Measuring anisotropic muscle stiffness properties using elastography
Physiological and pathological changes to the anisotropic mechanical properties of skeletal muscle are still largely unknown, with only a few studies quantifying changes in vivo. This study used the noninvasive MR elastography (MRE) technique, in combination with diffusion tensor imaging (DTI), to m...
Saved in:
Published in: | NMR in biomedicine Vol. 26; no. 11; pp. 1387 - 1394 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Blackwell Publishing Ltd
01-11-2013
Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Physiological and pathological changes to the anisotropic mechanical properties of skeletal muscle are still largely unknown, with only a few studies quantifying changes in vivo. This study used the noninvasive MR elastography (MRE) technique, in combination with diffusion tensor imaging (DTI), to measure shear modulus anisotropy in the human skeletal muscle in the lower leg. Shear modulus measurements parallel and perpendicular to the fibre direction were made in 10 healthy subjects in the medial gastrocnemius, soleus and tibialis anterior muscles. The results showed significant differences in the medial gastrocnemius (μ‖ =0.86 ± 0.15 kPa; μ⊥ = 0.66 ± 0.19 kPa, P < 0.001), soleus (μ‖ = 0.83 ± 0.22 kPa; μ⊥ = 0.65 ± 0.13 kPa, P < 0.001) and the tibialis anterior (μ‖ = 0.78 ± 0.24 kPa; μ⊥ = 0.66 ± 0.16 kPa, P = 0.03) muscles, where the shear modulus measured in the direction parallel is greater than that measured in the direction perpendicular to the muscle fibres. No significant differences were measured across muscle groups. This study provides the first direct estimates of the anisotropic shear modulus in the triceps surae muscle group, and shows that the technique may be useful for the probing of mechanical anisotropy changes caused by disease, aging and injury. Copyright © 2013 John Wiley & Sons, Ltd.
MR elastography was used in combination with diffusion tensor imaging to measure shear modulus anisotropy in the human skeletal muscle in the lower leg. The results showed significant differences in the medial gastrocnemius and the soleus muscles, where the shear modulus measured in the direction parallel to the muscle fibres was greater than that measured perpendicular to the muscle fibres. |
---|---|
AbstractList | Physiological and pathological changes to the anisotropic mechanical properties of skeletal muscle are still largely unknown, with only a few studies quantifying changes in vivo. This study used the noninvasive MR elastography (MRE) technique, in combination with diffusion tensor imaging (DTI), to measure shear modulus anisotropy in the human skeletal muscle in the lower leg. Shear modulus measurements parallel and perpendicular to the fibre direction were made in 10 healthy subjects in the medial gastrocnemius, soleus and tibialis anterior muscles. The results showed significant differences in the medial gastrocnemius ( mu sub()=0.86 plus or minus 0.15 kPa; mu sub()=0.66 plus or minus 0.19 kPa, P <0.001), soleus ( mu sub()=0.83 plus or minus 0.22 kPa; mu sub()=0.65 plus or minus 0.13 kPa, P<0.001) and the tibialis anterior ( mu sub()=0.78 plus or minus 0.24 kPa; mu sub()=0.66 plus or minus 0.16 kPa, P=0.03) muscles, where the shear modulus measured in the direction parallel is greater than that measured in the direction perpendicular to the muscle fibres. No significant differences were measured across muscle groups. This study provides the first direct estimates of the anisotropic shear modulus in the triceps surae muscle group, and shows that the technique may be useful for the probing of mechanical anisotropy changes caused by disease, aging and injury. Copyright copyright 2013 John Wiley & Sons, Ltd. MR elastography was used in combination with diffusion tensor imaging to measure shear modulus anisotropy in the human skeletal muscle in the lower leg. The results showed significant differences in the medial gastrocnemius and the soleus muscles, where the shear modulus measured in the direction parallel to the muscle fibres was greater than that measured perpendicular to the muscle fibres. Physiological and pathological changes to the anisotropic mechanical properties of skeletal muscle are still largely unknown, with only a few studies quantifying changes in vivo. This study used the noninvasive MR elastography (MRE) technique, in combination with diffusion tensor imaging (DTI), to measure shear modulus anisotropy in the human skeletal muscle in the lower leg. Shear modulus measurements parallel and perpendicular to the fibre direction were made in 10 healthy subjects in the medial gastrocnemius, soleus and tibialis anterior muscles. The results showed significant differences in the medial gastrocnemius (μ‖ =0.86 ± 0.15 kPa; μ⊥ = 0.66 ± 0.19 kPa, P < 0.001), soleus (μ‖ = 0.83 ± 0.22 kPa; μ⊥ = 0.65 ± 0.13 kPa, P < 0.001) and the tibialis anterior (μ‖ = 0.78 ± 0.24 kPa; μ⊥ = 0.66 ± 0.16 kPa, P = 0.03) muscles, where the shear modulus measured in the direction parallel is greater than that measured in the direction perpendicular to the muscle fibres. No significant differences were measured across muscle groups. This study provides the first direct estimates of the anisotropic shear modulus in the triceps surae muscle group, and shows that the technique may be useful for the probing of mechanical anisotropy changes caused by disease, aging and injury. Copyright © 2013 John Wiley & Sons, Ltd. MR elastography was used in combination with diffusion tensor imaging to measure shear modulus anisotropy in the human skeletal muscle in the lower leg. The results showed significant differences in the medial gastrocnemius and the soleus muscles, where the shear modulus measured in the direction parallel to the muscle fibres was greater than that measured perpendicular to the muscle fibres. Physiological and pathological changes to the anisotropic mechanical properties of skeletal muscle are still largely unknown, with only a few studies quantifying changes in vivo . This study used the noninvasive MR elastography (MRE) technique, in combination with diffusion tensor imaging (DTI), to measure shear modulus anisotropy in the human skeletal muscle in the lower leg. Shear modulus measurements parallel and perpendicular to the fibre direction were made in 10 healthy subjects in the medial gastrocnemius, soleus and tibialis anterior muscles. The results showed significant differences in the medial gastrocnemius ( μ ‖ =0.86 ± 0.15 kPa; μ ⊥ = 0.66 ± 0.19 kPa, P < 0.001), soleus ( μ ‖ = 0.83 ± 0.22 kPa; μ ⊥ = 0.65 ± 0.13 kPa, P < 0.001) and the tibialis anterior ( μ ‖ = 0.78 ± 0.24 kPa; μ ⊥ = 0.66 ± 0.16 kPa, P = 0.03) muscles, where the shear modulus measured in the direction parallel is greater than that measured in the direction perpendicular to the muscle fibres. No significant differences were measured across muscle groups. This study provides the first direct estimates of the anisotropic shear modulus in the triceps surae muscle group, and shows that the technique may be useful for the probing of mechanical anisotropy changes caused by disease, aging and injury. Copyright © 2013 John Wiley & Sons, Ltd. Physiological and pathological changes to the anisotropic mechanical properties of skeletal muscle are still largely unknown, with only a few studies quantifying changes in vivo. This study used the noninvasive MR elastography (MRE) technique, in combination with diffusion tensor imaging (DTI), to measure shear modulus anisotropy in the human skeletal muscle in the lower leg. Shear modulus measurements parallel and perpendicular to the fibre direction were made in 10 healthy subjects in the medial gastrocnemius, soleus and tibialis anterior muscles. The results showed significant differences in the medial gastrocnemius (μ‖ = 0.86 ± 0.15 kPa; μ⊥ = 0.66 ± 0.19 kPa, P < 0.001), soleus (μ‖ = 0.83 ± 0.22 kPa; μ⊥ = 0.65 ± 0.13 kPa, P < 0.001) and the tibialis anterior (μ‖ = 0.78 ± 0.24 kPa; μ⊥ = 0.66 ± 0.16 kPa, P = 0.03) muscles, where the shear modulus measured in the direction parallel is greater than that measured in the direction perpendicular to the muscle fibres. No significant differences were measured across muscle groups. This study provides the first direct estimates of the anisotropic shear modulus in the triceps surae muscle group, and shows that the technique may be useful for the probing of mechanical anisotropy changes caused by disease, aging and injury. Physiological and pathological changes to the anisotropic mechanical properties of skeletal muscle are still largely unknown, with only a few studies quantifying changes in vivo. This study used the noninvasive MR elastography (MRE) technique, in combination with diffusion tensor imaging (DTI), to measure shear modulus anisotropy in the human skeletal muscle in the lower leg. Shear modulus measurements parallel and perpendicular to the fibre direction were made in 10 healthy subjects in the medial gastrocnemius, soleus and tibialis anterior muscles. The results showed significant differences in the medial gastrocnemius (μ‖ = 0.86 ± 0.15 kPa; μ⊥ = 0.66 ± 0.19 kPa, P < 0.001), soleus (μ‖ = 0.83 ± 0.22 kPa; μ⊥ = 0.65 ± 0.13 kPa, P < 0.001) and the tibialis anterior (μ‖ = 0.78 ± 0.24 kPa; μ⊥ = 0.66 ± 0.16 kPa, P = 0.03) muscles, where the shear modulus measured in the direction parallel is greater than that measured in the direction perpendicular to the muscle fibres. No significant differences were measured across muscle groups. This study provides the first direct estimates of the anisotropic shear modulus in the triceps surae muscle group, and shows that the technique may be useful for the probing of mechanical anisotropy changes caused by disease, aging and injury. Physiological and pathological changes to the anisotropic mechanical properties of skeletal muscle are still largely unknown, with only a few studies quantifying changes in vivo. This study used the noninvasive MR elastography (MRE) technique, in combination with diffusion tensor imaging (DTI), to measure shear modulus anisotropy in the human skeletal muscle in the lower leg. Shear modulus measurements parallel and perpendicular to the fibre direction were made in 10 healthy subjects in the medial gastrocnemius, soleus and tibialis anterior muscles. The results showed significant differences in the medial gastrocnemius (µ=0.86±0.15 kPa; µ=0.66±0.19 kPa, P <0.001), soleus (µ=0.83±0.22 kPa; µ=0.65±0.13 kPa, P<0.001) and the tibialis anterior (µ=0.78±0.24 kPa; µ=0.66±0.16 kPa, P=0.03) muscles, where the shear modulus measured in the direction parallel is greater than that measured in the direction perpendicular to the muscle fibres. No significant differences were measured across muscle groups. This study provides the first direct estimates of the anisotropic shear modulus in the triceps surae muscle group, and shows that the technique may be useful for the probing of mechanical anisotropy changes caused by disease, aging and injury. Copyright © 2013 John Wiley & Sons, Ltd. [PUBLICATION ABSTRACT] |
Author | Gandevia, S. C. Green, M. A. Qin, E. Sinkus, R. Bilston, L. E. Geng, G. |
Author_xml | – sequence: 1 givenname: M. A. surname: Green fullname: Green, M. A. email: Correspondence to: M. Green, Neuroscience Research Australia, Barker St., Randwick, NSW 2031, Australia., m.green@neura.edu.au organization: Neuroscience Research Australia, Randwick, NSW, Australia – sequence: 2 givenname: G. surname: Geng fullname: Geng, G. organization: Neuroscience Research Australia, NSW, Randwick, Australia – sequence: 3 givenname: E. surname: Qin fullname: Qin, E. organization: Neuroscience Research Australia, NSW, Randwick, Australia – sequence: 4 givenname: R. surname: Sinkus fullname: Sinkus, R. organization: INSERM U773, CRB3, Centre de Recherches Biomédicales Bichat-Beaujon, Paris, France – sequence: 5 givenname: S. C. surname: Gandevia fullname: Gandevia, S. C. organization: Neuroscience Research Australia, Randwick, NSW, Australia – sequence: 6 givenname: L. E. surname: Bilston fullname: Bilston, L. E. organization: Neuroscience Research Australia, Randwick, NSW, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23640745$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0V1LHDEUBuBQlLpqob-gDPTGm9Ez-ZrJZbXWFtTeVFa8CZnsGRs7H9ucGXT_fbO4WhAErwKHhzc5eXfZVj_0yNjHAg4LAH7U190hN1q-Y7MCjMkLafgWm4FRPBeygh22S3QHAJUU_D3b4UJLKKWasa8X6GiKob_NXB9oGOOwDD7rJvItZjSGpumRKFumOcYxIGUTrTW2jsbhNrrl79U-225cS_hhc-6xq2-nv06-5-c_z36cfDnPvay0zNGhqH2R7uWy8TV653ljFDRlZTQU4LUGUVegUPNq4RYODGBZpzkKYZQUe-zgMTe95u-ENNoukMe2dT0OE9n12lqIEswbqBQSTKV0op9f0Lthin1aJCmtudSq5P8DfRyIIjZ2GUPn4soWYNcl2FSCXZeQ6KdN4FR3uHiGT7-eQP4I7kOLq1eD7OXxxSZw4wON-PDsXfxjdSlKZeeXZ_ZaHd_MS8ntXPwD7-ugdw |
CitedBy_id | crossref_primary_10_1007_s10237_018_1072_1 crossref_primary_10_1088_1361_6560_acf98c crossref_primary_10_1007_s00366_022_01690_x crossref_primary_10_1016_j_neuroimage_2023_120234 crossref_primary_10_1152_japplphysiol_00673_2018 crossref_primary_10_2463_mrms_mp_2022_0149 crossref_primary_10_1007_s10237_019_01157_x crossref_primary_10_1115_1_4046127 crossref_primary_10_1088_0967_3334_34_12_1675 crossref_primary_10_1002_nbm_3848 crossref_primary_10_1002_nbm_3925 crossref_primary_10_1002_mrm_28627 crossref_primary_10_3390_healthcare12131254 crossref_primary_10_1016_j_brain_2024_100091 crossref_primary_10_13104_imri_2023_0029 crossref_primary_10_1088_1361_6560_acb482 crossref_primary_10_1016_j_jmbbm_2023_106325 crossref_primary_10_1016_j_mri_2018_11_011 crossref_primary_10_3233_JND_180333 crossref_primary_10_1016_j_media_2021_102212 crossref_primary_10_1002_jmri_29091 crossref_primary_10_1016_j_jmbbm_2022_105638 crossref_primary_10_1016_j_brain_2022_100051 crossref_primary_10_1002_cnm_2771 crossref_primary_10_1177_0284185115571987 crossref_primary_10_1002_jmri_25642 crossref_primary_10_1016_j_jmbbm_2016_03_005 crossref_primary_10_1002_mrm_28095 crossref_primary_10_1115_1_4046199 crossref_primary_10_1002_cnm_2979 crossref_primary_10_1002_nbm_4087 crossref_primary_10_1016_j_jmbbm_2023_105924 crossref_primary_10_1016_j_jmbbm_2021_105046 crossref_primary_10_1016_j_jmbbm_2023_105721 crossref_primary_10_1016_j_zemedi_2024_03_001 crossref_primary_10_1002_mrm_25740 crossref_primary_10_1002_nbm_3832 crossref_primary_10_1055_a_2021_0403 crossref_primary_10_1016_j_jelekin_2017_09_007 crossref_primary_10_1364_BOE_516166 crossref_primary_10_1109_JSTQE_2018_2871596 crossref_primary_10_1007_s10439_014_1186_2 crossref_primary_10_1016_j_irbm_2014_11_002 crossref_primary_10_1016_j_jmbbm_2019_06_007 crossref_primary_10_1016_j_mri_2020_04_009 crossref_primary_10_1121_1_5064372 crossref_primary_10_1007_s11357_019_00147_2 crossref_primary_10_1007_s00723_020_01294_y crossref_primary_10_1016_j_jbiomech_2023_111640 crossref_primary_10_1016_j_jmbbm_2017_11_045 crossref_primary_10_1016_j_media_2022_102432 crossref_primary_10_1016_j_mri_2019_08_006 crossref_primary_10_1016_j_jbiomech_2016_02_018 crossref_primary_10_1016_j_ultrasmedbio_2018_03_026 crossref_primary_10_1002_jmri_26281 crossref_primary_10_1016_j_jmbbm_2018_09_032 crossref_primary_10_1002_jmri_25105 crossref_primary_10_1152_japplphysiol_00672_2018 crossref_primary_10_1038_s41598_020_63730_0 crossref_primary_10_1109_OJEMB_2021_3075569 crossref_primary_10_2214_AJR_23_29742 crossref_primary_10_1109_TUFFC_2017_2690223 crossref_primary_10_1088_0031_9155_61_13_5000 crossref_primary_10_1002_nbm_3935 crossref_primary_10_1016_j_mri_2021_03_018 crossref_primary_10_1109_TBME_2023_3283185 crossref_primary_10_1016_j_mri_2016_06_003 crossref_primary_10_1016_j_ultrasmedbio_2021_03_030 |
Cites_doi | 10.1186/1471-2474-9-99 10.1002/ca.10112 10.1088/0031-9155/50/6/018 10.1530/EJE-06-0694 10.1123/jab.25.1.93 10.1002/nbm.1254 10.1249/MSS.0b013e318033499b 10.1121/1.3559681 10.1126/science.7569924 10.1007/s00421-005-1394-4 10.1016/j.jsb.2007.01.022 10.1088/0031-9155/45/6/317 10.1002/1522-2586(200102)13:2<269::AID-JMRI1039>3.0.CO;2-1 10.1093/geronj/48.2.M58 10.1152/japplphysiol.00923.2010 10.1007/s10439-005-1433-7 10.1121/1.1579008 10.1113/jphysiol.2005.101600 10.1002/nbm.887 10.1016/j.clinbiomech.2011.04.004 10.2340/16501977-0331 10.1002/nbm.1801 10.1002/jmri.1076 10.1016/S0021-9290(03)00005-8 10.1113/jphysiol.1993.sp019629 10.1002/mrm.20993 10.1002/mus.20981 10.1016/j.jmbbm.2009.03.004 10.1093/ptj/80.4.352 10.1249/00005768-199101000-00003 10.1016/0021-9290(87)90292-2 10.1016/S0006-3495(94)80775-1 10.1016/j.clinbiomech.2008.03.068 10.1016/j.jbiomech.2011.06.023 10.1002/jmri.20651 10.1007/BF00123482 10.1002/jmri.20487 10.1002/nbm.1409 10.1007/s00421-004-1186-2 10.1682/JRRD.2007.02.0040 10.1016/j.jbiomech.2011.01.005 10.1002/mus.20986 10.1016/j.jbiomech.2010.10.025 10.1002/ca.10170 10.1007/s00125-005-1757-8 10.1053/apmr.2002.35472 10.1016/j.ultrasmedbio.2010.02.013 10.1002/jmri.23797 10.1113/jphysiol.1996.sp021768 10.1002/mus.21115 10.1002/jmri.20593 10.1002/mrm.20355 10.1016/j.jbiomech.2008.11.034 10.1002/jmri.20570 |
ContentType | Journal Article |
Copyright | Copyright © 2013 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2013 John Wiley & Sons, Ltd. |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 8FD FR3 P64 7X8 |
DOI | 10.1002/nbm.2964 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Engineering Research Database CrossRef MEDLINE MEDLINE - Academic Engineering Research Database |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Physics |
EISSN | 1099-1492 |
EndPage | 1394 |
ExternalDocumentID | 3150723331 10_1002_nbm_2964 23640745 NBM2964 ark_67375_WNG_X5BZW742_W |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52V 52W 52X 53G 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 DUUFO EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P2Z P4D PALCI Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ SV3 UB1 V2E W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WJL WOHZO WQJ WRC WUP WVDHM WXSBR XG1 XPP XV2 ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 8FD FR3 P64 7X8 |
ID | FETCH-LOGICAL-c4864-eae3bc174524fcbecac2f950f7896010c6603b805e628dada090e7b0c6e339543 |
IEDL.DBID | 33P |
ISSN | 0952-3480 |
IngestDate | Sat Aug 17 02:21:39 EDT 2024 Fri Oct 25 03:41:07 EDT 2024 Thu Oct 10 22:59:12 EDT 2024 Fri Aug 23 02:35:08 EDT 2024 Sat Sep 28 08:00:41 EDT 2024 Sat Aug 24 00:54:29 EDT 2024 Wed Oct 30 09:56:45 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | diffusion tensor imaging MR elastography stiffness shear modulus anisotropy muscle |
Language | English |
License | Copyright © 2013 John Wiley & Sons, Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4864-eae3bc174524fcbecac2f950f7896010c6603b805e628dada090e7b0c6e339543 |
Notes | ark:/67375/WNG-X5BZW742-W istex:915088AFFED294B9CAC369ED68B332EBCD0BEC6C ArticleID:NBM2964 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 23640745 |
PQID | 1466246572 |
PQPubID | 2029982 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1492633709 proquest_miscellaneous_1443409856 proquest_journals_1466246572 crossref_primary_10_1002_nbm_2964 pubmed_primary_23640745 wiley_primary_10_1002_nbm_2964_NBM2964 istex_primary_ark_67375_WNG_X5BZW742_W |
PublicationCentury | 2000 |
PublicationDate | November 2013 |
PublicationDateYYYYMMDD | 2013-11-01 |
PublicationDate_xml | – month: 11 year: 2013 text: November 2013 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | NMR in biomedicine |
PublicationTitleAlternate | NMR Biomed |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Tian M, Hoang PD, Gandevia SC, Herbert RD, Bilston LE. Viscous elements have little impact on measured passive length-tension properties of human gastrocnemius muscle-tendon units in vivo. J. Biomech. 2011; 44(7): 1334-1339. Purslow PP, Trotter JA. The morphology and mechanical properties of endomysium in series-fibred muscles: variations with muscle length. J. Muscle Res. Cell Motil. 1994; 15(3): 299-308. Galban CJ, Maderwald S, Uffmann K, de Greiff A, Ladd ME. Diffusive sensitivity to muscle architecture: a magnetic resonance diffusion tensor imaging study of the human calf. Eur. J. Appl. Physiol. 2004; 93(3): 253-262. Jones DA, Round JM. Skeletal Muscle in Health and Disease: A Textbook of Muscle Physiology. Manchester University Press: Manchester; 1990. Horstman A, Gerrits K, Beltman M, Janssen T, Konijnenbelt M, de Haan A. Muscle function of knee extensors and flexors after stroke is selectively impaired at shorter muscle lengths. J. Rehabil. Med. 2009; 41(5): 317-321. Jensen RC, Warren B, Laursen C, Morrissey MC. Static pre-load effect on knee extensor isokinetic concentric and eccentric performance. Med. Sci. Sports Exerc. 1991; 23(1): 10-14. Sinha U, Sinha S, Hodgson JA, Edgerton RV. Human soleus muscle architecture at different ankle joint angles from magnetic resonance diffusion tensor imaging. J. Appl. Physiol. 2010; 110(3): 807-819. Papazoglou S, Braun J, Hamhaber U, Sack I. Two-dimensional waveform analysis in MR elastography of skeletal muscles. Phys. Med. Biol. 2005; 50(6): 1313-1325. Schwenzer NF, Steidle G, Martirosian P, Schraml C, Springer F, Claussen CD, Schick F. Diffusion tensor imaging of the human calf muscle: distinct changes in fractional anisotropy and mean diffusion due to passive muscle shortening and stretching. NMR Biomed.. 2009; 22(10): 1047-1053. Agur AM, Ng-Thow-Hing V, Ball KA, Fiume E, McKee NH. Documentation and three-dimensional modelling of human soleus muscle architecture. Clin. Anat. 2003; 16(4): 285-293. Prasartwuth O, Allen TJ, Butler JE, Gandevia SC, Taylor JL. Length-dependent changes in voluntary activation, maximum voluntary torque and twitch responses after eccentric damage in humans. J. Physiol. 2006; 571(Pt 1): 243-252. Maderwald S, Uffmann K, Galban CJ, de Greiff A, Ladd ME. Accelerating MR elastography: a multiecho phase-contrast gradient-echo sequence. J. Magn. Reson. Imaging 2006; 23(5): 774-780. Giacomozzi C, D'Ambrogi E, Cesinaro S, Macellari V, Uccioli L. Muscle performance and ankle joint mobility in long-term patients with diabetes. BMC Musculoskelet. Disord. 2008; 9: 99. Hajrasouliha AR, Tavakoli S, Esteki A, Nafisi S, Noorolahi-Moghaddam H. Abnormal viscoelastic behaviour of passive ankle joint movement in diabetic patients: an early or a late complication? Diabetologia, 2005; 48(6): 1225-1228. Green MA, Sinkus R, Gandevia SC, Herbert RD, Bilston LE. Measuring changes in muscle stiffness after eccentric exercise using elastography. NMR Biomed.. 2012; 25(6): 852-858. Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, Chabriat H. Diffusion tensor imaging: concepts and applications. J. Magn. Reson. Imaging, 2001; 13(4): 534-546. Sinha S, Sinha U, Edgerton VR. In vivo diffusion tensor imaging of the human calf muscle. J. Magn. Reson. Imaging 2006; 24(1): 182-190. Green MA, Sinkus R, Gandevia SC, Herbert RD, Bilston LE. Measuring changes in muscle stiffness after eccentric exercise using elastography. NMR Biomed. 2012; 25(6): 852-858. Bensamoun SF, Ringleb SI, Littrell L, Chen Q, Brennan M, Ehman RL, An KN. Determination of thigh muscle stiffness using magnetic resonance elastography. J. Magn. Reson. Imaging 2006; 23(2): 242-247. Jenkyn TR, Ehman RL, An KN. Noninvasive muscle tension measurement using the novel technique of magnetic resonance elastography (MRE). J. Biomech. 2003; 36(12): 1917-1921. Gennisson JL, Catheline S, Chaffai S, Fink M. Transient elastography in anisotropic medium: application to the measurement of slow and fast shear wave speeds in muscles. J. Acoust. Soc. Am. 2003; 114(1): 536-541. Muthupillai R, Lomas DJ, Rossman PJ, Greenleaf JF, Manduca A, Ehman RL. Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 1995; 269(5232): 1854-1857. Blanpied P, Smidt GL. The difference in stiffness of the active plantarflexors between young and elderly human females. J. Gerontol. 1993; 48(2): M58-M63. Qin EC, Sinkus R, Geng G, Cheng S, Green M, Rae CD, Bilston LE. Combining MR elastography and diffusion tensor imaging for the assessment of anisotropic mechanical properties: a phantom study. J Magn Reson. Imaging 2013; 37(1): 217-226. Hoang PD, Herbert RD, Gandevia SC. Effects of eccentric exercise on passive mechanical properties of human gastrocnemius in vivo. Med. Sci. Sports Exerc. 2007; 39(5): 849-857. Royer D, Gennisson JL, Deffieux T, Tanter M. On the elasticity of transverse isotropic soft tissues (L). J. Acoust. Soc. Am. 2011; 129(5): 2757-2760. Garmirian LP, Chin AB, Rutkove SB. Discriminating neurogenic from myopathic disease via measurement of muscle anisotropy. Muscle Nerve, 2009; 39(1): 16-24. Hafer-Macko CE, Ryan AS, Ivey FM, Macko RF. Skeletal muscle changes after hemiparetic stroke and potential beneficial effects of exercise intervention strategies. J. Rehabil. Res. Dev. 2008; 45(2): 261-272. Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys. J. 1994; 66(1): 259-267. Levinson SF. Ultrasound propagation in anisotropic soft tissues: the application of linear elastic theory. J. Biomech. 1987; 20(3): 251-260. Papazoglou S, Rump J, Braun J, Sack I. Shear wave group velocity inversion in MR elastography of human skeletal muscle. Magn. Reson. Med. 2006; 56(3): 489-497. Dresner MA, Rose GH, Rossman PJ, Muthupillai R, Manduca A, Ehman RL. Magnetic resonance elastography of skeletal muscle. J. Magn. Reson. Imaging 2001; 13(2): 269-276. Blemker SS, Delp SL. Three-dimensional representation of complex muscle architectures and geometries. Ann. Biomed. Eng. 2005; 33(5): 661-673. Magnusson SP, Simonsen EB, Aagaard P, Sorensen H, Kjaer M. A mechanism for altered flexibility in human skeletal muscle. J. Physiol. 1996; 497(Pt 1): 291-298. Salsich GB, Mueller MJ, Sahrmann SA. Passive ankle stiffness in subjects with diabetes and peripheral neuropathy versus an age-matched comparison group. Phys. Ther. 2000; 80(4): 352-362. Gennisson JL, Deffieux T, Mace E, Montaldo G, Fink M, Tanter M. Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging. Ultrasound Med. Biol. 2010; 36(5): 789-801. Passerieux E, Rossignol R, Letellier T, Delage JP. Physical continuity of the perimysium from myofibers to tendons: involvement in lateral force transmission in skeletal muscle. J. Struct. Biol. 2007; 159(1): 19-28. Howell JN, Chleboun G, Conatser R. Muscle stiffness, strength loss, swelling and soreness following exercise-induced injury in humans. J. Physiol. 1993; 464: 183-196. Clarke EC, Cheng S, Green M, Sinkus R, Bilston LE. Using static preload with magnetic resonance elastography to estimate large strain viscoelastic properties of bovine liver. J. Biomech. 2011; 44(13): 2461-2465. Sinkus R, Lorenzen J, Schrader D, Lorenzen M, Dargatz M, Holz D. High-resolution tensor MR elastography for breast tumour detection. Phys. Med. Biol. 2000; 45(6): 1649-1664. Loh EY, Agur AM, McKee NH. Intramuscular innervation of the human soleus muscle: a 3D model. Clin. Anat. 2003; 16(5): 378-382. Green MA, Bilston LE, Sinkus R. In vivo brain viscoelastic properties measured by magnetic resonance elastography. NMR Biomed. 2008; 21(7): 755-764. Brauck K, Galban CJ, Maderwald S, Herrmann BL, Ladd ME. Changes in calf muscle elasticity in hypogonadal males before and after testosterone substitution as monitored by magnetic resonance elastography. Eur. J. Endocrinol. 2007; 156(6): 673-678. Chin AB, Garmirian LP, Nie R, Rutkove SB. Optimizing measurement of the electrical anisotropy of muscle. Muscle Nerve 2008; 37(5): 560-565. Zaraiskaya T, Kumbhare D, Noseworthy MD. Diffusion tensor imaging in evaluation of human skeletal muscle injury. J. Magn. Reson. Imaging 2006; 24(2): 402-408. Basford JR, Jenkyn TR, An KN, Ehman RL, Heers G, Kaufman KR. Evaluation of healthy and diseased muscle with magnetic resonance elastography. Arch. Phys. Med. Rehabil. 2002; 83(11): 1530-1536. Domire ZJ, McCullough MB, Chen Q, An KN. Wave attenuation as a measure of muscle quality as measured by magnetic resonance elastography: initial results. J. Biomech. 2009; 42(4): 537-540. Wen H, Dou Z, Finni T, Havu M, Kang Z, Cheng S, Sipila S, Sinha S, Usenius JP. Thigh muscle function in stroke patients revealed by velocity-encoded cine phase-contrast magnetic resonance imaging. Muscle Nerve 2008; 37(6): 736-744. Debernard L, Robert L, Charleux F, Bensamoun SF. Analysis of thigh muscle stiffness from childhood to adulthood using magnetic resonance elastography (MRE) technique. Clin. Biomech. (Bristol, Avon) 2011; 26(8): 836-840. Sesto ME, Chourasia AO, Block WF, Radwin RG. Mechanical and magnetic resonance imaging changes following eccentric or concentric exertions. Clin. Biomech. (Bristol, Avon) 2008; 23(7): 961-968. Domire ZJ, McCullough MB, Chen Q, An KN. Feasibility of using magnetic resonance elastography to study the effect of aging on shear modulus of skeletal muscle. J. Appl. Biomech. 2009; 25(1): 93-97. Gajdosik RL, Vander Linden DW, McNair PJ, Riggin TJ, Albertson JS, Mattick DJ, Wegley JC. Viscoelastic properties of short calf muscle-tendon units of older women: effects of slow and fast passive dorsiflexion stretches in vivo. Eur. J. Appl. Physiol. 2005; 95(2-3): 131-139. Morrow DA, Haut Donahue TL, Odegard GM, Kaufman KR. Transversely isotropic tensile material properties of skeletal muscle tissue. J. Mech. Behav. Biomed. Mater. 2010; 3(1): 124-129. Debernard L, Robert L, Charleux F, Bensamoun SF. Characterization of muscle architecture in children and adults using magnetic resonance elastography and ult 2007; 39 2009; 41 2009; 42 2000; 45 2008; 9 2008; 37 1994; 66 2006; 571 2003; 16 2003; 114 2011; 129 2006; 23 1990 2006; 24 2002; 83 2010; 110 2008; 23 2008; 21 2011; 26 2012; 25 2010; 3 2001; 13 1996; 497 2005; 33 1993; 48 2009; 22 2009; 25 2010; 36 2006; 56 2012 2011 2009 2003; 36 2005; 48 1993; 464 2010; 44 2007; 159 2007; 156 2013; 37 1987; 20 2004; 93 1991; 23 2004; 17 2005; 95 2008; 45 2005; 53 2011; 44 1995; 269 2000; 80 1994; 15 2005; 50 2009; 39 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 Qin EC (e_1_2_8_42_1) 2012 e_1_2_8_49_1 Jones DA (e_1_2_8_57_1) 1990 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 Green M (e_1_2_8_40_1) 2009 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – year: 2011 – volume: 497 start-page: 291 issue: Pt 1 year: 1996 end-page: 298 article-title: A mechanism for altered flexibility in human skeletal muscle publication-title: J. Physiol. – volume: 464 start-page: 183 year: 1993 end-page: 196 article-title: Muscle stiffness, strength loss, swelling and soreness following exercise‐induced injury in humans publication-title: J. Physiol. – volume: 48 start-page: 1225 issue: 6 year: 2005 end-page: 1228 article-title: Abnormal viscoelastic behaviour of passive ankle joint movement in diabetic patients: an early or a late complication? publication-title: Diabetologia – volume: 25 start-page: 852 issue: 6 year: 2012 end-page: 858 article-title: Measuring changes in muscle stiffness after eccentric exercise using elastography publication-title: NMR Biomed – volume: 36 start-page: 1917 issue: 12 year: 2003 end-page: 1921 article-title: Noninvasive muscle tension measurement using the novel technique of magnetic resonance elastography (MRE) publication-title: J. Biomech. – volume: 37 issue: 1 year: 2013 end-page: 226 article-title: Combining MR elastography and diffusion tensor imaging for the assessment of anisotropic mechanical properties: a phantom study publication-title: J Magn Reson. Imaging – volume: 41 start-page: 317 issue: 5 year: 2009 end-page: 321 article-title: Muscle function of knee extensors and flexors after stroke is selectively impaired at shorter muscle lengths publication-title: J. Rehabil. Med. – volume: 24 start-page: 402 issue: 2 year: 2006 end-page: 408 article-title: Diffusion tensor imaging in evaluation of human skeletal muscle injury publication-title: J. Magn. Reson. Imaging – volume: 15 start-page: 299 issue: 3 year: 1994 end-page: 308 article-title: The morphology and mechanical properties of endomysium in series‐fibred muscles: variations with muscle length publication-title: J. Muscle Res. Cell Motil. – volume: 95 start-page: 131 issue: 2–3 year: 2005 end-page: 139 article-title: Viscoelastic properties of short calf muscle‐tendon units of older women: effects of slow and fast passive dorsiflexion stretches in vivo publication-title: Eur. J. Appl. Physiol. – volume: 24 start-page: 182 issue: 1 year: 2006 end-page: 190 article-title: In vivo diffusion tensor imaging of the human calf muscle publication-title: J. Magn. Reson. Imaging – year: 1990 – volume: 26 start-page: 836 issue: 8 year: 2011 end-page: 840 article-title: Analysis of thigh muscle stiffness from childhood to adulthood using magnetic resonance elastography (MRE) technique publication-title: Clin. Biomech. (Bristol, Avon) – volume: 571 start-page: 243 issue: Pt 1 year: 2006 end-page: 252 article-title: Length‐dependent changes in voluntary activation, maximum voluntary torque and twitch responses after eccentric damage in humans publication-title: J. Physiol. – volume: 13 start-page: 269 issue: 2 year: 2001 end-page: 276 article-title: Magnetic resonance elastography of skeletal muscle publication-title: J. Magn. Reson. Imaging – start-page: 2505 year: 2009 – volume: 80 start-page: 352 issue: 4 year: 2000 end-page: 362 article-title: Passive ankle stiffness in subjects with diabetes and peripheral neuropathy versus an age‐matched comparison group publication-title: Phys. Ther. – volume: 3 start-page: 124 issue: 1 year: 2010 end-page: 129 article-title: Transversely isotropic tensile material properties of skeletal muscle tissue publication-title: J. Mech. Behav. Biomed. Mater. – volume: 23 start-page: 961 issue: 7 year: 2008 end-page: 968 article-title: Mechanical and magnetic resonance imaging changes following eccentric or concentric exertions publication-title: Clin. Biomech. (Bristol, Avon) – volume: 39 start-page: 849 issue: 5 year: 2007 end-page: 857 article-title: Effects of eccentric exercise on passive mechanical properties of human gastrocnemius in vivo publication-title: Med. Sci. Sports Exerc. – volume: 37 start-page: 736 issue: 6 year: 2008 end-page: 744 article-title: Thigh muscle function in stroke patients revealed by velocity‐encoded cine phase‐contrast magnetic resonance imaging publication-title: Muscle Nerve – volume: 9 start-page: 99 year: 2008 article-title: Muscle performance and ankle joint mobility in long‐term patients with diabetes publication-title: BMC Musculoskelet. Disord. – volume: 33 start-page: 661 issue: 5 year: 2005 end-page: 673 article-title: Three‐dimensional representation of complex muscle architectures and geometries publication-title: Ann. Biomed. Eng. – volume: 156 start-page: 673 issue: 6 year: 2007 end-page: 678 article-title: Changes in calf muscle elasticity in hypogonadal males before and after testosterone substitution as monitored by magnetic resonance elastography publication-title: Eur. J. Endocrinol. – volume: 44 start-page: 397 issue: 3 year: 2010 end-page: 401 article-title: Characterization of muscle architecture in children and adults using magnetic resonance elastography and ultrasound techniques publication-title: J. Biomech. – start-page: 3269 year: 2012 – volume: 25 start-page: 93 issue: 1 year: 2009 end-page: 97 article-title: Feasibility of using magnetic resonance elastography to study the effect of aging on shear modulus of skeletal muscle publication-title: J. Appl. Biomech. – volume: 23 start-page: 242 issue: 2 year: 2006 end-page: 247 article-title: Determination of thigh muscle stiffness using magnetic resonance elastography publication-title: J. Magn. Reson. Imaging – volume: 23 start-page: 10 issue: 1 year: 1991 end-page: 14 article-title: Static pre‐load effect on knee extensor isokinetic concentric and eccentric performance publication-title: Med. Sci. Sports Exerc. – volume: 23 start-page: 774 issue: 5 year: 2006 end-page: 780 article-title: Accelerating MR elastography: a multiecho phase‐contrast gradient‐echo sequence publication-title: J. Magn. Reson. Imaging – volume: 45 start-page: 1649 issue: 6 year: 2000 end-page: 1664 article-title: High‐resolution tensor MR elastography for breast tumour detection publication-title: Phys. Med. Biol. – volume: 56 start-page: 489 issue: 3 year: 2006 end-page: 497 article-title: Shear wave group velocity inversion in MR elastography of human skeletal muscle publication-title: Magn. Reson. Med. – volume: 39 start-page: 16 issue: 1 year: 2009 end-page: 24 article-title: Discriminating neurogenic from myopathic disease via measurement of muscle anisotropy publication-title: Muscle Nerve – volume: 269 start-page: 1854 issue: 5232 year: 1995 end-page: 1857 article-title: Magnetic resonance elastography by direct visualization of propagating acoustic strain waves publication-title: Science – volume: 93 start-page: 253 issue: 3 year: 2004 end-page: 262 article-title: Diffusive sensitivity to muscle architecture: a magnetic resonance diffusion tensor imaging study of the human calf publication-title: Eur. J. Appl. Physiol. – volume: 45 start-page: 261 issue: 2 year: 2008 end-page: 272 article-title: Skeletal muscle changes after hemiparetic stroke and potential beneficial effects of exercise intervention strategies publication-title: J. Rehabil. Res. Dev. – volume: 25 start-page: 852 issue: 6 year: 2012 end-page: 858 article-title: Measuring changes in muscle stiffness after eccentric exercise using elastography publication-title: NMR Biomed. – volume: 42 start-page: 537 issue: 4 year: 2009 end-page: 540 article-title: Wave attenuation as a measure of muscle quality as measured by magnetic resonance elastography: initial results publication-title: J. Biomech. – volume: 110 start-page: 807 issue: 3 year: 2010 end-page: 819 article-title: Human soleus muscle architecture at different ankle joint angles from magnetic resonance diffusion tensor imaging publication-title: J. Appl. Physiol. – volume: 50 start-page: 1313 issue: 6 year: 2005 end-page: 1325 article-title: Two‐dimensional waveform analysis in MR elastography of skeletal muscles publication-title: Phys. Med. Biol. – volume: 22 start-page: 1047 issue: 10 year: 2009 end-page: 1053 article-title: Diffusion tensor imaging of the human calf muscle: distinct changes in fractional anisotropy and mean diffusion due to passive muscle shortening and stretching publication-title: NMR Biomed. – volume: 36 start-page: 789 issue: 5 year: 2010 end-page: 801 article-title: Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging publication-title: Ultrasound Med. Biol. – volume: 83 start-page: 1530 issue: 11 year: 2002 end-page: 1536 article-title: Evaluation of healthy and diseased muscle with magnetic resonance elastography publication-title: Arch. Phys. Med. Rehabil. – volume: 159 start-page: 19 issue: 1 year: 2007 end-page: 28 article-title: Physical continuity of the perimysium from myofibers to tendons: involvement in lateral force transmission in skeletal muscle publication-title: J. Struct. Biol. – volume: 53 start-page: 372 issue: 2 year: 2005 end-page: 387 article-title: Imaging anisotropic and viscous properties of breast tissue by magnetic resonance‐elastography publication-title: Magn. Reson. Med. – volume: 16 start-page: 285 issue: 4 year: 2003 end-page: 293 article-title: Documentation and three‐dimensional modelling of human soleus muscle architecture publication-title: Clin. Anat. – volume: 21 start-page: 755 issue: 7 year: 2008 end-page: 764 article-title: In vivo brain viscoelastic properties measured by magnetic resonance elastography publication-title: NMR Biomed. – volume: 37 start-page: 560 issue: 5 year: 2008 end-page: 565 article-title: Optimizing measurement of the electrical anisotropy of muscle publication-title: Muscle Nerve – volume: 17 start-page: 181 issue: 4 year: 2004 end-page: 190 article-title: In vivo elasticity measurements of extremity skeletal muscle with MR elastography publication-title: NMR Biomed. – volume: 20 start-page: 251 issue: 3 year: 1987 end-page: 260 article-title: Ultrasound propagation in anisotropic soft tissues: the application of linear elastic theory publication-title: J. Biomech. – volume: 48 start-page: M58 issue: 2 year: 1993 end-page: M63 article-title: The difference in stiffness of the active plantarflexors between young and elderly human females publication-title: J. Gerontol. – volume: 114 start-page: 536 issue: 1 year: 2003 end-page: 541 article-title: Transient elastography in anisotropic medium: application to the measurement of slow and fast shear wave speeds in muscles publication-title: J. Acoust. Soc. Am. – volume: 66 start-page: 259 issue: 1 year: 1994 end-page: 267 article-title: MR diffusion tensor spectroscopy and imaging publication-title: Biophys. J. – volume: 13 start-page: 534 issue: 4 year: 2001 end-page: 546 article-title: Diffusion tensor imaging: concepts and applications publication-title: J. Magn. Reson. Imaging – volume: 44 start-page: 2461 issue: 13 year: 2011 end-page: 2465 article-title: Using static preload with magnetic resonance elastography to estimate large strain viscoelastic properties of bovine liver publication-title: J. Biomech. – volume: 44 start-page: 1334 issue: 7 year: 2011 end-page: 1339 article-title: Viscous elements have little impact on measured passive length‐tension properties of human gastrocnemius muscle‐tendon units in vivo publication-title: J. Biomech. – volume: 129 start-page: 2757 issue: 5 year: 2011 end-page: 2760 article-title: On the elasticity of transverse isotropic soft tissues (L) publication-title: J. Acoust. Soc. Am. – volume: 16 start-page: 378 issue: 5 year: 2003 end-page: 382 article-title: Intramuscular innervation of the human soleus muscle: a 3D model publication-title: Clin. Anat. – ident: e_1_2_8_8_1 doi: 10.1186/1471-2474-9-99 – ident: e_1_2_8_59_1 doi: 10.1002/ca.10112 – ident: e_1_2_8_31_1 doi: 10.1088/0031-9155/50/6/018 – ident: e_1_2_8_36_1 doi: 10.1530/EJE-06-0694 – ident: e_1_2_8_35_1 doi: 10.1123/jab.25.1.93 – ident: e_1_2_8_51_1 doi: 10.1002/nbm.1254 – ident: e_1_2_8_16_1 doi: 10.1249/MSS.0b013e318033499b – ident: e_1_2_8_48_1 doi: 10.1121/1.3559681 – ident: e_1_2_8_26_1 doi: 10.1126/science.7569924 – ident: e_1_2_8_3_1 doi: 10.1007/s00421-005-1394-4 – start-page: 3269 volume-title: Proceedings 20th Scientific Meeting year: 2012 ident: e_1_2_8_42_1 contributor: fullname: Qin EC – ident: e_1_2_8_56_1 doi: 10.1016/j.jsb.2007.01.022 – ident: e_1_2_8_49_1 doi: 10.1088/0031-9155/45/6/317 – ident: e_1_2_8_27_1 doi: 10.1002/1522-2586(200102)13:2<269::AID-JMRI1039>3.0.CO;2-1 – ident: e_1_2_8_2_1 doi: 10.1093/geronj/48.2.M58 – ident: e_1_2_8_58_1 doi: 10.1152/japplphysiol.00923.2010 – ident: e_1_2_8_43_1 doi: 10.1007/s10439-005-1433-7 – ident: e_1_2_8_38_1 doi: 10.1121/1.1579008 – volume-title: Skeletal Muscle in Health and Disease: A Textbook of Muscle Physiology year: 1990 ident: e_1_2_8_57_1 contributor: fullname: Jones DA – ident: e_1_2_8_14_1 doi: 10.1113/jphysiol.2005.101600 – ident: e_1_2_8_29_1 doi: 10.1002/nbm.887 – ident: e_1_2_8_4_1 doi: 10.1016/j.clinbiomech.2011.04.004 – ident: e_1_2_8_6_1 doi: 10.2340/16501977-0331 – ident: e_1_2_8_11_1 doi: 10.1002/nbm.1801 – ident: e_1_2_8_22_1 doi: 10.1002/jmri.1076 – ident: e_1_2_8_34_1 doi: 10.1016/S0021-9290(03)00005-8 – ident: e_1_2_8_17_1 doi: 10.1113/jphysiol.1993.sp019629 – ident: e_1_2_8_28_1 doi: 10.1002/mrm.20993 – ident: e_1_2_8_13_1 doi: 10.1002/mus.20981 – ident: e_1_2_8_45_1 doi: 10.1016/j.jmbbm.2009.03.004 – ident: e_1_2_8_10_1 doi: 10.1093/ptj/80.4.352 – ident: e_1_2_8_15_1 doi: 10.1249/00005768-199101000-00003 – start-page: 2505 volume-title: Proceedings 17th Scientific Meeting year: 2009 ident: e_1_2_8_40_1 contributor: fullname: Green M – ident: e_1_2_8_47_1 doi: 10.1016/0021-9290(87)90292-2 – ident: e_1_2_8_21_1 doi: 10.1016/S0006-3495(94)80775-1 – ident: e_1_2_8_20_1 doi: 10.1016/j.clinbiomech.2008.03.068 – ident: e_1_2_8_52_1 doi: 10.1016/j.jbiomech.2011.06.023 – ident: e_1_2_8_53_1 doi: 10.1002/jmri.20651 – ident: e_1_2_8_55_1 doi: 10.1007/BF00123482 – ident: e_1_2_8_32_1 doi: 10.1002/jmri.20487 – ident: e_1_2_8_24_1 doi: 10.1002/nbm.1409 – ident: e_1_2_8_23_1 doi: 10.1007/s00421-004-1186-2 – ident: e_1_2_8_5_1 doi: 10.1682/JRRD.2007.02.0040 – ident: e_1_2_8_54_1 doi: 10.1016/j.jbiomech.2011.01.005 – ident: e_1_2_8_7_1 doi: 10.1002/mus.20986 – ident: e_1_2_8_19_1 doi: 10.1016/j.jbiomech.2010.10.025 – ident: e_1_2_8_60_1 doi: 10.1002/ca.10170 – ident: e_1_2_8_46_1 – ident: e_1_2_8_50_1 doi: 10.1002/nbm.1801 – ident: e_1_2_8_9_1 doi: 10.1007/s00125-005-1757-8 – ident: e_1_2_8_37_1 doi: 10.1053/apmr.2002.35472 – ident: e_1_2_8_39_1 doi: 10.1016/j.ultrasmedbio.2010.02.013 – ident: e_1_2_8_41_1 doi: 10.1002/jmri.23797 – ident: e_1_2_8_18_1 doi: 10.1113/jphysiol.1996.sp021768 – ident: e_1_2_8_12_1 doi: 10.1002/mus.21115 – ident: e_1_2_8_25_1 doi: 10.1002/jmri.20593 – ident: e_1_2_8_44_1 doi: 10.1002/mrm.20355 – ident: e_1_2_8_33_1 doi: 10.1016/j.jbiomech.2008.11.034 – ident: e_1_2_8_30_1 doi: 10.1002/jmri.20570 |
SSID | ssj0008432 |
Score | 2.4019544 |
Snippet | Physiological and pathological changes to the anisotropic mechanical properties of skeletal muscle are still largely unknown, with only a few studies... |
SourceID | proquest crossref pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1387 |
SubjectTerms | Adult Aging Anisotropy diffusion tensor imaging Elastic Modulus - physiology Elasticity Imaging Techniques - methods Female Humans Magnetic Resonance Imaging Male MR elastography muscle Muscle, Skeletal - physiology shear modulus stiffness Young Adult |
Title | Measuring anisotropic muscle stiffness properties using elastography |
URI | https://api.istex.fr/ark:/67375/WNG-X5BZW742-W/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnbm.2964 https://www.ncbi.nlm.nih.gov/pubmed/23640745 https://www.proquest.com/docview/1466246572 https://search.proquest.com/docview/1443409856 https://search.proquest.com/docview/1492633709 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zj9QwDLZgEccLx3ANLKhIiLeymVxNeWMv9mVGSIBmxUuUpglaoe2MpjMSPx87PcRKgJB4qtS6bWInju3EnwFee0r9iELndRQ8l_VslhvveB58HZyJUlSeYrpnn4rFuTk-IZicd0MuTIcPMQbcaGYkfU0T3FXtwS-godXlW9ozRPWLTkLK3hAfRyVsZKpNhgYEz4U0bMCdZfxgePHKSnSDmPrjd2bmVas1LTun9_6nwffhbm9sZu-70fEAroVmArePhhpvE7g177fWJ3AznQX17UM4nqe4Ia5pmWsu2tV2s1pf-Oxy1-JHMlQJMZJ-zNYUx98QIGtGp-e_ZQEt8W0Pgf0IvpyefD46y_tiC7mXRss8uIByQf9EcRk9StZ5HkvFYmFKctq81kxUhqmguald7VjJQlHh_SBEqaR4DHvNqglPISuDjujVzQjsXarauxmLrmY1l0jqZTGFVwPj7brD1LAdejK3yCRLTJrCmySRkcBtvtMZtELZ5eKDPVeHX5fo1dvlFPYHkdl--rXkz2gutSo4_mt8jLyl3RDXhNWOaKRA59Yo_TeakmshClZO4Uk3HMYGEfI-2l8KW5qk_seu2MXhnK7P_pXwOdzhVHQjZTzuw952swsv4Hpb716mQf4Ty_f9JA |
link.rule.ids | 315,782,786,1408,27935,27936,46066,46490 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3raxQxEB9si9YvPs7XadUVxG9rc3ltFj_Zlyf2DsHKlX4JuTykSPeO2zvwzzeTfWBBRfDTwu7s7mQmmcxMkt8AvLZ49CMwmbvAaM7daJQra2jurfNGBc7mFnO64y_F9FwdHSNMzrvuLEyDD9En3HBkJHuNAxwT0vu_oIbOr97iouEW7HDJS6zbwNjn3gwrnqqTRReC5owr0iHPErrfvXltLtpBsf74naN53W9NE8_J3f9i-R7caf3N7H3TQe7DDV8NYPewK_M2gFuTdnV9ADfTdlBbP4CjSUodxmktM9VlvVivFstLm11t6viRLFqFENBEZktM5a8QkzXDDfTfMh-d8XWLgv0Qvp4cnx2O87beQm65kjz3xkfVxBBFUB5sVK6xNJSChEKVGLdZKQmbKyK8pMoZZ0hJfDGP9z1jpeDsEWxXi8o_gaz0MsTAboR471w4a0YkGEcc5ZHU8mIIrzrJ62UDq6EbAGWqo5A0CmkIb5JKegKz-o7b0AqhZ9MP-lwcXMxiYK9nQ9jrdKbbEVhjSCMpl6Kg8V_94yhbXBAxlV9skIazGN8qIf9GU1LJWEHKITxu-kPPEILvRxdMRE6T2v_YFD09mOD16b8SvoTd8dnkVJ9-nH56Brcp1uBIByD3YHu92vjnsFW7zYvU438CssQBVA |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3rb9MwED-xTQy-8CivwoAgIb6FuX7F4RtbV4ag1SRAnfhiuX6gCS2tmlbiz8fnPMQkQEh8ipRcEvvOPt-dfb8DeGkx9SMwmbvAaM7daJQra2jurfNGBc4WFmO6p5-K2bkanyBMzpsuF6bBh-gDbjgzkr7GCb5y4fAX0NDF5WvcM9yBPY5WOKZvsLNeCyueipNFC4LmjCvSAc8Seti9eWUp2kOu_vidnXnVbE3rzuT2_7T4Dtxqrc3sbTM87sI1Xw3gxnFX5G0A-9N2b30A19NhUFvfg_E0BQ7jopaZ6qJebtbL1YXNLrd1_EgWdUIIqCCzFQby14jImuHx-W-Zj6b4psXAvg9fJiefj0_zttpCbrmSPPfGR8FEB0VQHmwUrbE0lIKEQpXotVkpCVsoIrykyhlnSEl8sYj3PWOl4OwB7FbLyj-CrPQyRLduhGjvXDhrRiQYRxzlkdTyYggvOsbrVQOqoRv4ZKojkzQyaQivkkR6ArP-jofQCqHns3f6XBx9nUe3Xs-HcNCJTLfzr0aHRlIuRUHjv_rHkbe4HWIqv9wiDWfRu1VC_o2mpJKxgpRDeNgMh75BCL0fDTARW5qk_seu6NnRFK-P_5XwOeyfjSf64_vZhydwk2IBjpT9eAC7m_XWP4Wd2m2fpfH-E6rEAAM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measuring+anisotropic+muscle+stiffness+properties+using+elastography&rft.jtitle=NMR+in+biomedicine&rft.au=Green%2C+M.+A.&rft.au=Geng%2C+G.&rft.au=Qin%2C+E.&rft.au=Sinkus%2C+R.&rft.date=2013-11-01&rft.issn=0952-3480&rft.eissn=1099-1492&rft.volume=26&rft.issue=11&rft.spage=1387&rft.epage=1394&rft_id=info:doi/10.1002%2Fnbm.2964&rft.externalDBID=10.1002%252Fnbm.2964&rft.externalDocID=NBM2964 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-3480&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-3480&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-3480&client=summon |