: 181 article-title: Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells publication-title: Nature – volume: 25 start-page: 207 year: 2007 end-page: 215 article-title: Adaptation to culture of human embryonic stem cells and oncogenesis in vivo publication-title: Nat Biotechnol – volume: 467 start-page: 285 year: 2010 end-page: 290 article-title: Epigenetic memory in induced pluripotent stem cells publication-title: Nature – volume: 28 start-page: 848 year: 2010 end-page: 855 article-title: Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells publication-title: Nat Biotechnol – volume: 132 start-page: 661 year: 2008 end-page: 680 article-title: Differentiation of embryonic stem cells to clinically relevant populations: Lessons from embryonic development publication-title: Cell – volume: 461 start-page: 86 year: 2009 end-page: 90 article-title: iPS cells produce viable mice through tetraploid complementation publication-title: Nature – ident: e_1_2_10_50_2 doi: 10.1172/JCI44635 – ident: e_1_2_10_2_2 doi: 10.1126/science.282.5391.1145 – ident: e_1_2_10_40_2 doi: 10.1038/nature08267 – ident: e_1_2_10_33_2 doi: 10.1038/ng.471 – ident: e_1_2_10_12_2 doi: 10.1038/nbt922 – ident: e_1_2_10_36_2 doi: 10.1038/ng.710 – ident: e_1_2_10_3_2 doi: 10.1016/j.cell.2008.02.008 – ident: e_1_2_10_19_2 doi: 10.1038/28615 – ident: e_1_2_10_43_2 doi: 10.1038/nrg2937 – ident: e_1_2_10_24_2 doi: 10.1038/cr.2010.125 – ident: e_1_2_10_11_2 doi: 10.1038/nbt1285 – ident: e_1_2_10_13_2 doi: 10.1038/nbt.1509 – ident: e_1_2_10_27_2 doi: 10.1038/nbt.1684 – ident: e_1_2_10_32_2 doi: 10.1371/journal.pone.0007076 – ident: e_1_2_10_9_2 doi: 10.1038/ncb0511-497 – ident: e_1_2_10_4_2 doi: 10.1073/pnas.022438099 – ident: e_1_2_10_5_2 doi: 10.1016/j.neuron.2011.05.007 – ident: e_1_2_10_34_2 doi: 10.1038/nature07056 – ident: e_1_2_10_23_2 doi: 10.1016/j.stem.2010.12.003 – ident: e_1_2_10_26_2 doi: 10.1038/nature09798 – ident: e_1_2_10_51_2 doi: 10.1002/stem.635 – ident: e_1_2_10_6_2 doi: 10.1016/j.cell.2006.07.024 – ident: e_1_2_10_41_2 doi: 10.1038/nature05934 – ident: e_1_2_10_39_2 doi: 10.1016/j.stem.2010.06.016 – ident: e_1_2_10_15_2 doi: 10.1016/j.stem.2010.07.017 – ident: e_1_2_10_21_2 doi: 10.1038/nature01079 – ident: e_1_2_10_35_2 doi: 10.1016/j.stem.2009.06.008 – ident: e_1_2_10_18_2 doi: 10.1038/385810a0 – ident: e_1_2_10_44_2 doi: 10.1002/stem.471 – ident: e_1_2_10_30_2 doi: 10.1038/nbt.1667 – ident: e_1_2_10_16_2 doi: 10.5962/bhl.title.101564 – ident: e_1_2_10_46_2 doi: 10.1038/nbt.1554 – ident: e_1_2_10_45_2 doi: 10.1371/journal.pone.0021355 – ident: e_1_2_10_25_2 doi: 10.1016/j.stem.2010.06.015 – ident: e_1_2_10_14_2 doi: 10.1038/nbt.1510 – ident: e_1_2_10_8_2 doi: 10.1016/j.cell.2007.11.019 – ident: e_1_2_10_20_2 doi: 10.1016/j.anireprosci.2005.12.001 – ident: e_1_2_10_22_2 doi: 10.1038/nature09871 – ident: e_1_2_10_29_2 doi: 10.1038/nature09342 – ident: e_1_2_10_38_2 doi: 10.1089/scd.2008.0247 – ident: e_1_2_10_48_2 doi: 10.1002/stem.321 – ident: e_1_2_10_17_2 doi: 10.1038/182064a0 – ident: e_1_2_10_37_2 doi: 10.1038/nature09017 – ident: e_1_2_10_7_2 doi: 10.1038/nature06534 – ident: e_1_2_10_42_2 doi: 10.1038/nrc3034 – ident: e_1_2_10_47_2 doi: 10.1038/nbt1383 – ident: e_1_2_10_49_2 doi: 10.1073/pnas.0910012107 – ident: e_1_2_10_31_2 doi: 10.1371/journal.pone.0008975 – ident: e_1_2_10_28_2 doi: 10.1016/j.stem.2011.06.007 – ident: e_1_2_10_10_2 doi: 10.1038/nrg2955 |
SSID | ssj0014588 |
Score | 2.4483967 |
SecondaryResourceType | review_article |
Snippet | Extraordinary advances in pluripotent stem cell research have initiated an era of hope for regenerative strategies to treat human disease. Besides embryonic... |
SourceID | proquest crossref pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 10 |
SubjectTerms | Cell Differentiation - physiology Disease modeling Drug Discovery Embryonic stem cells Embryonic Stem Cells - metabolism Embryonic Stem Cells - physiology Embryos Genome integrity Humans Induced pluripotent stem cells Induced Pluripotent Stem Cells - metabolism Induced Pluripotent Stem Cells - physiology Pluripotency Pluripotent Stem Cells - physiology Stem Cell Transplantation Stem cells Transplants & implants Tumorigenicity |
Title | Concise Review: Embryonic Stem Cells Versus Induced Pluripotent Stem Cells: The Game Is On |
URI | https://api.istex.fr/ark:/67375/WNG-J9QDQPJ6-Q/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstem.788 https://www.ncbi.nlm.nih.gov/pubmed/22102565 https://www.proquest.com/docview/1768873165 https://search.proquest.com/docview/913719428 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3di9NAEF96dwi-iN9GT1lB7iXkzOdmc2_SVq8nd21pRfFl2SQbPGxTaRqw_72zH0lT9OBEfAllM03Tnd_OzszOB0Jv_JT4VASFE6Ze4IQedR0ect8heZrnCfGKkMps5PNZfPWFDobhsNdrWj_txv4rp2EMeC0zZ_-C2-1DYQA-A8_hClyH66343l-pRhlNmVgw-IfLdL1VjW5mG7G0-2KxqGzpJ6srW3bukBEAk0UN0mO1kZEBO6o2JIMvhT2q7HHZ1WUVXaaeBmrqgG9NJP742_Wq42CY1DqZ_fJ6ze3-aet95jpJRkZU8j3ng4ri6Dof_lXEgT1KHFBZ9CsJI4JD2ffOSGUjo83ZTReLWuCamFi9det01N82BV1kVtbFPo11D8H9utstTXQTldrvZ_PhJdw5QEc-CDVlvo8-tidWMuNXnaybf9QUOnb9t80z91SfI7mKf_7Jrtk3k5SeM7-P7hkDBb_TyHqAeqJ8iO7olqXbR-irwRfW-DrDLbqwxANWuMEaXdigC3fQ1aE6w4AtLLGFRxUel4_Rp_fDef_cMf05nCykhDo5DbI8DwqS-SQrBMmSQoRuyuOA5qARRdwtRJySgIBOnKYwRQVol26Q-4lwA1mJ8Qk6LFeleIYw6FGgWCZeVHApHQRNROZliU9JGBWFyC30upk69kOXYWG64LbP5PQymF4Lnag5bQn4-rsMW4wj9vnqA7tIpoPp5IKwqYWOm0lnZuVWzAO7m8o2bpGFcHsbZK1cR7wUq7piiRfEXgIGu4Weal61v-VL10kkv3yimHfjWzIDo-e3JXyB7u5W3jE63Kxr8RIdVHn9SiHwF6J4r2g |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Concise+Review%3A+Embryonic+Stem+Cells+Versus+Induced+Pluripotent+Stem+Cells%3A+The+Game+Is+On&rft.jtitle=Stem+cells+%28Dayton%2C+Ohio%29&rft.au=Puri%2C+Mira+C.&rft.au=Nagy%2C+Andras&rft.date=2012-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=1066-5099&rft.eissn=1549-4918&rft.volume=30&rft.issue=1&rft.spage=10&rft.epage=14&rft_id=info:doi/10.1002%2Fstem.788&rft.externalDBID=10.1002%252Fstem.788&rft.externalDocID=STEM788 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1066-5099&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1066-5099&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1066-5099&client=summon |