Hormones and diet, but not body weight, control hypothalamic microglial activity

The arcuate nucleus (ARC) of the hypothalamus plays a key role in sensing metabolic feedback and regulating energy homeostasis. Recent studies revealed activation of microglia in mice with high‐fat diet (HFD)‐induced obesity (DIO), suggesting a potential pathophysiological role for inflammatory proc...

Full description

Saved in:
Bibliographic Details
Published in:Glia Vol. 62; no. 1; pp. 17 - 25
Main Authors: Gao, Yuanqing, Ottaway, Nickki, Schriever, Sonja C., Legutko, Beata, García-Cáceres, Cristina, de la Fuente, Esther, Mergen, Clarita, Bour, Susanne, Thaler, Joshua P., Seeley, Randy J., Filosa, Jessica, Stern, Javier E., Perez-Tilve, Diego, Schwartz, Michael W., Tschöp, Matthias H., Yi, Chun-Xia
Format: Journal Article
Language:English
Published: United States Blackwell Publishing Ltd 01-01-2014
Wiley Subscription Services, Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The arcuate nucleus (ARC) of the hypothalamus plays a key role in sensing metabolic feedback and regulating energy homeostasis. Recent studies revealed activation of microglia in mice with high‐fat diet (HFD)‐induced obesity (DIO), suggesting a potential pathophysiological role for inflammatory processes within the hypothalamus. To further investigate the metabolic causes and molecular underpinnings of such glial activation, we analyzed the microglial activity in wild‐type (WT), monogenic obese ob/ob (leptin deficient), db/db (leptin‐receptor mutation), and Type‐4 melanocortin receptor knockout (MC4R KO) mice on either a HFD or on standardized chow (SC) diet. Following HFD exposure, we observed a significant increase in the total number of ARC microglia, immunoreactivity of ionized calcium binding adaptor molecule 1 (iba1‐ir), cluster of differentiation 68 (CD68‐ir), and ramification of microglial processes. The ob/ob mice had significantly less iba1‐ir and ramifications. Leptin replacement rescued these phenomena. The db/db mice had similar iba1‐ir comparable with WT mice but had significantly lower CD68‐ir and more ramifications than WT mice. After 2 weeks of HFD, ob/ob mice showed an increase of iba1‐ir, and db/db mice showed increase of CD68‐ir. Obese MC4R KO mice fed a SC diet had comparable iba1‐ir and CD68‐ir with WT mice but had significantly more ramifications than WT mice. Intriguingly, treatment of DIO mice with glucagon‐like peptide‐1 receptor agonists reduced microglial activation independent of body weight. Our results show that diet type, adipokines, and gut signals, but not body weight, affect the presence and activity levels of hypothalamic microglia in obesity. GLIA 2013;62:17–25
AbstractList The arcuate nucleus (ARC) of the hypothalamus plays a key role in sensing metabolic feedback and regulating energy homeostasis. Recent studies revealed activation of microglia in mice with high-fat diet (HFD)-induced obesity (DIO), suggesting a potential pathophysiological role for inflammatory processes within the hypothalamus. To further investigate the metabolic causes and molecular underpinnings of such glial activation, we analyzed the microglial activity in wild-type (WT), monogenic obese ob/ob (leptin deficient), db/db (leptin-receptor mutation), and Type-4 melanocortin receptor knockout (MC4R KO) mice on either a HFD or on standardized chow (SC) diet. Following HFD exposure, we observed a significant increase in the total number of ARC microglia, immunoreactivity of ionized calcium binding adaptor molecule 1 (iba1-ir), cluster of differentiation 68 (CD68-ir), and ramification of microglial processes. The ob/ob mice had significantly less iba1-ir and ramifications. Leptin replacement rescued these phenomena. The db/db mice had similar iba1-ir comparable with WT mice but had significantly lower CD68-ir and more ramifications than WT mice. After 2 weeks of HFD, ob/ob mice showed an increase of iba1-ir, and db/db mice showed increase of CD68-ir. Obese MC4R KO mice fed a SC diet had comparable iba1-ir and CD68-ir with WT mice but had significantly more ramifications than WT mice. Intriguingly, treatment of DIO mice with glucagon-like peptide-1 receptor agonists reduced microglial activation independent of body weight. Our results show that diet type, adipokines, and gut signals, but not body weight, affect the presence and activity levels of hypothalamic microglia in obesity.
The arcuate nucleus (ARC) of the hypothalamus plays a key role in sensing metabolic feedback and regulating energy homeostasis. Recent studies revealed activation of microglia in mice with high-fat diet (HFD)-induced obesity (DIO), suggesting a potential pathophysiological role for inflammatory processes within the hypothalamus. To further investigate the metabolic causes and molecular underpinnings of such glial activation, we analyzed the microglial activity in wild-type (WT), monogenic obese ob/ob (leptin deficient), db/db (leptin-receptor mutation), and Type-4 melanocortin receptor knockout (MC4R KO) mice on either a HFD or on standardized chow (SC) diet. Following HFD exposure, we observed a significant increase in the total number of ARC microglia, immunoreactivity of ionized calcium binding adaptor molecule 1 (iba1-ir), cluster of differentiation 68 (CD68-ir), and ramification of microglial processes. The ob/ob mice had significantly less iba1-ir and ramifications. Leptin replacement rescued these phenomena. The db/db mice had similar iba1-ir comparable with WT mice but had significantly lower CD68-ir and more ramifications than WT mice. After 2 weeks of HFD, ob/ob mice showed an increase of iba1-ir, and db/db mice showed increase of CD68-ir. Obese MC4R KO mice fed a SC diet had comparable iba1-ir and CD68-ir with WT mice but had significantly more ramifications than WT mice. Intriguingly, treatment of DIO mice with glucagon-like peptide-1 receptor agonists reduced microglial activation independent of body weight. Our results show that diet type, adipokines, and gut signals, but not body weight, affect the presence and activity levels of hypothalamic microglia in obesity.
The arcuate nucleus (ARC) of the hypothalamus plays a key role in sensing metabolic feedback and regulating energy homeostasis. Recent studies revealed activation of microglia in mice with high-fat diet (HFD)-induced obesity (DIO), suggesting a potential pathophysiological role for inflammatory processes within the hypothalamus. To further investigate the metabolic causes and molecular underpinnings of such glial activation, we analyzed the microglial activity in wild-type (WT), monogenic obese ob/ob (leptin deficient), db/db (leptin-receptor mutation), and Type-4 melanocortin receptor knockout (MC4R KO) mice on either a HFD or on standardized chow (SC) diet. Following HFD exposure, we observed a significant increase in the total number of ARC microglia, immunoreactivity of ionized calcium binding adaptor molecule 1 (iba1-ir), cluster of differentiation 68 (CD68-ir), and ramification of microglial processes. The ob/ob mice had significantly less iba1-ir and ramifications. Leptin replacement rescued these phenomena. The db/db mice had similar iba1-ir comparable with WT mice but had significantly lower CD68-ir and more ramifications than WT mice. After 2 weeks of HFD, ob/ob mice showed an increase of iba1-ir, and db/db mice showed increase of CD68-ir. Obese MC4R KO mice fed a SC diet had comparable iba1-ir and CD68-ir with WT mice but had significantly more ramifications than WT mice. Intriguingly, treatment of DIO mice with glucagon-like peptide-1 receptor agonists reduced microglial activation independent of body weight. Our results show that diet type, adipokines, and gut signals, but not body weight, affect the presence and activity levels of hypothalamic microglia in obesity. GLIA 2013;62:17-25 [PUBLICATION ABSTRACT]
The arcuate nucleus (ARC) of the hypothalamus plays a key role in sensing metabolic feedback and regulating energy homeostasis. Recent studies revealed activation of microglia in mice with high‐fat diet (HFD)‐induced obesity (DIO), suggesting a potential pathophysiological role for inflammatory processes within the hypothalamus. To further investigate the metabolic causes and molecular underpinnings of such glial activation, we analyzed the microglial activity in wild‐type (WT), monogenic obese ob/ob (leptin deficient), db/db (leptin‐receptor mutation), and Type‐4 melanocortin receptor knockout (MC4R KO) mice on either a HFD or on standardized chow (SC) diet. Following HFD exposure, we observed a significant increase in the total number of ARC microglia, immunoreactivity of ionized calcium binding adaptor molecule 1 (iba1‐ir), cluster of differentiation 68 (CD68‐ir), and ramification of microglial processes. The ob/ob mice had significantly less iba1‐ir and ramifications. Leptin replacement rescued these phenomena. The db/db mice had similar iba1‐ir comparable with WT mice but had significantly lower CD68‐ir and more ramifications than WT mice. After 2 weeks of HFD, ob/ob mice showed an increase of iba1‐ir, and db/db mice showed increase of CD68‐ir. Obese MC4R KO mice fed a SC diet had comparable iba1‐ir and CD68‐ir with WT mice but had significantly more ramifications than WT mice. Intriguingly, treatment of DIO mice with glucagon‐like peptide‐1 receptor agonists reduced microglial activation independent of body weight. Our results show that diet type, adipokines, and gut signals, but not body weight, affect the presence and activity levels of hypothalamic microglia in obesity. GLIA 2013;62:17–25
The arcuate nucleus (ARC) of the hypothalamus plays a key role in sensing metabolic feedback and regulating energy homeostasis. Recent studies revealed activation of microglia in mice with high‐fat diet (HFD)‐induced obesity (DIO), suggesting a potential pathophysiological role for inflammatory processes within the hypothalamus. To further investigate the metabolic causes and molecular underpinnings of such glial activation, we analyzed the microglial activity in wild‐type (WT), monogenic obese ob/ob (leptin deficient), db/db (leptin‐receptor mutation), and Type‐4 melanocortin receptor knockout (MC4R KO) mice on either a HFD or on standardized chow (SC) diet. Following HFD exposure, we observed a significant increase in the total number of ARC microglia, immunoreactivity of ionized calcium binding adaptor molecule 1 (iba1‐ir), cluster of differentiation 68 (CD68‐ir), and ramification of microglial processes. The ob/ob mice had significantly less iba1‐ir and ramifications. Leptin replacement rescued these phenomena. The db/db mice had similar iba1‐ir comparable with WT mice but had significantly lower CD68‐ir and more ramifications than WT mice. After 2 weeks of HFD, ob/ob mice showed an increase of iba1‐ir, and db/db mice showed increase of CD68‐ir. Obese MC4R KO mice fed a SC diet had comparable iba1‐ir and CD68‐ir with WT mice but had significantly more ramifications than WT mice. Intriguingly, treatment of DIO mice with glucagon‐like peptide‐1 receptor agonists reduced microglial activation independent of body weight. Our results show that diet type, adipokines, and gut signals, but not body weight, affect the presence and activity levels of hypothalamic microglia in obesity. GLIA 2013;62:17–25
Author Perez-Tilve, Diego
Schriever, Sonja C.
Bour, Susanne
Filosa, Jessica
Gao, Yuanqing
Tschöp, Matthias H.
Legutko, Beata
de la Fuente, Esther
Mergen, Clarita
Thaler, Joshua P.
Schwartz, Michael W.
Stern, Javier E.
Ottaway, Nickki
Seeley, Randy J.
García-Cáceres, Cristina
Yi, Chun-Xia
AuthorAffiliation 1 Institute for Diabetes and Obesity, Helmholtz Centre for Health and Environment and Technische Universität München, Munich, Germany
2 Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio
4 Department of Physiology, Georgia Health Sciences University, Georgia
3 Division of Metabolism, Endocrinology and Nutrition, Diabetes and Obesity Center of Excellence, University of Washington, Seattle, Washington
AuthorAffiliation_xml – name: 2 Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio
– name: 4 Department of Physiology, Georgia Health Sciences University, Georgia
– name: 1 Institute for Diabetes and Obesity, Helmholtz Centre for Health and Environment and Technische Universität München, Munich, Germany
– name: 3 Division of Metabolism, Endocrinology and Nutrition, Diabetes and Obesity Center of Excellence, University of Washington, Seattle, Washington
Author_xml – sequence: 1
  givenname: Yuanqing
  surname: Gao
  fullname: Gao, Yuanqing
  organization: Institute for Diabetes and Obesity, Helmholtz Centre for Health and Environment and Technische Universität München, Munich, Germany
– sequence: 2
  givenname: Nickki
  surname: Ottaway
  fullname: Ottaway, Nickki
  organization: Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Metabolic Diseases Institute, University of Cincinnati, Ohio, Cincinnati
– sequence: 3
  givenname: Sonja C.
  surname: Schriever
  fullname: Schriever, Sonja C.
  organization: Institute for Diabetes and Obesity, Helmholtz Centre for Health and Environment and Technische Universität München, Munich, Germany
– sequence: 4
  givenname: Beata
  surname: Legutko
  fullname: Legutko, Beata
  organization: Institute for Diabetes and Obesity, Helmholtz Centre for Health and Environment and Technische Universität München, Munich, Germany
– sequence: 5
  givenname: Cristina
  surname: García-Cáceres
  fullname: García-Cáceres, Cristina
  organization: Institute for Diabetes and Obesity, Helmholtz Centre for Health and Environment and Technische Universität München, Munich, Germany
– sequence: 6
  givenname: Esther
  surname: de la Fuente
  fullname: de la Fuente, Esther
  organization: Institute for Diabetes and Obesity, Helmholtz Centre for Health and Environment and Technische Universität München, Munich, Germany
– sequence: 7
  givenname: Clarita
  surname: Mergen
  fullname: Mergen, Clarita
  organization: Institute for Diabetes and Obesity, Helmholtz Centre for Health and Environment and Technische Universität München, Munich, Germany
– sequence: 8
  givenname: Susanne
  surname: Bour
  fullname: Bour, Susanne
  organization: Institute for Diabetes and Obesity, Helmholtz Centre for Health and Environment and Technische Universität München, Munich, Germany
– sequence: 9
  givenname: Joshua P.
  surname: Thaler
  fullname: Thaler, Joshua P.
  organization: Division of Metabolism, Endocrinology and Nutrition, Diabetes and Obesity Center of Excellence, University of Washington, Washington, Seattle
– sequence: 10
  givenname: Randy J.
  surname: Seeley
  fullname: Seeley, Randy J.
  organization: Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Metabolic Diseases Institute, University of Cincinnati, Ohio, Cincinnati
– sequence: 11
  givenname: Jessica
  surname: Filosa
  fullname: Filosa, Jessica
  organization: Department of Physiology, Georgia Health Sciences University, Georgia
– sequence: 12
  givenname: Javier E.
  surname: Stern
  fullname: Stern, Javier E.
  organization: Department of Physiology, Georgia Health Sciences University, Georgia
– sequence: 13
  givenname: Diego
  surname: Perez-Tilve
  fullname: Perez-Tilve, Diego
  organization: Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Metabolic Diseases Institute, University of Cincinnati, Ohio, Cincinnati
– sequence: 14
  givenname: Michael W.
  surname: Schwartz
  fullname: Schwartz, Michael W.
  organization: Division of Metabolism, Endocrinology and Nutrition, Diabetes and Obesity Center of Excellence, University of Washington, Washington, Seattle
– sequence: 15
  givenname: Matthias H.
  surname: Tschöp
  fullname: Tschöp, Matthias H.
  organization: Institute for Diabetes and Obesity, Helmholtz Centre for Health and Environment and Technische Universität München, Munich, Germany
– sequence: 16
  givenname: Chun-Xia
  surname: Yi
  fullname: Yi, Chun-Xia
  email: chun-xia.yi@helmholtz-muenchen.de
  organization: Institute for Diabetes and Obesity, Helmholtz Centre for Health and Environment and Technische Universität München, Munich, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24166765$$D View this record in MEDLINE/PubMed
BookMark eNp9kEtPGzEUha0KVALthh9QWWKHGHr9GHtmU4lngkgfixYkNpZnxpOYTsbB4wDz73FIiNoNC8vy9bnfvefsoq3WtQahfQLHBIB-nTRWH1OaZvABDQjkWUIIE1toAFnOE8JzsoN2u-4egMSH_Ih2KCdCSJEO0K-R87OI67BuK1xZE45wsQi4dQEXrurxk7GTaSyWrg3eNXjaz12Y6kbPbInj8W45vsG6DPbRhv4T2q5105nP63sP_bm8-H02SsY_h1dnJ-Ok5JmAhLFS1EzQVFaUy1zoXNQ1CM1ZyWgJ1GRciiJPDRQgUyDa1FSyikR7kqVGsj30bcWdL4qZqUoT19ONmns7075XTlv1_09rp2riHhWnhOUpRMDBGuDdw8J0Qd27hW_jzopwARkAozSqDleqaLTrvKk3EwioZfpqaV-9ph_FX_7daSN9izsKyErwZBvTv4NSw_HVyRs0WfXYLpjnTY_2f5WQTKbq9sdQndPvjN2dXqsb9gLdxKA7
CODEN GLIAEJ
CitedBy_id crossref_primary_10_3389_fncel_2021_722028
crossref_primary_10_7554_eLife_55357
crossref_primary_10_1016_j_tem_2016_03_017
crossref_primary_10_1152_physiol_00049_2015
crossref_primary_10_1038_s41581_018_0068_5
crossref_primary_10_3389_fnins_2018_00846
crossref_primary_10_1016_j_neuropharm_2024_109951
crossref_primary_10_1210_er_2016_1007
crossref_primary_10_1111_ejn_15871
crossref_primary_10_1007_s00125_016_3906_7
crossref_primary_10_1111_ejn_15594
crossref_primary_10_1016_j_nbd_2018_10_012
crossref_primary_10_2337_db16_1278
crossref_primary_10_1007_s11011_017_0151_9
crossref_primary_10_2337_db16_0586
crossref_primary_10_1007_s10571_023_01376_y
crossref_primary_10_1016_j_celrep_2018_09_070
crossref_primary_10_1186_s40478_023_01606_w
crossref_primary_10_1016_j_jnutbio_2021_108928
crossref_primary_10_3390_ijms222312668
crossref_primary_10_1186_s12974_018_1076_x
crossref_primary_10_1210_en_2017_00539
crossref_primary_10_1186_s12974_023_02740_x
crossref_primary_10_1186_s13195_015_0117_2
crossref_primary_10_1155_2017_7949582
crossref_primary_10_1016_j_bbrc_2018_07_095
crossref_primary_10_1016_j_yhbeh_2020_104675
crossref_primary_10_3389_fnsys_2014_00212
crossref_primary_10_1016_j_molmet_2017_06_008
crossref_primary_10_1016_j_celrep_2017_01_047
crossref_primary_10_1186_s12979_022_00323_7
crossref_primary_10_1111_jne_12328
crossref_primary_10_1016_j_cmet_2019_05_021
crossref_primary_10_1016_j_cobeha_2016_03_005
crossref_primary_10_3390_jcm7030059
crossref_primary_10_1152_physiol_00021_2023
crossref_primary_10_3389_fnins_2019_00828
crossref_primary_10_1126_scitranslmed_aax6629
crossref_primary_10_1038_s42255_019_0040_0
crossref_primary_10_1038_s41598_019_52257_8
crossref_primary_10_1007_s11154_014_9300_1
crossref_primary_10_1038_nm_3616
crossref_primary_10_1080_10717544_2017_1279237
crossref_primary_10_3390_ijms22063141
crossref_primary_10_3390_children10020241
crossref_primary_10_1016_j_cmet_2016_04_013
crossref_primary_10_1038_s41593_018_0286_y
crossref_primary_10_1155_2022_6404964
crossref_primary_10_1111_jne_12671
crossref_primary_10_1210_en_2014_1367
crossref_primary_10_1016_j_celrep_2017_09_008
crossref_primary_10_1080_14728222_2020_1784142
crossref_primary_10_3389_fimmu_2020_550145
crossref_primary_10_1016_j_pneurobio_2016_03_001
crossref_primary_10_1002_oby_21387
crossref_primary_10_1016_j_physbeh_2016_09_029
crossref_primary_10_1007_s40265_017_0706_4
crossref_primary_10_1210_en_2016_1944
crossref_primary_10_3389_fnins_2020_00650
crossref_primary_10_1210_en_2014_1121
crossref_primary_10_1002_1873_3468_12691
crossref_primary_10_1016_j_cmet_2017_05_015
crossref_primary_10_1093_ejendo_lvad030
crossref_primary_10_1172_JCI75276
crossref_primary_10_1016_j_yhbeh_2020_104690
crossref_primary_10_1038_s41380_023_02326_2
crossref_primary_10_1038_s41598_019_56051_4
crossref_primary_10_1016_j_molmet_2016_07_010
crossref_primary_10_1172_jci_insight_131329
crossref_primary_10_1016_j_molmet_2016_05_009
crossref_primary_10_3389_fnins_2022_1027269
crossref_primary_10_1007_s13238_021_00834_x
crossref_primary_10_1016_j_bbi_2018_03_014
crossref_primary_10_1016_j_neuroscience_2017_05_050
crossref_primary_10_3390_ijms23062933
crossref_primary_10_1016_j_neuroscience_2016_04_009
crossref_primary_10_1098_rsob_210173
crossref_primary_10_1002_glia_23484
crossref_primary_10_1186_s12974_019_1607_0
crossref_primary_10_1002_glia_23882
crossref_primary_10_1038_npp_2016_123
crossref_primary_10_1152_physiol_00009_2024
crossref_primary_10_3389_fncel_2022_867217
crossref_primary_10_3389_fnins_2020_589650
crossref_primary_10_1186_s12986_016_0137_3
crossref_primary_10_1016_j_biopha_2021_112012
crossref_primary_10_1111_obr_12243
crossref_primary_10_1007_s00401_016_1595_4
crossref_primary_10_3389_fendo_2015_00013
crossref_primary_10_3892_mmr_2023_12964
crossref_primary_10_1161_CIRCRESAHA_120_315900
crossref_primary_10_1210_en_2014_1074
crossref_primary_10_1007_s11011_018_0337_9
crossref_primary_10_1016_j_pnpbp_2016_07_004
crossref_primary_10_1186_s12974_021_02167_2
crossref_primary_10_1038_ncomms14556
crossref_primary_10_1038_nrendo_2015_48
crossref_primary_10_1111_febs_16583
crossref_primary_10_3389_fendo_2017_00197
crossref_primary_10_3390_jfmk9020058
crossref_primary_10_1155_2017_5048616
crossref_primary_10_1038_s41574_019_0165_y
crossref_primary_10_1007_s11302_018_9605_8
crossref_primary_10_1016_j_neubiorev_2023_105100
crossref_primary_10_1152_ajpendo_00059_2023
crossref_primary_10_1016_j_yfrne_2015_09_004
crossref_primary_10_3390_ijms23126380
crossref_primary_10_1016_j_molmet_2017_11_003
crossref_primary_10_1016_j_bcp_2018_01_024
crossref_primary_10_1096_fj_202001147R
crossref_primary_10_1016_j_molmet_2021_101214
crossref_primary_10_1210_en_2019_00487
crossref_primary_10_3389_fnins_2019_00342
crossref_primary_10_1016_j_celrep_2020_01_005
crossref_primary_10_3389_fnins_2014_00446
crossref_primary_10_1016_j_appet_2017_10_006
crossref_primary_10_3390_ijms21051554
crossref_primary_10_1093_gbe_evaa118
crossref_primary_10_1016_j_bbi_2014_09_022
crossref_primary_10_1016_j_brainres_2019_01_006
crossref_primary_10_1177_23982128211003484
crossref_primary_10_1038_s41398_020_0767_0
crossref_primary_10_1016_j_lfs_2017_11_019
crossref_primary_10_1016_j_celrep_2021_109163
crossref_primary_10_3389_fendo_2019_00424
crossref_primary_10_1038_ncomms15143
crossref_primary_10_1016_j_mce_2016_05_015
crossref_primary_10_3390_nu11112773
crossref_primary_10_1016_j_molmet_2024_101904
crossref_primary_10_1172_JCI88878
crossref_primary_10_1016_j_celrep_2014_10_045
crossref_primary_10_3389_fendo_2015_00042
crossref_primary_10_1152_ajpendo_00012_2016
crossref_primary_10_1007_s00125_016_4181_3
crossref_primary_10_3390_ijms22105243
crossref_primary_10_1530_JOE_18_0596
crossref_primary_10_1038_s12276_021_00666_z
crossref_primary_10_1186_s12576_020_00747_0
crossref_primary_10_3390_cells10071584
crossref_primary_10_1016_j_cmet_2024_01_003
crossref_primary_10_1530_JME_16_0182
crossref_primary_10_1016_j_celrep_2014_11_018
crossref_primary_10_1016_j_yfrne_2019_100748
crossref_primary_10_3389_fnins_2023_1238528
crossref_primary_10_1016_j_jneuroim_2014_06_004
crossref_primary_10_1111_jne_12598
crossref_primary_10_3390_jcm11010186
crossref_primary_10_1021_acsami_1c22434
crossref_primary_10_1111_jne_12756
crossref_primary_10_1002_jnr_24628
crossref_primary_10_1007_s00018_021_04019_x
crossref_primary_10_1016_j_beem_2014_02_002
crossref_primary_10_1016_j_metabol_2020_154694
crossref_primary_10_1038_srep23673
crossref_primary_10_3390_cells10092236
crossref_primary_10_1016_j_cmet_2023_07_008
crossref_primary_10_1016_j_neuroscience_2019_10_021
crossref_primary_10_3390_ijms20061317
crossref_primary_10_1021_acschemneuro_6b00009
crossref_primary_10_1186_s12263_018_0619_1
crossref_primary_10_1016_j_neuroscience_2019_08_006
crossref_primary_10_1097_MED_0000000000000182
crossref_primary_10_3389_fnins_2019_00378
crossref_primary_10_1016_j_brainresbull_2022_04_015
crossref_primary_10_1016_j_taap_2020_115124
crossref_primary_10_3389_fphys_2015_00350
crossref_primary_10_1186_s12967_024_05077_y
crossref_primary_10_1016_j_mce_2016_09_028
crossref_primary_10_1038_s42255_018_0029_0
crossref_primary_10_1111_jne_12504
crossref_primary_10_1134_S0022093022040263
crossref_primary_10_3389_fnmol_2018_00065
crossref_primary_10_1002_2211_5463_12426
crossref_primary_10_1002_oby_22666
crossref_primary_10_1016_j_pneurobio_2019_101720
crossref_primary_10_1038_s41598_019_57345_3
crossref_primary_10_3389_fendo_2014_00074
crossref_primary_10_3390_nu13103460
Cites_doi 10.1056/NEJM199205143262003
10.1189/jlb.71.5.854
10.1038/ijo.2011.56
10.1016/j.neuroscience.2008.06.046
10.1016/S0171-2985(11)80187-7
10.1126/science.7624777
10.1016/S0165-5728(99)00222-2
10.1172/JCI990
10.1096/fsb2fasebj.12.1.57
10.2337/diab.42.11.1678
10.1016/j.neures.2006.04.008
10.1002/glia.10274
10.1016/j.brainresbull.2011.10.004
10.1006/bbrc.1996.1112
10.1016/j.molmet.2012.08.004
10.1242/dmm.009464
10.1002/glia.22291
10.1038/nature11729
10.1016/j.bbi.2009.11.003
10.1093/brain/awn109
10.1016/S0092-8674(00)81294-5
10.1016/S0021-9258(18)53088-X
10.1523/JNEUROSCI.0529-11.2011
10.1161/01.STR.32.5.1208
10.1172/JCI59660
10.1016/0165-5728(90)90055-R
10.1038/nrendo.2011.77
10.1677/JOE-09-0132
10.1080/078538902321117698
ContentType Journal Article
Copyright Copyright © 2013 Wiley Periodicals, Inc.
2013 Wiley Periodicals, Inc. 2013
Copyright_xml – notice: Copyright © 2013 Wiley Periodicals, Inc.
– notice: 2013 Wiley Periodicals, Inc. 2013
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7T7
7TK
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
5PM
DOI 10.1002/glia.22580
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
MEDLINE
Virology and AIDS Abstracts

CrossRef
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1098-1136
EndPage 25
ExternalDocumentID 3134853911
10_1002_glia_22580
24166765
GLIA22580
ark_67375_WNG_D2M33ZBK_V
Genre article
Journal Article
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: P30 DK017047
– fundername: NIDDK NIH HHS
  grantid: P30 DK035816
– fundername: NIDDK NIH HHS
  grantid: K08 DK088872
– fundername: NIDDK NIH HHS
  grantid: R01 DK090320
– fundername: NIDDK NIH HHS
  grantid: R01 DK083042
GroupedDBID ---
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GAKWD
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
X7M
XG1
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
CITATION
7QL
7T7
7TK
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
5PM
ID FETCH-LOGICAL-c4860-33c6f36257d24796a96ff06a43c32c02e8476b95e0b07501aef273d1109735e73
IEDL.DBID 33P
ISSN 0894-1491
IngestDate Tue Sep 17 21:07:22 EDT 2024
Thu Oct 10 22:11:17 EDT 2024
Fri Nov 22 00:32:57 EST 2024
Sat Sep 28 07:53:02 EDT 2024
Sat Aug 24 01:01:45 EDT 2024
Wed Oct 30 09:55:19 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords leptin
obesity
high calorie diet
Language English
License Copyright © 2013 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4860-33c6f36257d24796a96ff06a43c32c02e8476b95e0b07501aef273d1109735e73
Notes ark:/67375/WNG-D2M33ZBK-V
istex:56D0B98F07B5FB242A32698436C9E471C008EB56
ArticleID:GLIA22580
OpenAccessLink https://europepmc.org/articles/pmc4213950?pdf=render
PMID 24166765
PQID 1460800322
PQPubID 996331
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4213950
proquest_journals_1460800322
crossref_primary_10_1002_glia_22580
pubmed_primary_24166765
wiley_primary_10_1002_glia_22580_GLIA22580
istex_primary_ark_67375_WNG_D2M33ZBK_V
PublicationCentury 2000
PublicationDate January 2014
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: January 2014
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Glia
PublicationTitleAlternate Glia
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Akiyama H, McGeer PL. 1990. Brain microglia constitutively express beta-2 integrins. J Neuroimmunol 30:81-93.
Loffreda S, Yang SQ, Lin HZ, Karp CL, Brengman ML, Wang DJ, Klein AS, Bulkley GB, Bao C, Noble PW, Lane MD, Diehl AM. 1998. Leptin regulates proinflammatory immune responses. FASEB J 12:57-65.
Smith JA, Das A, Ray SK, Banik NL. 2012. Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res Bull 87:10-20.
Thorens B, Porret A, Buhler L, Deng SP, Morel P, Widmann C. 1993. Cloning and functional expression of the human islet GLP-1 receptor. Demonstration that exendin-4 is an agonist and exendin-(9-39) an antagonist of the receptor. Diabetes 42:1678-1682.
Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, Griep A, Axt D, Remus A, Tzeng TC, Gelpi E, Halle A, Korte M, Latz E, Golenbock DT. 2013. NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature 493:674-678.
Yi CX, Gericke M, Krüger M, Alkemade A, Kabra DG, Hanske S, Filosa J, Pfluger P, Bingham N, Woods SC, Herman J, Kalsbeek A, Baumann M, Lang R, Stern JE, Bechmann I, Tschöp MH. 2012a. High calorie diet triggers hypothalamic angiopathy. Mol Metab 1:95-100.
Gutniak M, Orskov C, Holst JJ, Ahren B, Efendic S. 1992. Antidiabetogenic effect of glucagon-like peptide-1 (7-36)amide in normal subjects and patients with diabetes mellitus. N Engl J Med 326:1316-1322.
Flint A, Raben A, Astrup A, Holst JJ. 1998. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J Clin Invest 101:515-520.
Kim S, Moon M, Park S. 2009. Exendin-4 protects dopaminergic neurons by inhibition of microglial activation and matrix metalloproteinase-3 expression in an animal model of Parkinson's disease. J Endocrinol 202:431-439.
Yi CX, Tschop MH, Woods SC, Hofmann SM. 2012b. High-fat-diet exposure induces IgG accumulation in hypothalamic microglia. Dis Model Mech 5:686-690.
Neumann H, Kotter MR, Franklin RJ. 2009. Debris clearance by microglia: An essential link between degeneration and regeneration. Brain 132:288-295.
McClean PL, Parthsarathy V, Faivre E, Holscher C. 2011. The diabetes drug liraglutide prevents degenerative processes in a mouse model of Alzheimer's disease. J Neurosci 31:6587-6594.
Betjes MG, Haks MC, Tuk CW, Beelen RH. 1991. Monoclonal antibody EBM11 (anti-CD68) discriminates between dendritic cells and macrophages after short-term culture. Immunobiology 183:79-87.
Kwakkenbos MJ, Chang GW, Lin HH, Pouwels W, de Jong EC, van Lier RA, Gordon S, Hamann J. 2002. The human EGF-TM7 family member EMR2 is a heterodimeric receptor expressed on myeloid cells. J Leukocyte Biol 71:854-862.
Lafrance V, Inoue W, Kan B, Luheshi GN. 2010. Leptin modulates cell morphology and cytokine release in microglia. Brain Behav Immun 24:358-365.
Yamamoto S, Kohsaka S, Nakajima K. 2012. Role of cell cycle-associated proteins in microglial proliferation in the axotomized rat facial nucleus. Glia 60:570-581.
Thaler JP, Yi CX, Schur EA, Guyenet SJ, Hwang BH, Dietrich MO, Zhao X, Sarruf DA, Izgur V, Maravilla KR, Nguyen HT, Fischer JD, Matsen ME, Wisse BE, Morton GJ, Horvath TL, Baskin DG, Tschop MH, Schwartz MW. 2012. Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest 122:153-162.
Velloso LA, Schwartz MW. 2011. Altered hypothalamic function in diet-induced obesity. Int J Obes (Lond) 35:1455-1465.
Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, Lallone RL, Burley SK, Friedman JM. 1995. Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269:543-546.
Ito D, Tanaka K, Suzuki S, Dembo T, Fukuuchi Y. 2001. Enhanced expression of Iba1, ionized calcium-binding adapter molecule 1, after transient focal cerebral ischemia in rat brain. Stroke 32:1208-1215.
Gantz I, Konda Y, Tashiro T, Shimoto Y, Miwa H, Munzert G, Watson SJ, DelValle J, Yamada T. 1993. Molecular cloning of a novel melanocortin receptor. J Biol Chem 268:8246-8250.
Postler E, Rimner A, Beschorner R, Schluesener HJ, Meyermann R. 2000. Allograft-inflammatory-factor-1 is upregulated in microglial cells in human cerebral infarctions. J Neuroimmunol 104:85-91.
Yi CX, Zeltser L, Tschop MH. 2011. Metabolic Syndrome ePoster-Brain and Neuron. Nat Med [Online], Supplementary 17 (7).
Napoli I, Neumann H. 2009. Microglial clearance function in health and disease. Neuroscience 158:1030-1038.
Paxinos G, Franklin K. 2008. The mouse brain in stereotaxic coordinates. New York, Elsevier.
Iwai T, Ito S, Tanimitsu K, Udagawa S, Oka J. 2006. Glucagon-like peptide-1 inhibits LPS-induced IL-1beta production in cultured rat astrocytes. Neurosci Res 55:352-360.
Nelson PT, Soma LA, Lavi E. 2002. Microglia in diseases of the central nervous system. Ann Med 34:491-500.
Imai Y, Ibata I, Ito D, Ohsawa K, Kohsaka S. 1996. A novel gene iba1 in the major histocompatibility complex class III region encoding an EF hand protein expressed in a monocytic lineage. Biochem Biophys Res Commun 224:855-862.
Barrera JG, Sandoval DA, D'Alessio DA, Seeley RJ. 2011. GLP-1 and energy balance: An integrated model of short-term and long-term control. Nat Rev Endocrinol 7:507-516.
Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ, Lakey ND, Culpepper J, Moore KJ, Breitbart RE, Duyk GM, Tepper RI, Morgenstern JP. 1996. Evidence that the diabetes gene encodes the leptin receptor: Identification of a mutation in the leptin receptor gene in db/db mice. Cell 84:491-495.
Saura J, Tusell JM, Serratosa J. 2003. High-yield isolation of murine microglia by mild trypsinization. Glia 44:183-189.
1990; 30
2012; 60
2012; 122
2011
2006; 55
2002; 34
1993; 42
2011; 31
2009; 132
1992; 326
2008
2011; 35
1993; 268
1996; 224
2012a; 1
2009; 158
2011; 7
2010; 24
2000; 104
1991; 183
1996; 84
1995; 269
2013; 493
2002; 71
1998; 101
2009; 202
1998; 12
2012; 87
2012b; 5
2003; 44
2001; 32
1348845 - N Engl J Med. 1992 May 14;326(20):1316-22
19570816 - J Endocrinol. 2009 Sep;202(3):431-9
11340235 - Stroke. 2001 May;32(5):1208-15
8713135 - Biochem Biophys Res Commun. 1996 Jul 25;224(3):855-62
24024123 - Mol Metab. 2012 Aug 09;1(1-2):95-100
21525299 - J Neurosci. 2011 Apr 27;31(17):6587-94
16720054 - Neurosci Res. 2006 Aug;55(4):352-60
7624777 - Science. 1995 Jul 28;269(5223):543-6
22024597 - Brain Res Bull. 2012 Jan 4;87(1):10-20
9449682 - J Clin Invest. 1998 Feb 1;101(3):515-20
19922787 - Brain Behav Immun. 2010 Mar;24(3):358-65
18567623 - Brain. 2009 Feb;132(Pt 2):288-95
11994511 - J Leukoc Biol. 2002 May;71(5):854-62
9438411 - FASEB J. 1998 Jan;12(1):57-65
18644426 - Neuroscience. 2009 Feb 6;158(3):1030-8
22258892 - Glia. 2012 Apr;60(4):570-81
22201683 - J Clin Invest. 2012 Jan;122(1):153-62
23254930 - Nature. 2013 Jan 31;493(7434):674-8
10683518 - J Neuroimmunol. 2000 Apr 3;104(1):85-91
21647189 - Nat Rev Endocrinol. 2011 Sep;7(9):507-16
12553488 - Ann Med. 2002;34(7-8):491-500
1834546 - Immunobiology. 1991 Sep;183(1-2):79-87
8463333 - J Biol Chem. 1993 Apr 15;268(11):8246-50
1977769 - J Neuroimmunol. 1990 Nov;30(1):81-93
22381575 - Dis Model Mech. 2012 Sep;5(5):686-90
8405712 - Diabetes. 1993 Nov;42(11):1678-82
8608603 - Cell. 1996 Feb 9;84(3):491-5
21386802 - Int J Obes (Lond). 2011 Dec;35(12):1455-65
14603460 - Glia. 2003 Dec;44(3):183-9
e_1_2_5_27_1
e_1_2_5_28_1
Paxinos G (e_1_2_5_22_1) 2008
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_29_1
Yi CX (e_1_2_5_32_1) 2011
e_1_2_5_20_1
e_1_2_5_15_1
e_1_2_5_14_1
e_1_2_5_17_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_19_1
e_1_2_5_18_1
e_1_2_5_30_1
e_1_2_5_31_1
References_xml – volume: 1
  start-page: 95
  year: 2012a
  end-page: 100
  article-title: High calorie diet triggers hypothalamic angiopathy
  publication-title: Mol Metab
– volume: 7
  start-page: 507
  year: 2011
  end-page: 516
  article-title: GLP‐1 and energy balance: An integrated model of short‐term and long‐term control
  publication-title: Nat Rev Endocrinol
– volume: 24
  start-page: 358
  year: 2010
  end-page: 365
  article-title: Leptin modulates cell morphology and cytokine release in microglia
  publication-title: Brain Behav Immun
– volume: 326
  start-page: 1316
  year: 1992
  end-page: 1322
  article-title: Antidiabetogenic effect of glucagon‐like peptide‐1 (7–36)amide in normal subjects and patients with diabetes mellitus
  publication-title: N Engl J Med
– volume: 269
  start-page: 543
  year: 1995
  end-page: 546
  article-title: Weight‐reducing effects of the plasma protein encoded by the obese gene
  publication-title: Science
– volume: 104
  start-page: 85
  year: 2000
  end-page: 91
  article-title: Allograft‐inflammatory‐factor‐1 is upregulated in microglial cells in human cerebral infarctions
  publication-title: J Neuroimmunol
– volume: 493
  start-page: 674
  year: 2013
  end-page: 678
  article-title: NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice
  publication-title: Nature
– volume: 158
  start-page: 1030
  year: 2009
  end-page: 1038
  article-title: Microglial clearance function in health and disease
  publication-title: Neuroscience
– volume: 44
  start-page: 183
  year: 2003
  end-page: 189
  article-title: High‐yield isolation of murine microglia by mild trypsinization
  publication-title: Glia
– volume: 101
  start-page: 515
  year: 1998
  end-page: 520
  article-title: Glucagon‐like peptide 1 promotes satiety and suppresses energy intake in humans
  publication-title: J Clin Invest
– volume: 122
  start-page: 153
  year: 2012
  end-page: 162
  article-title: Obesity is associated with hypothalamic injury in rodents and humans
  publication-title: J Clin Invest
– volume: 132
  start-page: 288
  year: 2009
  end-page: 295
  article-title: Debris clearance by microglia: An essential link between degeneration and regeneration
  publication-title: Brain
– volume: 224
  start-page: 855
  year: 1996
  end-page: 862
  article-title: A novel gene iba1 in the major histocompatibility complex class III region encoding an EF hand protein expressed in a monocytic lineage
  publication-title: Biochem Biophys Res Commun
– volume: 35
  start-page: 1455
  year: 2011
  end-page: 1465
  article-title: Altered hypothalamic function in diet‐induced obesity
  publication-title: Int J Obes (Lond)
– volume: 268
  start-page: 8246
  year: 1993
  end-page: 8250
  article-title: Molecular cloning of a novel melanocortin receptor
  publication-title: J Biol Chem
– volume: 12
  start-page: 57
  year: 1998
  end-page: 65
  article-title: Leptin regulates proinflammatory immune responses
  publication-title: FASEB J
– volume: 202
  start-page: 431
  year: 2009
  end-page: 439
  article-title: Exendin‐4 protects dopaminergic neurons by inhibition of microglial activation and matrix metalloproteinase‐3 expression in an animal model of Parkinson's disease
  publication-title: J Endocrinol
– volume: 71
  start-page: 854
  year: 2002
  end-page: 862
  article-title: The human EGF‐TM7 family member EMR2 is a heterodimeric receptor expressed on myeloid cells
  publication-title: J Leukocyte Biol
– volume: 84
  start-page: 491
  year: 1996
  end-page: 495
  article-title: Evidence that the diabetes gene encodes the leptin receptor: Identification of a mutation in the leptin receptor gene in db/db mice
  publication-title: Cell
– volume: 32
  start-page: 1208
  year: 2001
  end-page: 1215
  article-title: Enhanced expression of Iba1, ionized calcium‐binding adapter molecule 1, after transient focal cerebral ischemia in rat brain
  publication-title: Stroke
– volume: 5
  start-page: 686
  year: 2012b
  end-page: 690
  article-title: High‐fat‐diet exposure induces IgG accumulation in hypothalamic microglia
  publication-title: Dis Model Mech
– volume: 30
  start-page: 81
  year: 1990
  end-page: 93
  article-title: Brain microglia constitutively express beta‐2 integrins
  publication-title: J Neuroimmunol
– volume: 42
  start-page: 1678
  year: 1993
  end-page: 1682
  article-title: Cloning and functional expression of the human islet GLP‐1 receptor. Demonstration that exendin‐4 is an agonist and exendin‐(9–39) an antagonist of the receptor
  publication-title: Diabetes
– year: 2008
– volume: 87
  start-page: 10
  year: 2012
  end-page: 20
  article-title: Role of pro‐inflammatory cytokines released from microglia in neurodegenerative diseases
  publication-title: Brain Res Bull
– volume: 34
  start-page: 491
  year: 2002
  end-page: 500
  article-title: Microglia in diseases of the central nervous system
  publication-title: Ann Med
– volume: 31
  start-page: 6587
  year: 2011
  end-page: 6594
  article-title: The diabetes drug liraglutide prevents degenerative processes in a mouse model of Alzheimer's disease
  publication-title: J Neurosci
– volume: 183
  start-page: 79
  year: 1991
  end-page: 87
  article-title: Monoclonal antibody EBM11 (anti‐CD68) discriminates between dendritic cells and macrophages after short‐term culture
  publication-title: Immunobiology
– volume: 55
  start-page: 352
  year: 2006
  end-page: 360
  article-title: Glucagon‐like peptide‐1 inhibits LPS‐induced IL‐1beta production in cultured rat astrocytes
  publication-title: Neurosci Res
– volume: 60
  start-page: 570
  year: 2012
  end-page: 581
  article-title: Role of cell cycle‐associated proteins in microglial proliferation in the axotomized rat facial nucleus
  publication-title: Glia
– year: 2011
  article-title: Metabolic Syndrome ePoster—Brain and Neuron
  publication-title: Nat Med [Online]
– ident: e_1_2_5_8_1
  doi: 10.1056/NEJM199205143262003
– ident: e_1_2_5_15_1
  doi: 10.1189/jlb.71.5.854
– ident: e_1_2_5_28_1
  doi: 10.1038/ijo.2011.56
– ident: e_1_2_5_19_1
  doi: 10.1016/j.neuroscience.2008.06.046
– ident: e_1_2_5_4_1
  doi: 10.1016/S0171-2985(11)80187-7
– ident: e_1_2_5_9_1
  doi: 10.1126/science.7624777
– ident: e_1_2_5_23_1
  doi: 10.1016/S0165-5728(99)00222-2
– ident: e_1_2_5_6_1
  doi: 10.1172/JCI990
– ident: e_1_2_5_17_1
  doi: 10.1096/fsb2fasebj.12.1.57
– ident: e_1_2_5_27_1
  doi: 10.2337/diab.42.11.1678
– ident: e_1_2_5_13_1
  doi: 10.1016/j.neures.2006.04.008
– ident: e_1_2_5_24_1
  doi: 10.1002/glia.10274
– ident: e_1_2_5_25_1
  doi: 10.1016/j.brainresbull.2011.10.004
– ident: e_1_2_5_11_1
  doi: 10.1006/bbrc.1996.1112
– ident: e_1_2_5_30_1
  doi: 10.1016/j.molmet.2012.08.004
– ident: e_1_2_5_31_1
  doi: 10.1242/dmm.009464
– ident: e_1_2_5_29_1
  doi: 10.1002/glia.22291
– ident: e_1_2_5_10_1
  doi: 10.1038/nature11729
– ident: e_1_2_5_16_1
  doi: 10.1016/j.bbi.2009.11.003
– ident: e_1_2_5_21_1
  doi: 10.1093/brain/awn109
– ident: e_1_2_5_5_1
  doi: 10.1016/S0092-8674(00)81294-5
– ident: e_1_2_5_7_1
  doi: 10.1016/S0021-9258(18)53088-X
– volume-title: The mouse brain in stereotaxic coordinates
  year: 2008
  ident: e_1_2_5_22_1
  contributor:
    fullname: Paxinos G
– ident: e_1_2_5_18_1
  doi: 10.1523/JNEUROSCI.0529-11.2011
– ident: e_1_2_5_12_1
  doi: 10.1161/01.STR.32.5.1208
– ident: e_1_2_5_26_1
  doi: 10.1172/JCI59660
– ident: e_1_2_5_2_1
  doi: 10.1016/0165-5728(90)90055-R
– ident: e_1_2_5_3_1
  doi: 10.1038/nrendo.2011.77
– year: 2011
  ident: e_1_2_5_32_1
  article-title: Metabolic Syndrome ePoster—Brain and Neuron
  publication-title: Nat Med [Online]
  contributor:
    fullname: Yi CX
– ident: e_1_2_5_14_1
  doi: 10.1677/JOE-09-0132
– ident: e_1_2_5_20_1
  doi: 10.1080/078538902321117698
SSID ssj0011497
Score 2.5620885
Snippet The arcuate nucleus (ARC) of the hypothalamus plays a key role in sensing metabolic feedback and regulating energy homeostasis. Recent studies revealed...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 17
SubjectTerms Animals
Antigens, CD - metabolism
Antigens, Differentiation, Myelomonocytic - metabolism
Body Weight - drug effects
Body Weight - physiology
Cytokinins - metabolism
Diet, High-Fat - adverse effects
Disease Models, Animal
high calorie diet
Hormones
Hormones - pharmacology
leptin
Leptin - deficiency
Leptin - pharmacology
Mice
Mice, Inbred C57BL
Mice, Transgenic
Microglia - drug effects
Microglia - metabolism
Obesity
Obesity - chemically induced
Obesity - physiopathology
Peptides - pharmacology
Receptor, Melanocortin, Type 4 - deficiency
Receptors, Interleukin-8A - genetics
Receptors, Interleukin-8A - metabolism
Receptors, Leptin - deficiency
Receptors, Leptin - genetics
Rodents
Signal Transduction - drug effects
Supraoptic Nucleus - cytology
Venoms - pharmacology
Title Hormones and diet, but not body weight, control hypothalamic microglial activity
URI https://api.istex.fr/ark:/67375/WNG-D2M33ZBK-V/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fglia.22580
https://www.ncbi.nlm.nih.gov/pubmed/24166765
https://www.proquest.com/docview/1460800322
https://pubmed.ncbi.nlm.nih.gov/PMC4213950
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VeuFCS3k0PCpLrTggUrK2EydSL0t5bMVDSC0t4mLZcVJWXQJid9Xuv2fG2Q1dtUJC3CJlkjiesf3NePwNwIc8ahlZRmWouItCmUobGhlnYZZHNpccTcbvmHa-qtOLdG-faHI-Tc7C1PwQTcCNRoafr2mAG9vfeSAN_dnrmo9ojSk57Ogm-PMb4qzZQkDoX9N8ZjLE61bDTcp3Hh6dWo1eUsf--R_U_Ddj8m8k65eig1fP-4nXMD-GoKxd28wCvCiqN7DYrtD9vh6xTeaTQn20fRHOOohpic6fmcox1y0G28wOB6y6GTB740bstw-tbrNxyju7Gt2i7k2Pytyza8r2o4_3GJ2foDIVS3B-sP_tcyccF2EIc6pPFQqRJyWucrFyXKosMVlSllFipMgFzyNe4PKW2CwuIkvoo2WKEhGRIyJTJeJCiWWYrbCdb4GVxC4mSpe10lQap1LLI4eiaYEYNOc2gPcTZejbmmtD16zKXFNbte-oADa9nhoRc_eLstNUrH-cHuo9fiLE5e6R_h7A-kSRejww--TpEEbGaSyAlVqnzYsQzFDGbxyAmtJ2I0BU3NN3qu6Vp-SWHJF0jG3b8tp-pPn68PhL21-tPkV4DeYQqsk6-LMOs4O7YbEBM303fOfN_h5eIgMH
link.rule.ids 230,315,782,786,887,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VOJQLffBKS1tLrTggAlnbiZMDh215LGJZIfGqerGcOIEVS0Cwq3b_PTPObugKhFT1ZikTx_F47M_j8TcA37KgYWQRFL7iNvBlLFPfyDDxkyxIM8lxyLgT09ax6vyMt3eIJmdrfBem4oeoHW5kGW6-JgMnh_TmI2voRa9rNnA4xrhjn5ERVks3OMRRfYiA4L8i-kykj-VGzU7KNx_fnViPZqhr_zwHNp_GTP6NZd1itPvmP3_jLcyNUChrVsPmHbzKy_cw3yxxB349ZKvMxYU6h_s8HLUQ1hKjPzOlZbab99dZOuiz8qbP0hs7ZL-dd3WdjaLe2eXwFtVvepTpnl1TwB99vMfoCgVlqliA092dkx8tf5SHwc8oRZUvRBYVuNCFynKpksgkUVEEkZEiEzwLeI4rXJQmYR6kBEAaJi8QFFniMlUizJVYhOkS27kMrCCCMVHYpBHH0lgVpzywKBrnCEMznnrwdawNfVvRbeiKWJlraqt2HeXBqlNULWLurihATYX6vLOnt_mhEL--H-gzD1bGmtQj27ynzQ7BZJzJPFiqlFpXhHiGgn5DD9SEumsBYuOefFJ2Lx0rt-QIpkNs25pT9wvN13vt_aYrffgX4S_wunVy2Nbt_c7BR5hF5CYrX9AKTPfvBvknmLq3g8_OBh4AsqEHLw
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Rb9MwED7BJiFeYGwDAgMsgfaAFpbaTpxIvBS6rtNGVYltIF4sJ45ZRZdVWyvWf8-d02ZUIKSJt0i5JI7P5_t8Pn8H8KaIWka6yIWK2yiUqcxDI-MszIooLyTHIeN3THufVf9r2tkjmpz3i7MwNT9EE3Ajy_DzNRn42LrdG9LQ76OheYejMcUF-6pEHE7M-UIMmj0ExP41z2cmQ7xuNeSkfPfm2SV3tEo9e_03rPlnyuTvUNb7ou7D__uLNXgwx6CsXQ-aR3CnrNZho13h-vt8xraZzwr14fYNGPQQ1BKfPzOVZXZYTnZYPp2w6mLC8gs7Yz99bHWHzXPe2dlsjMo3I6pzz84p3Y8-PmJ0gILqVGzCSXfv-GMvnFdhCAsqUBUKUSQO3VysLJcqS0yWOBclRopC8CLiJfq3JM_iMsoJfrRM6RASWWIyVSIulXgMKxW28ykwR_RiwtmslabSWJXmPLIompYIQgueB_B6oQw9rsk2dE2rzDW1VfuOCmDb66kRMZc_KD1NxfpLf193-Cchvn041KcBbC0UqeeWeUVLHQLJOI8F8KTWafMiRDOU8hsHoJa03QgQF_fynWp45jm5JUcoHWPb3npt_6P5ev_ooO2vnt1G-BXcG3S6-uigf_gc7iNsk3UgaAtWJpfT8gXcvbLTl94CfgF7AQXV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hormones+and+diet%2C+but+not+body+weight%2C+control+hypothalamic+microglial+activity&rft.jtitle=Glia&rft.au=Gao%2C+Yuanqing&rft.au=Ottaway%2C+Nickki&rft.au=Schriever%2C+Sonja+C.&rft.au=Legutko%2C+Beata&rft.date=2014-01-01&rft.issn=0894-1491&rft.eissn=1098-1136&rft.volume=62&rft.issue=1&rft.spage=17&rft.epage=25&rft_id=info:doi/10.1002%2Fglia.22580&rft.externalDBID=10.1002%252Fglia.22580&rft.externalDocID=GLIA22580
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-1491&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-1491&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-1491&client=summon