Measuring anisotropic muscle stiffness properties using elastography

Physiological and pathological changes to the anisotropic mechanical properties of skeletal muscle are still largely unknown, with only a few studies quantifying changes in vivo. This study used the noninvasive MR elastography (MRE) technique, in combination with diffusion tensor imaging (DTI), to m...

Full description

Saved in:
Bibliographic Details
Published in:NMR in biomedicine Vol. 26; no. 11; pp. 1387 - 1394
Main Authors: Green, M. A., Geng, G., Qin, E., Sinkus, R., Gandevia, S. C., Bilston, L. E.
Format: Journal Article
Language:English
Published: England Blackwell Publishing Ltd 01-11-2013
Wiley Subscription Services, Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Physiological and pathological changes to the anisotropic mechanical properties of skeletal muscle are still largely unknown, with only a few studies quantifying changes in vivo. This study used the noninvasive MR elastography (MRE) technique, in combination with diffusion tensor imaging (DTI), to measure shear modulus anisotropy in the human skeletal muscle in the lower leg. Shear modulus measurements parallel and perpendicular to the fibre direction were made in 10 healthy subjects in the medial gastrocnemius, soleus and tibialis anterior muscles. The results showed significant differences in the medial gastrocnemius (μ‖ =0.86 ± 0.15 kPa; μ⊥ = 0.66 ± 0.19 kPa, P < 0.001), soleus (μ‖ = 0.83 ± 0.22 kPa; μ⊥ = 0.65 ± 0.13 kPa, P < 0.001) and the tibialis anterior (μ‖ = 0.78 ± 0.24 kPa; μ⊥ = 0.66 ± 0.16 kPa, P = 0.03) muscles, where the shear modulus measured in the direction parallel is greater than that measured in the direction perpendicular to the muscle fibres. No significant differences were measured across muscle groups. This study provides the first direct estimates of the anisotropic shear modulus in the triceps surae muscle group, and shows that the technique may be useful for the probing of mechanical anisotropy changes caused by disease, aging and injury. Copyright © 2013 John Wiley & Sons, Ltd. MR elastography was used in combination with diffusion tensor imaging to measure shear modulus anisotropy in the human skeletal muscle in the lower leg. The results showed significant differences in the medial gastrocnemius and the soleus muscles, where the shear modulus measured in the direction parallel to the muscle fibres was greater than that measured perpendicular to the muscle fibres.
AbstractList Physiological and pathological changes to the anisotropic mechanical properties of skeletal muscle are still largely unknown, with only a few studies quantifying changes in vivo. This study used the noninvasive MR elastography (MRE) technique, in combination with diffusion tensor imaging (DTI), to measure shear modulus anisotropy in the human skeletal muscle in the lower leg. Shear modulus measurements parallel and perpendicular to the fibre direction were made in 10 healthy subjects in the medial gastrocnemius, soleus and tibialis anterior muscles. The results showed significant differences in the medial gastrocnemius ( mu sub()=0.86 plus or minus 0.15 kPa; mu sub()=0.66 plus or minus 0.19 kPa, P <0.001), soleus ( mu sub()=0.83 plus or minus 0.22 kPa; mu sub()=0.65 plus or minus 0.13 kPa, P<0.001) and the tibialis anterior ( mu sub()=0.78 plus or minus 0.24 kPa; mu sub()=0.66 plus or minus 0.16 kPa, P=0.03) muscles, where the shear modulus measured in the direction parallel is greater than that measured in the direction perpendicular to the muscle fibres. No significant differences were measured across muscle groups. This study provides the first direct estimates of the anisotropic shear modulus in the triceps surae muscle group, and shows that the technique may be useful for the probing of mechanical anisotropy changes caused by disease, aging and injury. Copyright copyright 2013 John Wiley & Sons, Ltd. MR elastography was used in combination with diffusion tensor imaging to measure shear modulus anisotropy in the human skeletal muscle in the lower leg. The results showed significant differences in the medial gastrocnemius and the soleus muscles, where the shear modulus measured in the direction parallel to the muscle fibres was greater than that measured perpendicular to the muscle fibres.
Physiological and pathological changes to the anisotropic mechanical properties of skeletal muscle are still largely unknown, with only a few studies quantifying changes in vivo. This study used the noninvasive MR elastography (MRE) technique, in combination with diffusion tensor imaging (DTI), to measure shear modulus anisotropy in the human skeletal muscle in the lower leg. Shear modulus measurements parallel and perpendicular to the fibre direction were made in 10 healthy subjects in the medial gastrocnemius, soleus and tibialis anterior muscles. The results showed significant differences in the medial gastrocnemius (μ‖ =0.86 ± 0.15 kPa; μ⊥ = 0.66 ± 0.19 kPa, P < 0.001), soleus (μ‖ = 0.83 ± 0.22 kPa; μ⊥ = 0.65 ± 0.13 kPa, P < 0.001) and the tibialis anterior (μ‖ = 0.78 ± 0.24 kPa; μ⊥ = 0.66 ± 0.16 kPa, P = 0.03) muscles, where the shear modulus measured in the direction parallel is greater than that measured in the direction perpendicular to the muscle fibres. No significant differences were measured across muscle groups. This study provides the first direct estimates of the anisotropic shear modulus in the triceps surae muscle group, and shows that the technique may be useful for the probing of mechanical anisotropy changes caused by disease, aging and injury. Copyright © 2013 John Wiley & Sons, Ltd. MR elastography was used in combination with diffusion tensor imaging to measure shear modulus anisotropy in the human skeletal muscle in the lower leg. The results showed significant differences in the medial gastrocnemius and the soleus muscles, where the shear modulus measured in the direction parallel to the muscle fibres was greater than that measured perpendicular to the muscle fibres.
Physiological and pathological changes to the anisotropic mechanical properties of skeletal muscle are still largely unknown, with only a few studies quantifying changes in vivo . This study used the noninvasive MR elastography (MRE) technique, in combination with diffusion tensor imaging (DTI), to measure shear modulus anisotropy in the human skeletal muscle in the lower leg. Shear modulus measurements parallel and perpendicular to the fibre direction were made in 10 healthy subjects in the medial gastrocnemius, soleus and tibialis anterior muscles. The results showed significant differences in the medial gastrocnemius ( μ ‖  =0.86 ± 0.15 kPa; μ ⊥  = 0.66 ± 0.19 kPa, P < 0.001), soleus ( μ ‖  = 0.83 ± 0.22 kPa; μ ⊥  = 0.65 ± 0.13 kPa, P  < 0.001) and the tibialis anterior ( μ ‖  = 0.78 ± 0.24 kPa; μ ⊥  = 0.66 ± 0.16 kPa, P  = 0.03) muscles, where the shear modulus measured in the direction parallel is greater than that measured in the direction perpendicular to the muscle fibres. No significant differences were measured across muscle groups. This study provides the first direct estimates of the anisotropic shear modulus in the triceps surae muscle group, and shows that the technique may be useful for the probing of mechanical anisotropy changes caused by disease, aging and injury. Copyright © 2013 John Wiley & Sons, Ltd.
Physiological and pathological changes to the anisotropic mechanical properties of skeletal muscle are still largely unknown, with only a few studies quantifying changes in vivo. This study used the noninvasive MR elastography (MRE) technique, in combination with diffusion tensor imaging (DTI), to measure shear modulus anisotropy in the human skeletal muscle in the lower leg. Shear modulus measurements parallel and perpendicular to the fibre direction were made in 10 healthy subjects in the medial gastrocnemius, soleus and tibialis anterior muscles. The results showed significant differences in the medial gastrocnemius (μ‖ = 0.86 ± 0.15 kPa; μ⊥ = 0.66 ± 0.19 kPa, P < 0.001), soleus (μ‖ = 0.83 ± 0.22 kPa; μ⊥ = 0.65 ± 0.13 kPa, P < 0.001) and the tibialis anterior (μ‖ = 0.78 ± 0.24 kPa; μ⊥ = 0.66 ± 0.16 kPa, P = 0.03) muscles, where the shear modulus measured in the direction parallel is greater than that measured in the direction perpendicular to the muscle fibres. No significant differences were measured across muscle groups. This study provides the first direct estimates of the anisotropic shear modulus in the triceps surae muscle group, and shows that the technique may be useful for the probing of mechanical anisotropy changes caused by disease, aging and injury.
Physiological and pathological changes to the anisotropic mechanical properties of skeletal muscle are still largely unknown, with only a few studies quantifying changes in vivo. This study used the noninvasive MR elastography (MRE) technique, in combination with diffusion tensor imaging (DTI), to measure shear modulus anisotropy in the human skeletal muscle in the lower leg. Shear modulus measurements parallel and perpendicular to the fibre direction were made in 10 healthy subjects in the medial gastrocnemius, soleus and tibialis anterior muscles. The results showed significant differences in the medial gastrocnemius (μ‖ = 0.86 ± 0.15 kPa; μ⊥ = 0.66 ± 0.19 kPa, P &lt; 0.001), soleus (μ‖ = 0.83 ± 0.22 kPa; μ⊥ = 0.65 ± 0.13 kPa, P &lt; 0.001) and the tibialis anterior (μ‖ = 0.78 ± 0.24 kPa; μ⊥ = 0.66 ± 0.16 kPa, P = 0.03) muscles, where the shear modulus measured in the direction parallel is greater than that measured in the direction perpendicular to the muscle fibres. No significant differences were measured across muscle groups. This study provides the first direct estimates of the anisotropic shear modulus in the triceps surae muscle group, and shows that the technique may be useful for the probing of mechanical anisotropy changes caused by disease, aging and injury.
Physiological and pathological changes to the anisotropic mechanical properties of skeletal muscle are still largely unknown, with only a few studies quantifying changes in vivo. This study used the noninvasive MR elastography (MRE) technique, in combination with diffusion tensor imaging (DTI), to measure shear modulus anisotropy in the human skeletal muscle in the lower leg. Shear modulus measurements parallel and perpendicular to the fibre direction were made in 10 healthy subjects in the medial gastrocnemius, soleus and tibialis anterior muscles. The results showed significant differences in the medial gastrocnemius (µ=0.86±0.15 kPa; µ=0.66±0.19 kPa, P <0.001), soleus (µ=0.83±0.22 kPa; µ=0.65±0.13 kPa, P<0.001) and the tibialis anterior (µ=0.78±0.24 kPa; µ=0.66±0.16 kPa, P=0.03) muscles, where the shear modulus measured in the direction parallel is greater than that measured in the direction perpendicular to the muscle fibres. No significant differences were measured across muscle groups. This study provides the first direct estimates of the anisotropic shear modulus in the triceps surae muscle group, and shows that the technique may be useful for the probing of mechanical anisotropy changes caused by disease, aging and injury. Copyright © 2013 John Wiley & Sons, Ltd. [PUBLICATION ABSTRACT]
Author Gandevia, S. C.
Green, M. A.
Qin, E.
Sinkus, R.
Bilston, L. E.
Geng, G.
Author_xml – sequence: 1
  givenname: M. A.
  surname: Green
  fullname: Green, M. A.
  email: Correspondence to: M. Green, Neuroscience Research Australia, Barker St., Randwick, NSW 2031, Australia., m.green@neura.edu.au
  organization: Neuroscience Research Australia, Randwick, NSW, Australia
– sequence: 2
  givenname: G.
  surname: Geng
  fullname: Geng, G.
  organization: Neuroscience Research Australia, NSW, Randwick, Australia
– sequence: 3
  givenname: E.
  surname: Qin
  fullname: Qin, E.
  organization: Neuroscience Research Australia, NSW, Randwick, Australia
– sequence: 4
  givenname: R.
  surname: Sinkus
  fullname: Sinkus, R.
  organization: INSERM U773, CRB3, Centre de Recherches Biomédicales Bichat-Beaujon, Paris, France
– sequence: 5
  givenname: S. C.
  surname: Gandevia
  fullname: Gandevia, S. C.
  organization: Neuroscience Research Australia, Randwick, NSW, Australia
– sequence: 6
  givenname: L. E.
  surname: Bilston
  fullname: Bilston, L. E.
  organization: Neuroscience Research Australia, Randwick, NSW, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23640745$$D View this record in MEDLINE/PubMed
BookMark eNqN0V1LHDEUBuBQlLpqob-gDPTGm9Ez-ZrJZbXWFtTeVFa8CZnsGRs7H9ucGXT_fbO4WhAErwKHhzc5eXfZVj_0yNjHAg4LAH7U190hN1q-Y7MCjMkLafgWm4FRPBeygh22S3QHAJUU_D3b4UJLKKWasa8X6GiKob_NXB9oGOOwDD7rJvItZjSGpumRKFumOcYxIGUTrTW2jsbhNrrl79U-225cS_hhc-6xq2-nv06-5-c_z36cfDnPvay0zNGhqH2R7uWy8TV653ljFDRlZTQU4LUGUVegUPNq4RYODGBZpzkKYZQUe-zgMTe95u-ENNoukMe2dT0OE9n12lqIEswbqBQSTKV0op9f0Lthin1aJCmtudSq5P8DfRyIIjZ2GUPn4soWYNcl2FSCXZeQ6KdN4FR3uHiGT7-eQP4I7kOLq1eD7OXxxSZw4wON-PDsXfxjdSlKZeeXZ_ZaHd_MS8ntXPwD7-ugdw
CitedBy_id crossref_primary_10_1007_s10237_018_1072_1
crossref_primary_10_1088_1361_6560_acf98c
crossref_primary_10_1007_s00366_022_01690_x
crossref_primary_10_1016_j_neuroimage_2023_120234
crossref_primary_10_1152_japplphysiol_00673_2018
crossref_primary_10_2463_mrms_mp_2022_0149
crossref_primary_10_1007_s10237_019_01157_x
crossref_primary_10_1115_1_4046127
crossref_primary_10_1088_0967_3334_34_12_1675
crossref_primary_10_1002_nbm_3848
crossref_primary_10_1002_nbm_3925
crossref_primary_10_1002_mrm_28627
crossref_primary_10_3390_healthcare12131254
crossref_primary_10_1016_j_brain_2024_100091
crossref_primary_10_13104_imri_2023_0029
crossref_primary_10_1088_1361_6560_acb482
crossref_primary_10_1016_j_jmbbm_2023_106325
crossref_primary_10_1016_j_mri_2018_11_011
crossref_primary_10_3233_JND_180333
crossref_primary_10_1016_j_media_2021_102212
crossref_primary_10_1002_jmri_29091
crossref_primary_10_1016_j_jmbbm_2022_105638
crossref_primary_10_1016_j_brain_2022_100051
crossref_primary_10_1002_cnm_2771
crossref_primary_10_1177_0284185115571987
crossref_primary_10_1002_jmri_25642
crossref_primary_10_1016_j_jmbbm_2016_03_005
crossref_primary_10_1002_mrm_28095
crossref_primary_10_1115_1_4046199
crossref_primary_10_1002_cnm_2979
crossref_primary_10_1002_nbm_4087
crossref_primary_10_1016_j_jmbbm_2023_105924
crossref_primary_10_1016_j_jmbbm_2021_105046
crossref_primary_10_1016_j_jmbbm_2023_105721
crossref_primary_10_1016_j_zemedi_2024_03_001
crossref_primary_10_1002_mrm_25740
crossref_primary_10_1002_nbm_3832
crossref_primary_10_1055_a_2021_0403
crossref_primary_10_1016_j_jelekin_2017_09_007
crossref_primary_10_1364_BOE_516166
crossref_primary_10_1109_JSTQE_2018_2871596
crossref_primary_10_1007_s10439_014_1186_2
crossref_primary_10_1016_j_irbm_2014_11_002
crossref_primary_10_1016_j_jmbbm_2019_06_007
crossref_primary_10_1016_j_mri_2020_04_009
crossref_primary_10_1121_1_5064372
crossref_primary_10_1007_s11357_019_00147_2
crossref_primary_10_1007_s00723_020_01294_y
crossref_primary_10_1016_j_jbiomech_2023_111640
crossref_primary_10_1016_j_jmbbm_2017_11_045
crossref_primary_10_1016_j_media_2022_102432
crossref_primary_10_1016_j_mri_2019_08_006
crossref_primary_10_1016_j_jbiomech_2016_02_018
crossref_primary_10_1016_j_ultrasmedbio_2018_03_026
crossref_primary_10_1002_jmri_26281
crossref_primary_10_1016_j_jmbbm_2018_09_032
crossref_primary_10_1002_jmri_25105
crossref_primary_10_1152_japplphysiol_00672_2018
crossref_primary_10_1038_s41598_020_63730_0
crossref_primary_10_1109_OJEMB_2021_3075569
crossref_primary_10_2214_AJR_23_29742
crossref_primary_10_1109_TUFFC_2017_2690223
crossref_primary_10_1088_0031_9155_61_13_5000
crossref_primary_10_1002_nbm_3935
crossref_primary_10_1016_j_mri_2021_03_018
crossref_primary_10_1109_TBME_2023_3283185
crossref_primary_10_1016_j_mri_2016_06_003
crossref_primary_10_1016_j_ultrasmedbio_2021_03_030
Cites_doi 10.1186/1471-2474-9-99
10.1002/ca.10112
10.1088/0031-9155/50/6/018
10.1530/EJE-06-0694
10.1123/jab.25.1.93
10.1002/nbm.1254
10.1249/MSS.0b013e318033499b
10.1121/1.3559681
10.1126/science.7569924
10.1007/s00421-005-1394-4
10.1016/j.jsb.2007.01.022
10.1088/0031-9155/45/6/317
10.1002/1522-2586(200102)13:2<269::AID-JMRI1039>3.0.CO;2-1
10.1093/geronj/48.2.M58
10.1152/japplphysiol.00923.2010
10.1007/s10439-005-1433-7
10.1121/1.1579008
10.1113/jphysiol.2005.101600
10.1002/nbm.887
10.1016/j.clinbiomech.2011.04.004
10.2340/16501977-0331
10.1002/nbm.1801
10.1002/jmri.1076
10.1016/S0021-9290(03)00005-8
10.1113/jphysiol.1993.sp019629
10.1002/mrm.20993
10.1002/mus.20981
10.1016/j.jmbbm.2009.03.004
10.1093/ptj/80.4.352
10.1249/00005768-199101000-00003
10.1016/0021-9290(87)90292-2
10.1016/S0006-3495(94)80775-1
10.1016/j.clinbiomech.2008.03.068
10.1016/j.jbiomech.2011.06.023
10.1002/jmri.20651
10.1007/BF00123482
10.1002/jmri.20487
10.1002/nbm.1409
10.1007/s00421-004-1186-2
10.1682/JRRD.2007.02.0040
10.1016/j.jbiomech.2011.01.005
10.1002/mus.20986
10.1016/j.jbiomech.2010.10.025
10.1002/ca.10170
10.1007/s00125-005-1757-8
10.1053/apmr.2002.35472
10.1016/j.ultrasmedbio.2010.02.013
10.1002/jmri.23797
10.1113/jphysiol.1996.sp021768
10.1002/mus.21115
10.1002/jmri.20593
10.1002/mrm.20355
10.1016/j.jbiomech.2008.11.034
10.1002/jmri.20570
ContentType Journal Article
Copyright Copyright © 2013 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2013 John Wiley & Sons, Ltd.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
8FD
FR3
P64
7X8
DOI 10.1002/nbm.2964
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Engineering Research Database

CrossRef
MEDLINE
MEDLINE - Academic
Engineering Research Database
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Physics
EISSN 1099-1492
EndPage 1394
ExternalDocumentID 3150723331
10_1002_nbm_2964
23640745
NBM2964
ark_67375_WNG_X5BZW742_W
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52V
52W
52X
53G
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
DUUFO
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P2Z
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
SV3
UB1
V2E
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXSBR
XG1
XPP
XV2
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
8FD
FR3
P64
7X8
ID FETCH-LOGICAL-c4864-eae3bc174524fcbecac2f950f7896010c6603b805e628dada090e7b0c6e339543
IEDL.DBID 33P
ISSN 0952-3480
IngestDate Sat Aug 17 02:21:39 EDT 2024
Fri Oct 25 03:41:07 EDT 2024
Thu Oct 10 22:59:12 EDT 2024
Fri Aug 23 02:35:08 EDT 2024
Sat Sep 28 08:00:41 EDT 2024
Sat Aug 24 00:54:29 EDT 2024
Wed Oct 30 09:56:45 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords diffusion tensor imaging
MR elastography
stiffness
shear modulus
anisotropy
muscle
Language English
License Copyright © 2013 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4864-eae3bc174524fcbecac2f950f7896010c6603b805e628dada090e7b0c6e339543
Notes ark:/67375/WNG-X5BZW742-W
istex:915088AFFED294B9CAC369ED68B332EBCD0BEC6C
ArticleID:NBM2964
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 23640745
PQID 1466246572
PQPubID 2029982
PageCount 8
ParticipantIDs proquest_miscellaneous_1492633709
proquest_miscellaneous_1443409856
proquest_journals_1466246572
crossref_primary_10_1002_nbm_2964
pubmed_primary_23640745
wiley_primary_10_1002_nbm_2964_NBM2964
istex_primary_ark_67375_WNG_X5BZW742_W
PublicationCentury 2000
PublicationDate November 2013
PublicationDateYYYYMMDD 2013-11-01
PublicationDate_xml – month: 11
  year: 2013
  text: November 2013
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle NMR in biomedicine
PublicationTitleAlternate NMR Biomed
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Tian M, Hoang PD, Gandevia SC, Herbert RD, Bilston LE. Viscous elements have little impact on measured passive length-tension properties of human gastrocnemius muscle-tendon units in vivo. J. Biomech. 2011; 44(7): 1334-1339.
Purslow PP, Trotter JA. The morphology and mechanical properties of endomysium in series-fibred muscles: variations with muscle length. J. Muscle Res. Cell Motil. 1994; 15(3): 299-308.
Galban CJ, Maderwald S, Uffmann K, de Greiff A, Ladd ME. Diffusive sensitivity to muscle architecture: a magnetic resonance diffusion tensor imaging study of the human calf. Eur. J. Appl. Physiol. 2004; 93(3): 253-262.
Jones DA, Round JM. Skeletal Muscle in Health and Disease: A Textbook of Muscle Physiology. Manchester University Press: Manchester; 1990.
Horstman A, Gerrits K, Beltman M, Janssen T, Konijnenbelt M, de Haan A. Muscle function of knee extensors and flexors after stroke is selectively impaired at shorter muscle lengths. J. Rehabil. Med. 2009; 41(5): 317-321.
Jensen RC, Warren B, Laursen C, Morrissey MC. Static pre-load effect on knee extensor isokinetic concentric and eccentric performance. Med. Sci. Sports Exerc. 1991; 23(1): 10-14.
Sinha U, Sinha S, Hodgson JA, Edgerton RV. Human soleus muscle architecture at different ankle joint angles from magnetic resonance diffusion tensor imaging. J. Appl. Physiol. 2010; 110(3): 807-819.
Papazoglou S, Braun J, Hamhaber U, Sack I. Two-dimensional waveform analysis in MR elastography of skeletal muscles. Phys. Med. Biol. 2005; 50(6): 1313-1325.
Schwenzer NF, Steidle G, Martirosian P, Schraml C, Springer F, Claussen CD, Schick F. Diffusion tensor imaging of the human calf muscle: distinct changes in fractional anisotropy and mean diffusion due to passive muscle shortening and stretching. NMR Biomed.. 2009; 22(10): 1047-1053.
Agur AM, Ng-Thow-Hing V, Ball KA, Fiume E, McKee NH. Documentation and three-dimensional modelling of human soleus muscle architecture. Clin. Anat. 2003; 16(4): 285-293.
Prasartwuth O, Allen TJ, Butler JE, Gandevia SC, Taylor JL. Length-dependent changes in voluntary activation, maximum voluntary torque and twitch responses after eccentric damage in humans. J. Physiol. 2006; 571(Pt 1): 243-252.
Maderwald S, Uffmann K, Galban CJ, de Greiff A, Ladd ME. Accelerating MR elastography: a multiecho phase-contrast gradient-echo sequence. J. Magn. Reson. Imaging 2006; 23(5): 774-780.
Giacomozzi C, D'Ambrogi E, Cesinaro S, Macellari V, Uccioli L. Muscle performance and ankle joint mobility in long-term patients with diabetes. BMC Musculoskelet. Disord. 2008; 9: 99.
Hajrasouliha AR, Tavakoli S, Esteki A, Nafisi S, Noorolahi-Moghaddam H. Abnormal viscoelastic behaviour of passive ankle joint movement in diabetic patients: an early or a late complication? Diabetologia, 2005; 48(6): 1225-1228.
Green MA, Sinkus R, Gandevia SC, Herbert RD, Bilston LE. Measuring changes in muscle stiffness after eccentric exercise using elastography. NMR Biomed.. 2012; 25(6): 852-858.
Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, Chabriat H. Diffusion tensor imaging: concepts and applications. J. Magn. Reson. Imaging, 2001; 13(4): 534-546.
Sinha S, Sinha U, Edgerton VR. In vivo diffusion tensor imaging of the human calf muscle. J. Magn. Reson. Imaging 2006; 24(1): 182-190.
Green MA, Sinkus R, Gandevia SC, Herbert RD, Bilston LE. Measuring changes in muscle stiffness after eccentric exercise using elastography. NMR Biomed. 2012; 25(6): 852-858.
Bensamoun SF, Ringleb SI, Littrell L, Chen Q, Brennan M, Ehman RL, An KN. Determination of thigh muscle stiffness using magnetic resonance elastography. J. Magn. Reson. Imaging 2006; 23(2): 242-247.
Jenkyn TR, Ehman RL, An KN. Noninvasive muscle tension measurement using the novel technique of magnetic resonance elastography (MRE). J. Biomech. 2003; 36(12): 1917-1921.
Gennisson JL, Catheline S, Chaffai S, Fink M. Transient elastography in anisotropic medium: application to the measurement of slow and fast shear wave speeds in muscles. J. Acoust. Soc. Am. 2003; 114(1): 536-541.
Muthupillai R, Lomas DJ, Rossman PJ, Greenleaf JF, Manduca A, Ehman RL. Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 1995; 269(5232): 1854-1857.
Blanpied P, Smidt GL. The difference in stiffness of the active plantarflexors between young and elderly human females. J. Gerontol. 1993; 48(2): M58-M63.
Qin EC, Sinkus R, Geng G, Cheng S, Green M, Rae CD, Bilston LE. Combining MR elastography and diffusion tensor imaging for the assessment of anisotropic mechanical properties: a phantom study. J Magn Reson. Imaging 2013; 37(1): 217-226.
Hoang PD, Herbert RD, Gandevia SC. Effects of eccentric exercise on passive mechanical properties of human gastrocnemius in vivo. Med. Sci. Sports Exerc. 2007; 39(5): 849-857.
Royer D, Gennisson JL, Deffieux T, Tanter M. On the elasticity of transverse isotropic soft tissues (L). J. Acoust. Soc. Am. 2011; 129(5): 2757-2760.
Garmirian LP, Chin AB, Rutkove SB. Discriminating neurogenic from myopathic disease via measurement of muscle anisotropy. Muscle Nerve, 2009; 39(1): 16-24.
Hafer-Macko CE, Ryan AS, Ivey FM, Macko RF. Skeletal muscle changes after hemiparetic stroke and potential beneficial effects of exercise intervention strategies. J. Rehabil. Res. Dev. 2008; 45(2): 261-272.
Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys. J. 1994; 66(1): 259-267.
Levinson SF. Ultrasound propagation in anisotropic soft tissues: the application of linear elastic theory. J. Biomech. 1987; 20(3): 251-260.
Papazoglou S, Rump J, Braun J, Sack I. Shear wave group velocity inversion in MR elastography of human skeletal muscle. Magn. Reson. Med. 2006; 56(3): 489-497.
Dresner MA, Rose GH, Rossman PJ, Muthupillai R, Manduca A, Ehman RL. Magnetic resonance elastography of skeletal muscle. J. Magn. Reson. Imaging 2001; 13(2): 269-276.
Blemker SS, Delp SL. Three-dimensional representation of complex muscle architectures and geometries. Ann. Biomed. Eng. 2005; 33(5): 661-673.
Magnusson SP, Simonsen EB, Aagaard P, Sorensen H, Kjaer M. A mechanism for altered flexibility in human skeletal muscle. J. Physiol. 1996; 497(Pt 1): 291-298.
Salsich GB, Mueller MJ, Sahrmann SA. Passive ankle stiffness in subjects with diabetes and peripheral neuropathy versus an age-matched comparison group. Phys. Ther. 2000; 80(4): 352-362.
Gennisson JL, Deffieux T, Mace E, Montaldo G, Fink M, Tanter M. Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging. Ultrasound Med. Biol. 2010; 36(5): 789-801.
Passerieux E, Rossignol R, Letellier T, Delage JP. Physical continuity of the perimysium from myofibers to tendons: involvement in lateral force transmission in skeletal muscle. J. Struct. Biol. 2007; 159(1): 19-28.
Howell JN, Chleboun G, Conatser R. Muscle stiffness, strength loss, swelling and soreness following exercise-induced injury in humans. J. Physiol. 1993; 464: 183-196.
Clarke EC, Cheng S, Green M, Sinkus R, Bilston LE. Using static preload with magnetic resonance elastography to estimate large strain viscoelastic properties of bovine liver. J. Biomech. 2011; 44(13): 2461-2465.
Sinkus R, Lorenzen J, Schrader D, Lorenzen M, Dargatz M, Holz D. High-resolution tensor MR elastography for breast tumour detection. Phys. Med. Biol. 2000; 45(6): 1649-1664.
Loh EY, Agur AM, McKee NH. Intramuscular innervation of the human soleus muscle: a 3D model. Clin. Anat. 2003; 16(5): 378-382.
Green MA, Bilston LE, Sinkus R. In vivo brain viscoelastic properties measured by magnetic resonance elastography. NMR Biomed. 2008; 21(7): 755-764.
Brauck K, Galban CJ, Maderwald S, Herrmann BL, Ladd ME. Changes in calf muscle elasticity in hypogonadal males before and after testosterone substitution as monitored by magnetic resonance elastography. Eur. J. Endocrinol. 2007; 156(6): 673-678.
Chin AB, Garmirian LP, Nie R, Rutkove SB. Optimizing measurement of the electrical anisotropy of muscle. Muscle Nerve 2008; 37(5): 560-565.
Zaraiskaya T, Kumbhare D, Noseworthy MD. Diffusion tensor imaging in evaluation of human skeletal muscle injury. J. Magn. Reson. Imaging 2006; 24(2): 402-408.
Basford JR, Jenkyn TR, An KN, Ehman RL, Heers G, Kaufman KR. Evaluation of healthy and diseased muscle with magnetic resonance elastography. Arch. Phys. Med. Rehabil. 2002; 83(11): 1530-1536.
Domire ZJ, McCullough MB, Chen Q, An KN. Wave attenuation as a measure of muscle quality as measured by magnetic resonance elastography: initial results. J. Biomech. 2009; 42(4): 537-540.
Wen H, Dou Z, Finni T, Havu M, Kang Z, Cheng S, Sipila S, Sinha S, Usenius JP. Thigh muscle function in stroke patients revealed by velocity-encoded cine phase-contrast magnetic resonance imaging. Muscle Nerve 2008; 37(6): 736-744.
Debernard L, Robert L, Charleux F, Bensamoun SF. Analysis of thigh muscle stiffness from childhood to adulthood using magnetic resonance elastography (MRE) technique. Clin. Biomech. (Bristol, Avon) 2011; 26(8): 836-840.
Sesto ME, Chourasia AO, Block WF, Radwin RG. Mechanical and magnetic resonance imaging changes following eccentric or concentric exertions. Clin. Biomech. (Bristol, Avon) 2008; 23(7): 961-968.
Domire ZJ, McCullough MB, Chen Q, An KN. Feasibility of using magnetic resonance elastography to study the effect of aging on shear modulus of skeletal muscle. J. Appl. Biomech. 2009; 25(1): 93-97.
Gajdosik RL, Vander Linden DW, McNair PJ, Riggin TJ, Albertson JS, Mattick DJ, Wegley JC. Viscoelastic properties of short calf muscle-tendon units of older women: effects of slow and fast passive dorsiflexion stretches in vivo. Eur. J. Appl. Physiol. 2005; 95(2-3): 131-139.
Morrow DA, Haut Donahue TL, Odegard GM, Kaufman KR. Transversely isotropic tensile material properties of skeletal muscle tissue. J. Mech. Behav. Biomed. Mater. 2010; 3(1): 124-129.
Debernard L, Robert L, Charleux F, Bensamoun SF. Characterization of muscle architecture in children and adults using magnetic resonance elastography and ult
2007; 39
2009; 41
2009; 42
2000; 45
2008; 9
2008; 37
1994; 66
2006; 571
2003; 16
2003; 114
2011; 129
2006; 23
1990
2006; 24
2002; 83
2010; 110
2008; 23
2008; 21
2011; 26
2012; 25
2010; 3
2001; 13
1996; 497
2005; 33
1993; 48
2009; 22
2009; 25
2010; 36
2006; 56
2012
2011
2009
2003; 36
2005; 48
1993; 464
2010; 44
2007; 159
2007; 156
2013; 37
1987; 20
2004; 93
1991; 23
2004; 17
2005; 95
2008; 45
2005; 53
2011; 44
1995; 269
2000; 80
1994; 15
2005; 50
2009; 39
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
Qin EC (e_1_2_8_42_1) 2012
e_1_2_8_49_1
Jones DA (e_1_2_8_57_1) 1990
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
Green M (e_1_2_8_40_1) 2009
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – year: 2011
– volume: 497
  start-page: 291
  issue: Pt 1
  year: 1996
  end-page: 298
  article-title: A mechanism for altered flexibility in human skeletal muscle
  publication-title: J. Physiol.
– volume: 464
  start-page: 183
  year: 1993
  end-page: 196
  article-title: Muscle stiffness, strength loss, swelling and soreness following exercise‐induced injury in humans
  publication-title: J. Physiol.
– volume: 48
  start-page: 1225
  issue: 6
  year: 2005
  end-page: 1228
  article-title: Abnormal viscoelastic behaviour of passive ankle joint movement in diabetic patients: an early or a late complication?
  publication-title: Diabetologia
– volume: 25
  start-page: 852
  issue: 6
  year: 2012
  end-page: 858
  article-title: Measuring changes in muscle stiffness after eccentric exercise using elastography
  publication-title: NMR Biomed
– volume: 36
  start-page: 1917
  issue: 12
  year: 2003
  end-page: 1921
  article-title: Noninvasive muscle tension measurement using the novel technique of magnetic resonance elastography (MRE)
  publication-title: J. Biomech.
– volume: 37
  issue: 1
  year: 2013
  end-page: 226
  article-title: Combining MR elastography and diffusion tensor imaging for the assessment of anisotropic mechanical properties: a phantom study
  publication-title: J Magn Reson. Imaging
– volume: 41
  start-page: 317
  issue: 5
  year: 2009
  end-page: 321
  article-title: Muscle function of knee extensors and flexors after stroke is selectively impaired at shorter muscle lengths
  publication-title: J. Rehabil. Med.
– volume: 24
  start-page: 402
  issue: 2
  year: 2006
  end-page: 408
  article-title: Diffusion tensor imaging in evaluation of human skeletal muscle injury
  publication-title: J. Magn. Reson. Imaging
– volume: 15
  start-page: 299
  issue: 3
  year: 1994
  end-page: 308
  article-title: The morphology and mechanical properties of endomysium in series‐fibred muscles: variations with muscle length
  publication-title: J. Muscle Res. Cell Motil.
– volume: 95
  start-page: 131
  issue: 2–3
  year: 2005
  end-page: 139
  article-title: Viscoelastic properties of short calf muscle‐tendon units of older women: effects of slow and fast passive dorsiflexion stretches in vivo
  publication-title: Eur. J. Appl. Physiol.
– volume: 24
  start-page: 182
  issue: 1
  year: 2006
  end-page: 190
  article-title: In vivo diffusion tensor imaging of the human calf muscle
  publication-title: J. Magn. Reson. Imaging
– year: 1990
– volume: 26
  start-page: 836
  issue: 8
  year: 2011
  end-page: 840
  article-title: Analysis of thigh muscle stiffness from childhood to adulthood using magnetic resonance elastography (MRE) technique
  publication-title: Clin. Biomech. (Bristol, Avon)
– volume: 571
  start-page: 243
  issue: Pt 1
  year: 2006
  end-page: 252
  article-title: Length‐dependent changes in voluntary activation, maximum voluntary torque and twitch responses after eccentric damage in humans
  publication-title: J. Physiol.
– volume: 13
  start-page: 269
  issue: 2
  year: 2001
  end-page: 276
  article-title: Magnetic resonance elastography of skeletal muscle
  publication-title: J. Magn. Reson. Imaging
– start-page: 2505
  year: 2009
– volume: 80
  start-page: 352
  issue: 4
  year: 2000
  end-page: 362
  article-title: Passive ankle stiffness in subjects with diabetes and peripheral neuropathy versus an age‐matched comparison group
  publication-title: Phys. Ther.
– volume: 3
  start-page: 124
  issue: 1
  year: 2010
  end-page: 129
  article-title: Transversely isotropic tensile material properties of skeletal muscle tissue
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 23
  start-page: 961
  issue: 7
  year: 2008
  end-page: 968
  article-title: Mechanical and magnetic resonance imaging changes following eccentric or concentric exertions
  publication-title: Clin. Biomech. (Bristol, Avon)
– volume: 39
  start-page: 849
  issue: 5
  year: 2007
  end-page: 857
  article-title: Effects of eccentric exercise on passive mechanical properties of human gastrocnemius in vivo
  publication-title: Med. Sci. Sports Exerc.
– volume: 37
  start-page: 736
  issue: 6
  year: 2008
  end-page: 744
  article-title: Thigh muscle function in stroke patients revealed by velocity‐encoded cine phase‐contrast magnetic resonance imaging
  publication-title: Muscle Nerve
– volume: 9
  start-page: 99
  year: 2008
  article-title: Muscle performance and ankle joint mobility in long‐term patients with diabetes
  publication-title: BMC Musculoskelet. Disord.
– volume: 33
  start-page: 661
  issue: 5
  year: 2005
  end-page: 673
  article-title: Three‐dimensional representation of complex muscle architectures and geometries
  publication-title: Ann. Biomed. Eng.
– volume: 156
  start-page: 673
  issue: 6
  year: 2007
  end-page: 678
  article-title: Changes in calf muscle elasticity in hypogonadal males before and after testosterone substitution as monitored by magnetic resonance elastography
  publication-title: Eur. J. Endocrinol.
– volume: 44
  start-page: 397
  issue: 3
  year: 2010
  end-page: 401
  article-title: Characterization of muscle architecture in children and adults using magnetic resonance elastography and ultrasound techniques
  publication-title: J. Biomech.
– start-page: 3269
  year: 2012
– volume: 25
  start-page: 93
  issue: 1
  year: 2009
  end-page: 97
  article-title: Feasibility of using magnetic resonance elastography to study the effect of aging on shear modulus of skeletal muscle
  publication-title: J. Appl. Biomech.
– volume: 23
  start-page: 242
  issue: 2
  year: 2006
  end-page: 247
  article-title: Determination of thigh muscle stiffness using magnetic resonance elastography
  publication-title: J. Magn. Reson. Imaging
– volume: 23
  start-page: 10
  issue: 1
  year: 1991
  end-page: 14
  article-title: Static pre‐load effect on knee extensor isokinetic concentric and eccentric performance
  publication-title: Med. Sci. Sports Exerc.
– volume: 23
  start-page: 774
  issue: 5
  year: 2006
  end-page: 780
  article-title: Accelerating MR elastography: a multiecho phase‐contrast gradient‐echo sequence
  publication-title: J. Magn. Reson. Imaging
– volume: 45
  start-page: 1649
  issue: 6
  year: 2000
  end-page: 1664
  article-title: High‐resolution tensor MR elastography for breast tumour detection
  publication-title: Phys. Med. Biol.
– volume: 56
  start-page: 489
  issue: 3
  year: 2006
  end-page: 497
  article-title: Shear wave group velocity inversion in MR elastography of human skeletal muscle
  publication-title: Magn. Reson. Med.
– volume: 39
  start-page: 16
  issue: 1
  year: 2009
  end-page: 24
  article-title: Discriminating neurogenic from myopathic disease via measurement of muscle anisotropy
  publication-title: Muscle Nerve
– volume: 269
  start-page: 1854
  issue: 5232
  year: 1995
  end-page: 1857
  article-title: Magnetic resonance elastography by direct visualization of propagating acoustic strain waves
  publication-title: Science
– volume: 93
  start-page: 253
  issue: 3
  year: 2004
  end-page: 262
  article-title: Diffusive sensitivity to muscle architecture: a magnetic resonance diffusion tensor imaging study of the human calf
  publication-title: Eur. J. Appl. Physiol.
– volume: 45
  start-page: 261
  issue: 2
  year: 2008
  end-page: 272
  article-title: Skeletal muscle changes after hemiparetic stroke and potential beneficial effects of exercise intervention strategies
  publication-title: J. Rehabil. Res. Dev.
– volume: 25
  start-page: 852
  issue: 6
  year: 2012
  end-page: 858
  article-title: Measuring changes in muscle stiffness after eccentric exercise using elastography
  publication-title: NMR Biomed.
– volume: 42
  start-page: 537
  issue: 4
  year: 2009
  end-page: 540
  article-title: Wave attenuation as a measure of muscle quality as measured by magnetic resonance elastography: initial results
  publication-title: J. Biomech.
– volume: 110
  start-page: 807
  issue: 3
  year: 2010
  end-page: 819
  article-title: Human soleus muscle architecture at different ankle joint angles from magnetic resonance diffusion tensor imaging
  publication-title: J. Appl. Physiol.
– volume: 50
  start-page: 1313
  issue: 6
  year: 2005
  end-page: 1325
  article-title: Two‐dimensional waveform analysis in MR elastography of skeletal muscles
  publication-title: Phys. Med. Biol.
– volume: 22
  start-page: 1047
  issue: 10
  year: 2009
  end-page: 1053
  article-title: Diffusion tensor imaging of the human calf muscle: distinct changes in fractional anisotropy and mean diffusion due to passive muscle shortening and stretching
  publication-title: NMR Biomed.
– volume: 36
  start-page: 789
  issue: 5
  year: 2010
  end-page: 801
  article-title: Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging
  publication-title: Ultrasound Med. Biol.
– volume: 83
  start-page: 1530
  issue: 11
  year: 2002
  end-page: 1536
  article-title: Evaluation of healthy and diseased muscle with magnetic resonance elastography
  publication-title: Arch. Phys. Med. Rehabil.
– volume: 159
  start-page: 19
  issue: 1
  year: 2007
  end-page: 28
  article-title: Physical continuity of the perimysium from myofibers to tendons: involvement in lateral force transmission in skeletal muscle
  publication-title: J. Struct. Biol.
– volume: 53
  start-page: 372
  issue: 2
  year: 2005
  end-page: 387
  article-title: Imaging anisotropic and viscous properties of breast tissue by magnetic resonance‐elastography
  publication-title: Magn. Reson. Med.
– volume: 16
  start-page: 285
  issue: 4
  year: 2003
  end-page: 293
  article-title: Documentation and three‐dimensional modelling of human soleus muscle architecture
  publication-title: Clin. Anat.
– volume: 21
  start-page: 755
  issue: 7
  year: 2008
  end-page: 764
  article-title: In vivo brain viscoelastic properties measured by magnetic resonance elastography
  publication-title: NMR Biomed.
– volume: 37
  start-page: 560
  issue: 5
  year: 2008
  end-page: 565
  article-title: Optimizing measurement of the electrical anisotropy of muscle
  publication-title: Muscle Nerve
– volume: 17
  start-page: 181
  issue: 4
  year: 2004
  end-page: 190
  article-title: In vivo elasticity measurements of extremity skeletal muscle with MR elastography
  publication-title: NMR Biomed.
– volume: 20
  start-page: 251
  issue: 3
  year: 1987
  end-page: 260
  article-title: Ultrasound propagation in anisotropic soft tissues: the application of linear elastic theory
  publication-title: J. Biomech.
– volume: 48
  start-page: M58
  issue: 2
  year: 1993
  end-page: M63
  article-title: The difference in stiffness of the active plantarflexors between young and elderly human females
  publication-title: J. Gerontol.
– volume: 114
  start-page: 536
  issue: 1
  year: 2003
  end-page: 541
  article-title: Transient elastography in anisotropic medium: application to the measurement of slow and fast shear wave speeds in muscles
  publication-title: J. Acoust. Soc. Am.
– volume: 66
  start-page: 259
  issue: 1
  year: 1994
  end-page: 267
  article-title: MR diffusion tensor spectroscopy and imaging
  publication-title: Biophys. J.
– volume: 13
  start-page: 534
  issue: 4
  year: 2001
  end-page: 546
  article-title: Diffusion tensor imaging: concepts and applications
  publication-title: J. Magn. Reson. Imaging
– volume: 44
  start-page: 2461
  issue: 13
  year: 2011
  end-page: 2465
  article-title: Using static preload with magnetic resonance elastography to estimate large strain viscoelastic properties of bovine liver
  publication-title: J. Biomech.
– volume: 44
  start-page: 1334
  issue: 7
  year: 2011
  end-page: 1339
  article-title: Viscous elements have little impact on measured passive length‐tension properties of human gastrocnemius muscle‐tendon units in vivo
  publication-title: J. Biomech.
– volume: 129
  start-page: 2757
  issue: 5
  year: 2011
  end-page: 2760
  article-title: On the elasticity of transverse isotropic soft tissues (L)
  publication-title: J. Acoust. Soc. Am.
– volume: 16
  start-page: 378
  issue: 5
  year: 2003
  end-page: 382
  article-title: Intramuscular innervation of the human soleus muscle: a 3D model
  publication-title: Clin. Anat.
– ident: e_1_2_8_8_1
  doi: 10.1186/1471-2474-9-99
– ident: e_1_2_8_59_1
  doi: 10.1002/ca.10112
– ident: e_1_2_8_31_1
  doi: 10.1088/0031-9155/50/6/018
– ident: e_1_2_8_36_1
  doi: 10.1530/EJE-06-0694
– ident: e_1_2_8_35_1
  doi: 10.1123/jab.25.1.93
– ident: e_1_2_8_51_1
  doi: 10.1002/nbm.1254
– ident: e_1_2_8_16_1
  doi: 10.1249/MSS.0b013e318033499b
– ident: e_1_2_8_48_1
  doi: 10.1121/1.3559681
– ident: e_1_2_8_26_1
  doi: 10.1126/science.7569924
– ident: e_1_2_8_3_1
  doi: 10.1007/s00421-005-1394-4
– start-page: 3269
  volume-title: Proceedings 20th Scientific Meeting
  year: 2012
  ident: e_1_2_8_42_1
  contributor:
    fullname: Qin EC
– ident: e_1_2_8_56_1
  doi: 10.1016/j.jsb.2007.01.022
– ident: e_1_2_8_49_1
  doi: 10.1088/0031-9155/45/6/317
– ident: e_1_2_8_27_1
  doi: 10.1002/1522-2586(200102)13:2<269::AID-JMRI1039>3.0.CO;2-1
– ident: e_1_2_8_2_1
  doi: 10.1093/geronj/48.2.M58
– ident: e_1_2_8_58_1
  doi: 10.1152/japplphysiol.00923.2010
– ident: e_1_2_8_43_1
  doi: 10.1007/s10439-005-1433-7
– ident: e_1_2_8_38_1
  doi: 10.1121/1.1579008
– volume-title: Skeletal Muscle in Health and Disease: A Textbook of Muscle Physiology
  year: 1990
  ident: e_1_2_8_57_1
  contributor:
    fullname: Jones DA
– ident: e_1_2_8_14_1
  doi: 10.1113/jphysiol.2005.101600
– ident: e_1_2_8_29_1
  doi: 10.1002/nbm.887
– ident: e_1_2_8_4_1
  doi: 10.1016/j.clinbiomech.2011.04.004
– ident: e_1_2_8_6_1
  doi: 10.2340/16501977-0331
– ident: e_1_2_8_11_1
  doi: 10.1002/nbm.1801
– ident: e_1_2_8_22_1
  doi: 10.1002/jmri.1076
– ident: e_1_2_8_34_1
  doi: 10.1016/S0021-9290(03)00005-8
– ident: e_1_2_8_17_1
  doi: 10.1113/jphysiol.1993.sp019629
– ident: e_1_2_8_28_1
  doi: 10.1002/mrm.20993
– ident: e_1_2_8_13_1
  doi: 10.1002/mus.20981
– ident: e_1_2_8_45_1
  doi: 10.1016/j.jmbbm.2009.03.004
– ident: e_1_2_8_10_1
  doi: 10.1093/ptj/80.4.352
– ident: e_1_2_8_15_1
  doi: 10.1249/00005768-199101000-00003
– start-page: 2505
  volume-title: Proceedings 17th Scientific Meeting
  year: 2009
  ident: e_1_2_8_40_1
  contributor:
    fullname: Green M
– ident: e_1_2_8_47_1
  doi: 10.1016/0021-9290(87)90292-2
– ident: e_1_2_8_21_1
  doi: 10.1016/S0006-3495(94)80775-1
– ident: e_1_2_8_20_1
  doi: 10.1016/j.clinbiomech.2008.03.068
– ident: e_1_2_8_52_1
  doi: 10.1016/j.jbiomech.2011.06.023
– ident: e_1_2_8_53_1
  doi: 10.1002/jmri.20651
– ident: e_1_2_8_55_1
  doi: 10.1007/BF00123482
– ident: e_1_2_8_32_1
  doi: 10.1002/jmri.20487
– ident: e_1_2_8_24_1
  doi: 10.1002/nbm.1409
– ident: e_1_2_8_23_1
  doi: 10.1007/s00421-004-1186-2
– ident: e_1_2_8_5_1
  doi: 10.1682/JRRD.2007.02.0040
– ident: e_1_2_8_54_1
  doi: 10.1016/j.jbiomech.2011.01.005
– ident: e_1_2_8_7_1
  doi: 10.1002/mus.20986
– ident: e_1_2_8_19_1
  doi: 10.1016/j.jbiomech.2010.10.025
– ident: e_1_2_8_60_1
  doi: 10.1002/ca.10170
– ident: e_1_2_8_46_1
– ident: e_1_2_8_50_1
  doi: 10.1002/nbm.1801
– ident: e_1_2_8_9_1
  doi: 10.1007/s00125-005-1757-8
– ident: e_1_2_8_37_1
  doi: 10.1053/apmr.2002.35472
– ident: e_1_2_8_39_1
  doi: 10.1016/j.ultrasmedbio.2010.02.013
– ident: e_1_2_8_41_1
  doi: 10.1002/jmri.23797
– ident: e_1_2_8_18_1
  doi: 10.1113/jphysiol.1996.sp021768
– ident: e_1_2_8_12_1
  doi: 10.1002/mus.21115
– ident: e_1_2_8_25_1
  doi: 10.1002/jmri.20593
– ident: e_1_2_8_44_1
  doi: 10.1002/mrm.20355
– ident: e_1_2_8_33_1
  doi: 10.1016/j.jbiomech.2008.11.034
– ident: e_1_2_8_30_1
  doi: 10.1002/jmri.20570
SSID ssj0008432
Score 2.4019544
Snippet Physiological and pathological changes to the anisotropic mechanical properties of skeletal muscle are still largely unknown, with only a few studies...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 1387
SubjectTerms Adult
Aging
Anisotropy
diffusion tensor imaging
Elastic Modulus - physiology
Elasticity Imaging Techniques - methods
Female
Humans
Magnetic Resonance Imaging
Male
MR elastography
muscle
Muscle, Skeletal - physiology
shear modulus
stiffness
Young Adult
Title Measuring anisotropic muscle stiffness properties using elastography
URI https://api.istex.fr/ark:/67375/WNG-X5BZW742-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnbm.2964
https://www.ncbi.nlm.nih.gov/pubmed/23640745
https://www.proquest.com/docview/1466246572
https://search.proquest.com/docview/1443409856
https://search.proquest.com/docview/1492633709
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zj9QwDLZgEccLx3ANLKhIiLeymVxNeWMv9mVGSIBmxUuUpglaoe2MpjMSPx87PcRKgJB4qtS6bWInju3EnwFee0r9iELndRQ8l_VslhvveB58HZyJUlSeYrpnn4rFuTk-IZicd0MuTIcPMQbcaGYkfU0T3FXtwS-godXlW9ozRPWLTkLK3hAfRyVsZKpNhgYEz4U0bMCdZfxgePHKSnSDmPrjd2bmVas1LTun9_6nwffhbm9sZu-70fEAroVmArePhhpvE7g177fWJ3AznQX17UM4nqe4Ia5pmWsu2tV2s1pf-Oxy1-JHMlQJMZJ-zNYUx98QIGtGp-e_ZQEt8W0Pgf0IvpyefD46y_tiC7mXRss8uIByQf9EcRk9StZ5HkvFYmFKctq81kxUhqmguald7VjJQlHh_SBEqaR4DHvNqglPISuDjujVzQjsXarauxmLrmY1l0jqZTGFVwPj7brD1LAdejK3yCRLTJrCmySRkcBtvtMZtELZ5eKDPVeHX5fo1dvlFPYHkdl--rXkz2gutSo4_mt8jLyl3RDXhNWOaKRA59Yo_TeakmshClZO4Uk3HMYGEfI-2l8KW5qk_seu2MXhnK7P_pXwOdzhVHQjZTzuw952swsv4Hpb716mQf4Ty_f9JA
link.rule.ids 315,782,786,1408,27935,27936,46066,46490
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3raxQxEB9si9YvPs7XadUVxG9rc3ltFj_Zlyf2DsHKlX4JuTykSPeO2zvwzzeTfWBBRfDTwu7s7mQmmcxMkt8AvLZ49CMwmbvAaM7daJQra2jurfNGBc7mFnO64y_F9FwdHSNMzrvuLEyDD9En3HBkJHuNAxwT0vu_oIbOr97iouEW7HDJS6zbwNjn3gwrnqqTRReC5owr0iHPErrfvXltLtpBsf74naN53W9NE8_J3f9i-R7caf3N7H3TQe7DDV8NYPewK_M2gFuTdnV9ADfTdlBbP4CjSUodxmktM9VlvVivFstLm11t6viRLFqFENBEZktM5a8QkzXDDfTfMh-d8XWLgv0Qvp4cnx2O87beQm65kjz3xkfVxBBFUB5sVK6xNJSChEKVGLdZKQmbKyK8pMoZZ0hJfDGP9z1jpeDsEWxXi8o_gaz0MsTAboR471w4a0YkGEcc5ZHU8mIIrzrJ62UDq6EbAGWqo5A0CmkIb5JKegKz-o7b0AqhZ9MP-lwcXMxiYK9nQ9jrdKbbEVhjSCMpl6Kg8V_94yhbXBAxlV9skIazGN8qIf9GU1LJWEHKITxu-kPPEILvRxdMRE6T2v_YFD09mOD16b8SvoTd8dnkVJ9-nH56Brcp1uBIByD3YHu92vjnsFW7zYvU438CssQBVA
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3rb9MwED-xTQy-8CivwoAgIb6FuX7F4RtbV4ag1SRAnfhiuX6gCS2tmlbiz8fnPMQkQEh8ipRcEvvOPt-dfb8DeGkx9SMwmbvAaM7daJQra2jurfNGBc4WFmO6p5-K2bkanyBMzpsuF6bBh-gDbjgzkr7GCb5y4fAX0NDF5WvcM9yBPY5WOKZvsLNeCyueipNFC4LmjCvSAc8Seti9eWUp2kOu_vidnXnVbE3rzuT2_7T4Dtxqrc3sbTM87sI1Xw3gxnFX5G0A-9N2b30A19NhUFvfg_E0BQ7jopaZ6qJebtbL1YXNLrd1_EgWdUIIqCCzFQby14jImuHx-W-Zj6b4psXAvg9fJiefj0_zttpCbrmSPPfGR8FEB0VQHmwUrbE0lIKEQpXotVkpCVsoIrykyhlnSEl8sYj3PWOl4OwB7FbLyj-CrPQyRLduhGjvXDhrRiQYRxzlkdTyYggvOsbrVQOqoRv4ZKojkzQyaQivkkR6ArP-jofQCqHns3f6XBx9nUe3Xs-HcNCJTLfzr0aHRlIuRUHjv_rHkbe4HWIqv9wiDWfRu1VC_o2mpJKxgpRDeNgMh75BCL0fDTARW5qk_seu6NnRFK-P_5XwOeyfjSf64_vZhydwk2IBjpT9eAC7m_XWP4Wd2m2fpfH-E6rEAAM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measuring+anisotropic+muscle+stiffness+properties+using+elastography&rft.jtitle=NMR+in+biomedicine&rft.au=Green%2C+M.+A.&rft.au=Geng%2C+G.&rft.au=Qin%2C+E.&rft.au=Sinkus%2C+R.&rft.date=2013-11-01&rft.issn=0952-3480&rft.eissn=1099-1492&rft.volume=26&rft.issue=11&rft.spage=1387&rft.epage=1394&rft_id=info:doi/10.1002%2Fnbm.2964&rft.externalDBID=10.1002%252Fnbm.2964&rft.externalDocID=NBM2964
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-3480&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-3480&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-3480&client=summon