Hormones and diet, but not body weight, control hypothalamic microglial activity
The arcuate nucleus (ARC) of the hypothalamus plays a key role in sensing metabolic feedback and regulating energy homeostasis. Recent studies revealed activation of microglia in mice with high‐fat diet (HFD)‐induced obesity (DIO), suggesting a potential pathophysiological role for inflammatory proc...
Saved in:
Published in: | Glia Vol. 62; no. 1; pp. 17 - 25 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Blackwell Publishing Ltd
01-01-2014
Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The arcuate nucleus (ARC) of the hypothalamus plays a key role in sensing metabolic feedback and regulating energy homeostasis. Recent studies revealed activation of microglia in mice with high‐fat diet (HFD)‐induced obesity (DIO), suggesting a potential pathophysiological role for inflammatory processes within the hypothalamus. To further investigate the metabolic causes and molecular underpinnings of such glial activation, we analyzed the microglial activity in wild‐type (WT), monogenic obese ob/ob (leptin deficient), db/db (leptin‐receptor mutation), and Type‐4 melanocortin receptor knockout (MC4R KO) mice on either a HFD or on standardized chow (SC) diet. Following HFD exposure, we observed a significant increase in the total number of ARC microglia, immunoreactivity of ionized calcium binding adaptor molecule 1 (iba1‐ir), cluster of differentiation 68 (CD68‐ir), and ramification of microglial processes. The ob/ob mice had significantly less iba1‐ir and ramifications. Leptin replacement rescued these phenomena. The db/db mice had similar iba1‐ir comparable with WT mice but had significantly lower CD68‐ir and more ramifications than WT mice. After 2 weeks of HFD, ob/ob mice showed an increase of iba1‐ir, and db/db mice showed increase of CD68‐ir. Obese MC4R KO mice fed a SC diet had comparable iba1‐ir and CD68‐ir with WT mice but had significantly more ramifications than WT mice. Intriguingly, treatment of DIO mice with glucagon‐like peptide‐1 receptor agonists reduced microglial activation independent of body weight. Our results show that diet type, adipokines, and gut signals, but not body weight, affect the presence and activity levels of hypothalamic microglia in obesity. GLIA 2013;62:17–25 |
---|---|
AbstractList | The arcuate nucleus (ARC) of the hypothalamus plays a key role in sensing metabolic feedback and regulating energy homeostasis. Recent studies revealed activation of microglia in mice with high-fat diet (HFD)-induced obesity (DIO), suggesting a potential pathophysiological role for inflammatory processes within the hypothalamus. To further investigate the metabolic causes and molecular underpinnings of such glial activation, we analyzed the microglial activity in wild-type (WT), monogenic obese
ob/ob
(leptin deficient),
db/db
(leptin-receptor mutation), and Type-4 melanocortin receptor knockout (MC4R KO) mice on either a HFD or on standardized chow (SC) diet. Following HFD exposure, we observed a significant increase in the total number of ARC microglia, immunoreactivity of ionized calcium binding adaptor molecule 1 (iba1-ir), cluster of differentiation 68 (CD68-ir), and ramification of microglial processes. The
ob/ob
mice had significantly less iba1-ir and ramifications. Leptin replacement rescued these phenomena. The
db/db
mice had similar iba1-ir comparable with WT mice but had significantly lower CD68-ir and more ramifications than WT mice. After 2 weeks of HFD,
ob/ob
mice showed an increase of iba1-ir, and
db/db
mice showed increase of CD68-ir. Obese MC4R KO mice fed a SC diet had comparable iba1-ir and CD68-ir with WT mice but had significantly more ramifications than WT mice. Intriguingly, treatment of DIO mice with glucagon-like peptide-1 receptor agonists reduced microglial activation independent of body weight. Our results show that diet type, adipokines, and gut signals, but not body weight, affect the presence and activity levels of hypothalamic microglia in obesity. The arcuate nucleus (ARC) of the hypothalamus plays a key role in sensing metabolic feedback and regulating energy homeostasis. Recent studies revealed activation of microglia in mice with high-fat diet (HFD)-induced obesity (DIO), suggesting a potential pathophysiological role for inflammatory processes within the hypothalamus. To further investigate the metabolic causes and molecular underpinnings of such glial activation, we analyzed the microglial activity in wild-type (WT), monogenic obese ob/ob (leptin deficient), db/db (leptin-receptor mutation), and Type-4 melanocortin receptor knockout (MC4R KO) mice on either a HFD or on standardized chow (SC) diet. Following HFD exposure, we observed a significant increase in the total number of ARC microglia, immunoreactivity of ionized calcium binding adaptor molecule 1 (iba1-ir), cluster of differentiation 68 (CD68-ir), and ramification of microglial processes. The ob/ob mice had significantly less iba1-ir and ramifications. Leptin replacement rescued these phenomena. The db/db mice had similar iba1-ir comparable with WT mice but had significantly lower CD68-ir and more ramifications than WT mice. After 2 weeks of HFD, ob/ob mice showed an increase of iba1-ir, and db/db mice showed increase of CD68-ir. Obese MC4R KO mice fed a SC diet had comparable iba1-ir and CD68-ir with WT mice but had significantly more ramifications than WT mice. Intriguingly, treatment of DIO mice with glucagon-like peptide-1 receptor agonists reduced microglial activation independent of body weight. Our results show that diet type, adipokines, and gut signals, but not body weight, affect the presence and activity levels of hypothalamic microglia in obesity. The arcuate nucleus (ARC) of the hypothalamus plays a key role in sensing metabolic feedback and regulating energy homeostasis. Recent studies revealed activation of microglia in mice with high-fat diet (HFD)-induced obesity (DIO), suggesting a potential pathophysiological role for inflammatory processes within the hypothalamus. To further investigate the metabolic causes and molecular underpinnings of such glial activation, we analyzed the microglial activity in wild-type (WT), monogenic obese ob/ob (leptin deficient), db/db (leptin-receptor mutation), and Type-4 melanocortin receptor knockout (MC4R KO) mice on either a HFD or on standardized chow (SC) diet. Following HFD exposure, we observed a significant increase in the total number of ARC microglia, immunoreactivity of ionized calcium binding adaptor molecule 1 (iba1-ir), cluster of differentiation 68 (CD68-ir), and ramification of microglial processes. The ob/ob mice had significantly less iba1-ir and ramifications. Leptin replacement rescued these phenomena. The db/db mice had similar iba1-ir comparable with WT mice but had significantly lower CD68-ir and more ramifications than WT mice. After 2 weeks of HFD, ob/ob mice showed an increase of iba1-ir, and db/db mice showed increase of CD68-ir. Obese MC4R KO mice fed a SC diet had comparable iba1-ir and CD68-ir with WT mice but had significantly more ramifications than WT mice. Intriguingly, treatment of DIO mice with glucagon-like peptide-1 receptor agonists reduced microglial activation independent of body weight. Our results show that diet type, adipokines, and gut signals, but not body weight, affect the presence and activity levels of hypothalamic microglia in obesity. GLIA 2013;62:17-25 [PUBLICATION ABSTRACT] The arcuate nucleus (ARC) of the hypothalamus plays a key role in sensing metabolic feedback and regulating energy homeostasis. Recent studies revealed activation of microglia in mice with high‐fat diet (HFD)‐induced obesity (DIO), suggesting a potential pathophysiological role for inflammatory processes within the hypothalamus. To further investigate the metabolic causes and molecular underpinnings of such glial activation, we analyzed the microglial activity in wild‐type (WT), monogenic obese ob/ob (leptin deficient), db/db (leptin‐receptor mutation), and Type‐4 melanocortin receptor knockout (MC4R KO) mice on either a HFD or on standardized chow (SC) diet. Following HFD exposure, we observed a significant increase in the total number of ARC microglia, immunoreactivity of ionized calcium binding adaptor molecule 1 (iba1‐ir), cluster of differentiation 68 (CD68‐ir), and ramification of microglial processes. The ob/ob mice had significantly less iba1‐ir and ramifications. Leptin replacement rescued these phenomena. The db/db mice had similar iba1‐ir comparable with WT mice but had significantly lower CD68‐ir and more ramifications than WT mice. After 2 weeks of HFD, ob/ob mice showed an increase of iba1‐ir, and db/db mice showed increase of CD68‐ir. Obese MC4R KO mice fed a SC diet had comparable iba1‐ir and CD68‐ir with WT mice but had significantly more ramifications than WT mice. Intriguingly, treatment of DIO mice with glucagon‐like peptide‐1 receptor agonists reduced microglial activation independent of body weight. Our results show that diet type, adipokines, and gut signals, but not body weight, affect the presence and activity levels of hypothalamic microglia in obesity. GLIA 2013;62:17–25 The arcuate nucleus (ARC) of the hypothalamus plays a key role in sensing metabolic feedback and regulating energy homeostasis. Recent studies revealed activation of microglia in mice with high‐fat diet (HFD)‐induced obesity (DIO), suggesting a potential pathophysiological role for inflammatory processes within the hypothalamus. To further investigate the metabolic causes and molecular underpinnings of such glial activation, we analyzed the microglial activity in wild‐type (WT), monogenic obese ob/ob (leptin deficient), db/db (leptin‐receptor mutation), and Type‐4 melanocortin receptor knockout (MC4R KO) mice on either a HFD or on standardized chow (SC) diet. Following HFD exposure, we observed a significant increase in the total number of ARC microglia, immunoreactivity of ionized calcium binding adaptor molecule 1 (iba1‐ir), cluster of differentiation 68 (CD68‐ir), and ramification of microglial processes. The ob/ob mice had significantly less iba1‐ir and ramifications. Leptin replacement rescued these phenomena. The db/db mice had similar iba1‐ir comparable with WT mice but had significantly lower CD68‐ir and more ramifications than WT mice. After 2 weeks of HFD, ob/ob mice showed an increase of iba1‐ir, and db/db mice showed increase of CD68‐ir. Obese MC4R KO mice fed a SC diet had comparable iba1‐ir and CD68‐ir with WT mice but had significantly more ramifications than WT mice. Intriguingly, treatment of DIO mice with glucagon‐like peptide‐1 receptor agonists reduced microglial activation independent of body weight. Our results show that diet type, adipokines, and gut signals, but not body weight, affect the presence and activity levels of hypothalamic microglia in obesity. GLIA 2013;62:17–25 |
Author | Perez-Tilve, Diego Schriever, Sonja C. Bour, Susanne Filosa, Jessica Gao, Yuanqing Tschöp, Matthias H. Legutko, Beata de la Fuente, Esther Mergen, Clarita Thaler, Joshua P. Schwartz, Michael W. Stern, Javier E. Ottaway, Nickki Seeley, Randy J. García-Cáceres, Cristina Yi, Chun-Xia |
AuthorAffiliation | 1 Institute for Diabetes and Obesity, Helmholtz Centre for Health and Environment and Technische Universität München, Munich, Germany 2 Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio 4 Department of Physiology, Georgia Health Sciences University, Georgia 3 Division of Metabolism, Endocrinology and Nutrition, Diabetes and Obesity Center of Excellence, University of Washington, Seattle, Washington |
AuthorAffiliation_xml | – name: 2 Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio – name: 4 Department of Physiology, Georgia Health Sciences University, Georgia – name: 1 Institute for Diabetes and Obesity, Helmholtz Centre for Health and Environment and Technische Universität München, Munich, Germany – name: 3 Division of Metabolism, Endocrinology and Nutrition, Diabetes and Obesity Center of Excellence, University of Washington, Seattle, Washington |
Author_xml | – sequence: 1 givenname: Yuanqing surname: Gao fullname: Gao, Yuanqing organization: Institute for Diabetes and Obesity, Helmholtz Centre for Health and Environment and Technische Universität München, Munich, Germany – sequence: 2 givenname: Nickki surname: Ottaway fullname: Ottaway, Nickki organization: Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Metabolic Diseases Institute, University of Cincinnati, Ohio, Cincinnati – sequence: 3 givenname: Sonja C. surname: Schriever fullname: Schriever, Sonja C. organization: Institute for Diabetes and Obesity, Helmholtz Centre for Health and Environment and Technische Universität München, Munich, Germany – sequence: 4 givenname: Beata surname: Legutko fullname: Legutko, Beata organization: Institute for Diabetes and Obesity, Helmholtz Centre for Health and Environment and Technische Universität München, Munich, Germany – sequence: 5 givenname: Cristina surname: García-Cáceres fullname: García-Cáceres, Cristina organization: Institute for Diabetes and Obesity, Helmholtz Centre for Health and Environment and Technische Universität München, Munich, Germany – sequence: 6 givenname: Esther surname: de la Fuente fullname: de la Fuente, Esther organization: Institute for Diabetes and Obesity, Helmholtz Centre for Health and Environment and Technische Universität München, Munich, Germany – sequence: 7 givenname: Clarita surname: Mergen fullname: Mergen, Clarita organization: Institute for Diabetes and Obesity, Helmholtz Centre for Health and Environment and Technische Universität München, Munich, Germany – sequence: 8 givenname: Susanne surname: Bour fullname: Bour, Susanne organization: Institute for Diabetes and Obesity, Helmholtz Centre for Health and Environment and Technische Universität München, Munich, Germany – sequence: 9 givenname: Joshua P. surname: Thaler fullname: Thaler, Joshua P. organization: Division of Metabolism, Endocrinology and Nutrition, Diabetes and Obesity Center of Excellence, University of Washington, Washington, Seattle – sequence: 10 givenname: Randy J. surname: Seeley fullname: Seeley, Randy J. organization: Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Metabolic Diseases Institute, University of Cincinnati, Ohio, Cincinnati – sequence: 11 givenname: Jessica surname: Filosa fullname: Filosa, Jessica organization: Department of Physiology, Georgia Health Sciences University, Georgia – sequence: 12 givenname: Javier E. surname: Stern fullname: Stern, Javier E. organization: Department of Physiology, Georgia Health Sciences University, Georgia – sequence: 13 givenname: Diego surname: Perez-Tilve fullname: Perez-Tilve, Diego organization: Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Metabolic Diseases Institute, University of Cincinnati, Ohio, Cincinnati – sequence: 14 givenname: Michael W. surname: Schwartz fullname: Schwartz, Michael W. organization: Division of Metabolism, Endocrinology and Nutrition, Diabetes and Obesity Center of Excellence, University of Washington, Washington, Seattle – sequence: 15 givenname: Matthias H. surname: Tschöp fullname: Tschöp, Matthias H. organization: Institute for Diabetes and Obesity, Helmholtz Centre for Health and Environment and Technische Universität München, Munich, Germany – sequence: 16 givenname: Chun-Xia surname: Yi fullname: Yi, Chun-Xia email: chun-xia.yi@helmholtz-muenchen.de organization: Institute for Diabetes and Obesity, Helmholtz Centre for Health and Environment and Technische Universität München, Munich, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24166765$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kEtPGzEUha0KVALthh9QWWKHGHr9GHtmU4lngkgfixYkNpZnxpOYTsbB4wDz73FIiNoNC8vy9bnfvefsoq3WtQahfQLHBIB-nTRWH1OaZvABDQjkWUIIE1toAFnOE8JzsoN2u-4egMSH_Ih2KCdCSJEO0K-R87OI67BuK1xZE45wsQi4dQEXrurxk7GTaSyWrg3eNXjaz12Y6kbPbInj8W45vsG6DPbRhv4T2q5105nP63sP_bm8-H02SsY_h1dnJ-Ok5JmAhLFS1EzQVFaUy1zoXNQ1CM1ZyWgJ1GRciiJPDRQgUyDa1FSyikR7kqVGsj30bcWdL4qZqUoT19ONmns7075XTlv1_09rp2riHhWnhOUpRMDBGuDdw8J0Qd27hW_jzopwARkAozSqDleqaLTrvKk3EwioZfpqaV-9ph_FX_7daSN9izsKyErwZBvTv4NSw_HVyRs0WfXYLpjnTY_2f5WQTKbq9sdQndPvjN2dXqsb9gLdxKA7 |
CODEN | GLIAEJ |
CitedBy_id | crossref_primary_10_3389_fncel_2021_722028 crossref_primary_10_7554_eLife_55357 crossref_primary_10_1016_j_tem_2016_03_017 crossref_primary_10_1152_physiol_00049_2015 crossref_primary_10_1038_s41581_018_0068_5 crossref_primary_10_3389_fnins_2018_00846 crossref_primary_10_1016_j_neuropharm_2024_109951 crossref_primary_10_1210_er_2016_1007 crossref_primary_10_1111_ejn_15871 crossref_primary_10_1007_s00125_016_3906_7 crossref_primary_10_1111_ejn_15594 crossref_primary_10_1016_j_nbd_2018_10_012 crossref_primary_10_2337_db16_1278 crossref_primary_10_1007_s11011_017_0151_9 crossref_primary_10_2337_db16_0586 crossref_primary_10_1007_s10571_023_01376_y crossref_primary_10_1016_j_celrep_2018_09_070 crossref_primary_10_1186_s40478_023_01606_w crossref_primary_10_1016_j_jnutbio_2021_108928 crossref_primary_10_3390_ijms222312668 crossref_primary_10_1186_s12974_018_1076_x crossref_primary_10_1210_en_2017_00539 crossref_primary_10_1186_s12974_023_02740_x crossref_primary_10_1186_s13195_015_0117_2 crossref_primary_10_1155_2017_7949582 crossref_primary_10_1016_j_bbrc_2018_07_095 crossref_primary_10_1016_j_yhbeh_2020_104675 crossref_primary_10_3389_fnsys_2014_00212 crossref_primary_10_1016_j_molmet_2017_06_008 crossref_primary_10_1016_j_celrep_2017_01_047 crossref_primary_10_1186_s12979_022_00323_7 crossref_primary_10_1111_jne_12328 crossref_primary_10_1016_j_cmet_2019_05_021 crossref_primary_10_1016_j_cobeha_2016_03_005 crossref_primary_10_3390_jcm7030059 crossref_primary_10_1152_physiol_00021_2023 crossref_primary_10_3389_fnins_2019_00828 crossref_primary_10_1126_scitranslmed_aax6629 crossref_primary_10_1038_s42255_019_0040_0 crossref_primary_10_1038_s41598_019_52257_8 crossref_primary_10_1007_s11154_014_9300_1 crossref_primary_10_1038_nm_3616 crossref_primary_10_1080_10717544_2017_1279237 crossref_primary_10_3390_ijms22063141 crossref_primary_10_3390_children10020241 crossref_primary_10_1016_j_cmet_2016_04_013 crossref_primary_10_1038_s41593_018_0286_y crossref_primary_10_1155_2022_6404964 crossref_primary_10_1111_jne_12671 crossref_primary_10_1210_en_2014_1367 crossref_primary_10_1016_j_celrep_2017_09_008 crossref_primary_10_1080_14728222_2020_1784142 crossref_primary_10_3389_fimmu_2020_550145 crossref_primary_10_1016_j_pneurobio_2016_03_001 crossref_primary_10_1002_oby_21387 crossref_primary_10_1016_j_physbeh_2016_09_029 crossref_primary_10_1007_s40265_017_0706_4 crossref_primary_10_1210_en_2016_1944 crossref_primary_10_3389_fnins_2020_00650 crossref_primary_10_1210_en_2014_1121 crossref_primary_10_1002_1873_3468_12691 crossref_primary_10_1016_j_cmet_2017_05_015 crossref_primary_10_1093_ejendo_lvad030 crossref_primary_10_1172_JCI75276 crossref_primary_10_1016_j_yhbeh_2020_104690 crossref_primary_10_1038_s41380_023_02326_2 crossref_primary_10_1038_s41598_019_56051_4 crossref_primary_10_1016_j_molmet_2016_07_010 crossref_primary_10_1172_jci_insight_131329 crossref_primary_10_1016_j_molmet_2016_05_009 crossref_primary_10_3389_fnins_2022_1027269 crossref_primary_10_1007_s13238_021_00834_x crossref_primary_10_1016_j_bbi_2018_03_014 crossref_primary_10_1016_j_neuroscience_2017_05_050 crossref_primary_10_3390_ijms23062933 crossref_primary_10_1016_j_neuroscience_2016_04_009 crossref_primary_10_1098_rsob_210173 crossref_primary_10_1002_glia_23484 crossref_primary_10_1186_s12974_019_1607_0 crossref_primary_10_1002_glia_23882 crossref_primary_10_1038_npp_2016_123 crossref_primary_10_1152_physiol_00009_2024 crossref_primary_10_3389_fncel_2022_867217 crossref_primary_10_3389_fnins_2020_589650 crossref_primary_10_1186_s12986_016_0137_3 crossref_primary_10_1016_j_biopha_2021_112012 crossref_primary_10_1111_obr_12243 crossref_primary_10_1007_s00401_016_1595_4 crossref_primary_10_3389_fendo_2015_00013 crossref_primary_10_3892_mmr_2023_12964 crossref_primary_10_1161_CIRCRESAHA_120_315900 crossref_primary_10_1210_en_2014_1074 crossref_primary_10_1007_s11011_018_0337_9 crossref_primary_10_1016_j_pnpbp_2016_07_004 crossref_primary_10_1186_s12974_021_02167_2 crossref_primary_10_1038_ncomms14556 crossref_primary_10_1038_nrendo_2015_48 crossref_primary_10_1111_febs_16583 crossref_primary_10_3389_fendo_2017_00197 crossref_primary_10_3390_jfmk9020058 crossref_primary_10_1155_2017_5048616 crossref_primary_10_1038_s41574_019_0165_y crossref_primary_10_1007_s11302_018_9605_8 crossref_primary_10_1016_j_neubiorev_2023_105100 crossref_primary_10_1152_ajpendo_00059_2023 crossref_primary_10_1016_j_yfrne_2015_09_004 crossref_primary_10_3390_ijms23126380 crossref_primary_10_1016_j_molmet_2017_11_003 crossref_primary_10_1016_j_bcp_2018_01_024 crossref_primary_10_1096_fj_202001147R crossref_primary_10_1016_j_molmet_2021_101214 crossref_primary_10_1210_en_2019_00487 crossref_primary_10_3389_fnins_2019_00342 crossref_primary_10_1016_j_celrep_2020_01_005 crossref_primary_10_3389_fnins_2014_00446 crossref_primary_10_1016_j_appet_2017_10_006 crossref_primary_10_3390_ijms21051554 crossref_primary_10_1093_gbe_evaa118 crossref_primary_10_1016_j_bbi_2014_09_022 crossref_primary_10_1016_j_brainres_2019_01_006 crossref_primary_10_1177_23982128211003484 crossref_primary_10_1038_s41398_020_0767_0 crossref_primary_10_1016_j_lfs_2017_11_019 crossref_primary_10_1016_j_celrep_2021_109163 crossref_primary_10_3389_fendo_2019_00424 crossref_primary_10_1038_ncomms15143 crossref_primary_10_1016_j_mce_2016_05_015 crossref_primary_10_3390_nu11112773 crossref_primary_10_1016_j_molmet_2024_101904 crossref_primary_10_1172_JCI88878 crossref_primary_10_1016_j_celrep_2014_10_045 crossref_primary_10_3389_fendo_2015_00042 crossref_primary_10_1152_ajpendo_00012_2016 crossref_primary_10_1007_s00125_016_4181_3 crossref_primary_10_3390_ijms22105243 crossref_primary_10_1530_JOE_18_0596 crossref_primary_10_1038_s12276_021_00666_z crossref_primary_10_1186_s12576_020_00747_0 crossref_primary_10_3390_cells10071584 crossref_primary_10_1016_j_cmet_2024_01_003 crossref_primary_10_1530_JME_16_0182 crossref_primary_10_1016_j_celrep_2014_11_018 crossref_primary_10_1016_j_yfrne_2019_100748 crossref_primary_10_3389_fnins_2023_1238528 crossref_primary_10_1016_j_jneuroim_2014_06_004 crossref_primary_10_1111_jne_12598 crossref_primary_10_3390_jcm11010186 crossref_primary_10_1021_acsami_1c22434 crossref_primary_10_1111_jne_12756 crossref_primary_10_1002_jnr_24628 crossref_primary_10_1007_s00018_021_04019_x crossref_primary_10_1016_j_beem_2014_02_002 crossref_primary_10_1016_j_metabol_2020_154694 crossref_primary_10_1038_srep23673 crossref_primary_10_3390_cells10092236 crossref_primary_10_1016_j_cmet_2023_07_008 crossref_primary_10_1016_j_neuroscience_2019_10_021 crossref_primary_10_3390_ijms20061317 crossref_primary_10_1021_acschemneuro_6b00009 crossref_primary_10_1186_s12263_018_0619_1 crossref_primary_10_1016_j_neuroscience_2019_08_006 crossref_primary_10_1097_MED_0000000000000182 crossref_primary_10_3389_fnins_2019_00378 crossref_primary_10_1016_j_brainresbull_2022_04_015 crossref_primary_10_1016_j_taap_2020_115124 crossref_primary_10_3389_fphys_2015_00350 crossref_primary_10_1186_s12967_024_05077_y crossref_primary_10_1016_j_mce_2016_09_028 crossref_primary_10_1038_s42255_018_0029_0 crossref_primary_10_1111_jne_12504 crossref_primary_10_1134_S0022093022040263 crossref_primary_10_3389_fnmol_2018_00065 crossref_primary_10_1002_2211_5463_12426 crossref_primary_10_1002_oby_22666 crossref_primary_10_1016_j_pneurobio_2019_101720 crossref_primary_10_1038_s41598_019_57345_3 crossref_primary_10_3389_fendo_2014_00074 crossref_primary_10_3390_nu13103460 |
Cites_doi | 10.1056/NEJM199205143262003 10.1189/jlb.71.5.854 10.1038/ijo.2011.56 10.1016/j.neuroscience.2008.06.046 10.1016/S0171-2985(11)80187-7 10.1126/science.7624777 10.1016/S0165-5728(99)00222-2 10.1172/JCI990 10.1096/fsb2fasebj.12.1.57 10.2337/diab.42.11.1678 10.1016/j.neures.2006.04.008 10.1002/glia.10274 10.1016/j.brainresbull.2011.10.004 10.1006/bbrc.1996.1112 10.1016/j.molmet.2012.08.004 10.1242/dmm.009464 10.1002/glia.22291 10.1038/nature11729 10.1016/j.bbi.2009.11.003 10.1093/brain/awn109 10.1016/S0092-8674(00)81294-5 10.1016/S0021-9258(18)53088-X 10.1523/JNEUROSCI.0529-11.2011 10.1161/01.STR.32.5.1208 10.1172/JCI59660 10.1016/0165-5728(90)90055-R 10.1038/nrendo.2011.77 10.1677/JOE-09-0132 10.1080/078538902321117698 |
ContentType | Journal Article |
Copyright | Copyright © 2013 Wiley Periodicals, Inc. 2013 Wiley Periodicals, Inc. 2013 |
Copyright_xml | – notice: Copyright © 2013 Wiley Periodicals, Inc. – notice: 2013 Wiley Periodicals, Inc. 2013 |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL 7T7 7TK 7U9 8FD C1K FR3 H94 K9. M7N P64 5PM |
DOI | 10.1002/glia.22580 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | MEDLINE Virology and AIDS Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1098-1136 |
EndPage | 25 |
ExternalDocumentID | 3134853911 10_1002_glia_22580 24166765 GLIA22580 ark_67375_WNG_D2M33ZBK_V |
Genre | article Journal Article |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: P30 DK017047 – fundername: NIDDK NIH HHS grantid: P30 DK035816 – fundername: NIDDK NIH HHS grantid: K08 DK088872 – fundername: NIDDK NIH HHS grantid: R01 DK090320 – fundername: NIDDK NIH HHS grantid: R01 DK083042 |
GroupedDBID | --- -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GAKWD GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWD RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 V2E W8V W99 WBKPD WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ X7M XG1 XV2 ZGI ZXP ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM AAMNL AAYXX CITATION 7QL 7T7 7TK 7U9 8FD C1K FR3 H94 K9. M7N P64 5PM |
ID | FETCH-LOGICAL-c4860-33c6f36257d24796a96ff06a43c32c02e8476b95e0b07501aef273d1109735e73 |
IEDL.DBID | 33P |
ISSN | 0894-1491 |
IngestDate | Tue Sep 17 21:07:22 EDT 2024 Thu Oct 10 22:11:17 EDT 2024 Fri Nov 22 00:32:57 EST 2024 Sat Sep 28 07:53:02 EDT 2024 Sat Aug 24 01:01:45 EDT 2024 Wed Oct 30 09:55:19 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | leptin obesity high calorie diet |
Language | English |
License | Copyright © 2013 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4860-33c6f36257d24796a96ff06a43c32c02e8476b95e0b07501aef273d1109735e73 |
Notes | ark:/67375/WNG-D2M33ZBK-V istex:56D0B98F07B5FB242A32698436C9E471C008EB56 ArticleID:GLIA22580 |
OpenAccessLink | https://europepmc.org/articles/pmc4213950?pdf=render |
PMID | 24166765 |
PQID | 1460800322 |
PQPubID | 996331 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4213950 proquest_journals_1460800322 crossref_primary_10_1002_glia_22580 pubmed_primary_24166765 wiley_primary_10_1002_glia_22580_GLIA22580 istex_primary_ark_67375_WNG_D2M33ZBK_V |
PublicationCentury | 2000 |
PublicationDate | January 2014 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – month: 01 year: 2014 text: January 2014 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Glia |
PublicationTitleAlternate | Glia |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Akiyama H, McGeer PL. 1990. Brain microglia constitutively express beta-2 integrins. J Neuroimmunol 30:81-93. Loffreda S, Yang SQ, Lin HZ, Karp CL, Brengman ML, Wang DJ, Klein AS, Bulkley GB, Bao C, Noble PW, Lane MD, Diehl AM. 1998. Leptin regulates proinflammatory immune responses. FASEB J 12:57-65. Smith JA, Das A, Ray SK, Banik NL. 2012. Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res Bull 87:10-20. Thorens B, Porret A, Buhler L, Deng SP, Morel P, Widmann C. 1993. Cloning and functional expression of the human islet GLP-1 receptor. Demonstration that exendin-4 is an agonist and exendin-(9-39) an antagonist of the receptor. Diabetes 42:1678-1682. Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, Griep A, Axt D, Remus A, Tzeng TC, Gelpi E, Halle A, Korte M, Latz E, Golenbock DT. 2013. NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature 493:674-678. Yi CX, Gericke M, Krüger M, Alkemade A, Kabra DG, Hanske S, Filosa J, Pfluger P, Bingham N, Woods SC, Herman J, Kalsbeek A, Baumann M, Lang R, Stern JE, Bechmann I, Tschöp MH. 2012a. High calorie diet triggers hypothalamic angiopathy. Mol Metab 1:95-100. Gutniak M, Orskov C, Holst JJ, Ahren B, Efendic S. 1992. Antidiabetogenic effect of glucagon-like peptide-1 (7-36)amide in normal subjects and patients with diabetes mellitus. N Engl J Med 326:1316-1322. Flint A, Raben A, Astrup A, Holst JJ. 1998. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J Clin Invest 101:515-520. Kim S, Moon M, Park S. 2009. Exendin-4 protects dopaminergic neurons by inhibition of microglial activation and matrix metalloproteinase-3 expression in an animal model of Parkinson's disease. J Endocrinol 202:431-439. Yi CX, Tschop MH, Woods SC, Hofmann SM. 2012b. High-fat-diet exposure induces IgG accumulation in hypothalamic microglia. Dis Model Mech 5:686-690. Neumann H, Kotter MR, Franklin RJ. 2009. Debris clearance by microglia: An essential link between degeneration and regeneration. Brain 132:288-295. McClean PL, Parthsarathy V, Faivre E, Holscher C. 2011. The diabetes drug liraglutide prevents degenerative processes in a mouse model of Alzheimer's disease. J Neurosci 31:6587-6594. Betjes MG, Haks MC, Tuk CW, Beelen RH. 1991. Monoclonal antibody EBM11 (anti-CD68) discriminates between dendritic cells and macrophages after short-term culture. Immunobiology 183:79-87. Kwakkenbos MJ, Chang GW, Lin HH, Pouwels W, de Jong EC, van Lier RA, Gordon S, Hamann J. 2002. The human EGF-TM7 family member EMR2 is a heterodimeric receptor expressed on myeloid cells. J Leukocyte Biol 71:854-862. Lafrance V, Inoue W, Kan B, Luheshi GN. 2010. Leptin modulates cell morphology and cytokine release in microglia. Brain Behav Immun 24:358-365. Yamamoto S, Kohsaka S, Nakajima K. 2012. Role of cell cycle-associated proteins in microglial proliferation in the axotomized rat facial nucleus. Glia 60:570-581. Thaler JP, Yi CX, Schur EA, Guyenet SJ, Hwang BH, Dietrich MO, Zhao X, Sarruf DA, Izgur V, Maravilla KR, Nguyen HT, Fischer JD, Matsen ME, Wisse BE, Morton GJ, Horvath TL, Baskin DG, Tschop MH, Schwartz MW. 2012. Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest 122:153-162. Velloso LA, Schwartz MW. 2011. Altered hypothalamic function in diet-induced obesity. Int J Obes (Lond) 35:1455-1465. Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, Lallone RL, Burley SK, Friedman JM. 1995. Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269:543-546. Ito D, Tanaka K, Suzuki S, Dembo T, Fukuuchi Y. 2001. Enhanced expression of Iba1, ionized calcium-binding adapter molecule 1, after transient focal cerebral ischemia in rat brain. Stroke 32:1208-1215. Gantz I, Konda Y, Tashiro T, Shimoto Y, Miwa H, Munzert G, Watson SJ, DelValle J, Yamada T. 1993. Molecular cloning of a novel melanocortin receptor. J Biol Chem 268:8246-8250. Postler E, Rimner A, Beschorner R, Schluesener HJ, Meyermann R. 2000. Allograft-inflammatory-factor-1 is upregulated in microglial cells in human cerebral infarctions. J Neuroimmunol 104:85-91. Yi CX, Zeltser L, Tschop MH. 2011. Metabolic Syndrome ePoster-Brain and Neuron. Nat Med [Online], Supplementary 17 (7). Napoli I, Neumann H. 2009. Microglial clearance function in health and disease. Neuroscience 158:1030-1038. Paxinos G, Franklin K. 2008. The mouse brain in stereotaxic coordinates. New York, Elsevier. Iwai T, Ito S, Tanimitsu K, Udagawa S, Oka J. 2006. Glucagon-like peptide-1 inhibits LPS-induced IL-1beta production in cultured rat astrocytes. Neurosci Res 55:352-360. Nelson PT, Soma LA, Lavi E. 2002. Microglia in diseases of the central nervous system. Ann Med 34:491-500. Imai Y, Ibata I, Ito D, Ohsawa K, Kohsaka S. 1996. A novel gene iba1 in the major histocompatibility complex class III region encoding an EF hand protein expressed in a monocytic lineage. Biochem Biophys Res Commun 224:855-862. Barrera JG, Sandoval DA, D'Alessio DA, Seeley RJ. 2011. GLP-1 and energy balance: An integrated model of short-term and long-term control. Nat Rev Endocrinol 7:507-516. Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ, Lakey ND, Culpepper J, Moore KJ, Breitbart RE, Duyk GM, Tepper RI, Morgenstern JP. 1996. Evidence that the diabetes gene encodes the leptin receptor: Identification of a mutation in the leptin receptor gene in db/db mice. Cell 84:491-495. Saura J, Tusell JM, Serratosa J. 2003. High-yield isolation of murine microglia by mild trypsinization. Glia 44:183-189. 1990; 30 2012; 60 2012; 122 2011 2006; 55 2002; 34 1993; 42 2011; 31 2009; 132 1992; 326 2008 2011; 35 1993; 268 1996; 224 2012a; 1 2009; 158 2011; 7 2010; 24 2000; 104 1991; 183 1996; 84 1995; 269 2013; 493 2002; 71 1998; 101 2009; 202 1998; 12 2012; 87 2012b; 5 2003; 44 2001; 32 1348845 - N Engl J Med. 1992 May 14;326(20):1316-22 19570816 - J Endocrinol. 2009 Sep;202(3):431-9 11340235 - Stroke. 2001 May;32(5):1208-15 8713135 - Biochem Biophys Res Commun. 1996 Jul 25;224(3):855-62 24024123 - Mol Metab. 2012 Aug 09;1(1-2):95-100 21525299 - J Neurosci. 2011 Apr 27;31(17):6587-94 16720054 - Neurosci Res. 2006 Aug;55(4):352-60 7624777 - Science. 1995 Jul 28;269(5223):543-6 22024597 - Brain Res Bull. 2012 Jan 4;87(1):10-20 9449682 - J Clin Invest. 1998 Feb 1;101(3):515-20 19922787 - Brain Behav Immun. 2010 Mar;24(3):358-65 18567623 - Brain. 2009 Feb;132(Pt 2):288-95 11994511 - J Leukoc Biol. 2002 May;71(5):854-62 9438411 - FASEB J. 1998 Jan;12(1):57-65 18644426 - Neuroscience. 2009 Feb 6;158(3):1030-8 22258892 - Glia. 2012 Apr;60(4):570-81 22201683 - J Clin Invest. 2012 Jan;122(1):153-62 23254930 - Nature. 2013 Jan 31;493(7434):674-8 10683518 - J Neuroimmunol. 2000 Apr 3;104(1):85-91 21647189 - Nat Rev Endocrinol. 2011 Sep;7(9):507-16 12553488 - Ann Med. 2002;34(7-8):491-500 1834546 - Immunobiology. 1991 Sep;183(1-2):79-87 8463333 - J Biol Chem. 1993 Apr 15;268(11):8246-50 1977769 - J Neuroimmunol. 1990 Nov;30(1):81-93 22381575 - Dis Model Mech. 2012 Sep;5(5):686-90 8405712 - Diabetes. 1993 Nov;42(11):1678-82 8608603 - Cell. 1996 Feb 9;84(3):491-5 21386802 - Int J Obes (Lond). 2011 Dec;35(12):1455-65 14603460 - Glia. 2003 Dec;44(3):183-9 e_1_2_5_27_1 e_1_2_5_28_1 Paxinos G (e_1_2_5_22_1) 2008 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_29_1 Yi CX (e_1_2_5_32_1) 2011 e_1_2_5_20_1 e_1_2_5_15_1 e_1_2_5_14_1 e_1_2_5_17_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_19_1 e_1_2_5_18_1 e_1_2_5_30_1 e_1_2_5_31_1 |
References_xml | – volume: 1 start-page: 95 year: 2012a end-page: 100 article-title: High calorie diet triggers hypothalamic angiopathy publication-title: Mol Metab – volume: 7 start-page: 507 year: 2011 end-page: 516 article-title: GLP‐1 and energy balance: An integrated model of short‐term and long‐term control publication-title: Nat Rev Endocrinol – volume: 24 start-page: 358 year: 2010 end-page: 365 article-title: Leptin modulates cell morphology and cytokine release in microglia publication-title: Brain Behav Immun – volume: 326 start-page: 1316 year: 1992 end-page: 1322 article-title: Antidiabetogenic effect of glucagon‐like peptide‐1 (7–36)amide in normal subjects and patients with diabetes mellitus publication-title: N Engl J Med – volume: 269 start-page: 543 year: 1995 end-page: 546 article-title: Weight‐reducing effects of the plasma protein encoded by the obese gene publication-title: Science – volume: 104 start-page: 85 year: 2000 end-page: 91 article-title: Allograft‐inflammatory‐factor‐1 is upregulated in microglial cells in human cerebral infarctions publication-title: J Neuroimmunol – volume: 493 start-page: 674 year: 2013 end-page: 678 article-title: NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice publication-title: Nature – volume: 158 start-page: 1030 year: 2009 end-page: 1038 article-title: Microglial clearance function in health and disease publication-title: Neuroscience – volume: 44 start-page: 183 year: 2003 end-page: 189 article-title: High‐yield isolation of murine microglia by mild trypsinization publication-title: Glia – volume: 101 start-page: 515 year: 1998 end-page: 520 article-title: Glucagon‐like peptide 1 promotes satiety and suppresses energy intake in humans publication-title: J Clin Invest – volume: 122 start-page: 153 year: 2012 end-page: 162 article-title: Obesity is associated with hypothalamic injury in rodents and humans publication-title: J Clin Invest – volume: 132 start-page: 288 year: 2009 end-page: 295 article-title: Debris clearance by microglia: An essential link between degeneration and regeneration publication-title: Brain – volume: 224 start-page: 855 year: 1996 end-page: 862 article-title: A novel gene iba1 in the major histocompatibility complex class III region encoding an EF hand protein expressed in a monocytic lineage publication-title: Biochem Biophys Res Commun – volume: 35 start-page: 1455 year: 2011 end-page: 1465 article-title: Altered hypothalamic function in diet‐induced obesity publication-title: Int J Obes (Lond) – volume: 268 start-page: 8246 year: 1993 end-page: 8250 article-title: Molecular cloning of a novel melanocortin receptor publication-title: J Biol Chem – volume: 12 start-page: 57 year: 1998 end-page: 65 article-title: Leptin regulates proinflammatory immune responses publication-title: FASEB J – volume: 202 start-page: 431 year: 2009 end-page: 439 article-title: Exendin‐4 protects dopaminergic neurons by inhibition of microglial activation and matrix metalloproteinase‐3 expression in an animal model of Parkinson's disease publication-title: J Endocrinol – volume: 71 start-page: 854 year: 2002 end-page: 862 article-title: The human EGF‐TM7 family member EMR2 is a heterodimeric receptor expressed on myeloid cells publication-title: J Leukocyte Biol – volume: 84 start-page: 491 year: 1996 end-page: 495 article-title: Evidence that the diabetes gene encodes the leptin receptor: Identification of a mutation in the leptin receptor gene in db/db mice publication-title: Cell – volume: 32 start-page: 1208 year: 2001 end-page: 1215 article-title: Enhanced expression of Iba1, ionized calcium‐binding adapter molecule 1, after transient focal cerebral ischemia in rat brain publication-title: Stroke – volume: 5 start-page: 686 year: 2012b end-page: 690 article-title: High‐fat‐diet exposure induces IgG accumulation in hypothalamic microglia publication-title: Dis Model Mech – volume: 30 start-page: 81 year: 1990 end-page: 93 article-title: Brain microglia constitutively express beta‐2 integrins publication-title: J Neuroimmunol – volume: 42 start-page: 1678 year: 1993 end-page: 1682 article-title: Cloning and functional expression of the human islet GLP‐1 receptor. Demonstration that exendin‐4 is an agonist and exendin‐(9–39) an antagonist of the receptor publication-title: Diabetes – year: 2008 – volume: 87 start-page: 10 year: 2012 end-page: 20 article-title: Role of pro‐inflammatory cytokines released from microglia in neurodegenerative diseases publication-title: Brain Res Bull – volume: 34 start-page: 491 year: 2002 end-page: 500 article-title: Microglia in diseases of the central nervous system publication-title: Ann Med – volume: 31 start-page: 6587 year: 2011 end-page: 6594 article-title: The diabetes drug liraglutide prevents degenerative processes in a mouse model of Alzheimer's disease publication-title: J Neurosci – volume: 183 start-page: 79 year: 1991 end-page: 87 article-title: Monoclonal antibody EBM11 (anti‐CD68) discriminates between dendritic cells and macrophages after short‐term culture publication-title: Immunobiology – volume: 55 start-page: 352 year: 2006 end-page: 360 article-title: Glucagon‐like peptide‐1 inhibits LPS‐induced IL‐1beta production in cultured rat astrocytes publication-title: Neurosci Res – volume: 60 start-page: 570 year: 2012 end-page: 581 article-title: Role of cell cycle‐associated proteins in microglial proliferation in the axotomized rat facial nucleus publication-title: Glia – year: 2011 article-title: Metabolic Syndrome ePoster—Brain and Neuron publication-title: Nat Med [Online] – ident: e_1_2_5_8_1 doi: 10.1056/NEJM199205143262003 – ident: e_1_2_5_15_1 doi: 10.1189/jlb.71.5.854 – ident: e_1_2_5_28_1 doi: 10.1038/ijo.2011.56 – ident: e_1_2_5_19_1 doi: 10.1016/j.neuroscience.2008.06.046 – ident: e_1_2_5_4_1 doi: 10.1016/S0171-2985(11)80187-7 – ident: e_1_2_5_9_1 doi: 10.1126/science.7624777 – ident: e_1_2_5_23_1 doi: 10.1016/S0165-5728(99)00222-2 – ident: e_1_2_5_6_1 doi: 10.1172/JCI990 – ident: e_1_2_5_17_1 doi: 10.1096/fsb2fasebj.12.1.57 – ident: e_1_2_5_27_1 doi: 10.2337/diab.42.11.1678 – ident: e_1_2_5_13_1 doi: 10.1016/j.neures.2006.04.008 – ident: e_1_2_5_24_1 doi: 10.1002/glia.10274 – ident: e_1_2_5_25_1 doi: 10.1016/j.brainresbull.2011.10.004 – ident: e_1_2_5_11_1 doi: 10.1006/bbrc.1996.1112 – ident: e_1_2_5_30_1 doi: 10.1016/j.molmet.2012.08.004 – ident: e_1_2_5_31_1 doi: 10.1242/dmm.009464 – ident: e_1_2_5_29_1 doi: 10.1002/glia.22291 – ident: e_1_2_5_10_1 doi: 10.1038/nature11729 – ident: e_1_2_5_16_1 doi: 10.1016/j.bbi.2009.11.003 – ident: e_1_2_5_21_1 doi: 10.1093/brain/awn109 – ident: e_1_2_5_5_1 doi: 10.1016/S0092-8674(00)81294-5 – ident: e_1_2_5_7_1 doi: 10.1016/S0021-9258(18)53088-X – volume-title: The mouse brain in stereotaxic coordinates year: 2008 ident: e_1_2_5_22_1 contributor: fullname: Paxinos G – ident: e_1_2_5_18_1 doi: 10.1523/JNEUROSCI.0529-11.2011 – ident: e_1_2_5_12_1 doi: 10.1161/01.STR.32.5.1208 – ident: e_1_2_5_26_1 doi: 10.1172/JCI59660 – ident: e_1_2_5_2_1 doi: 10.1016/0165-5728(90)90055-R – ident: e_1_2_5_3_1 doi: 10.1038/nrendo.2011.77 – year: 2011 ident: e_1_2_5_32_1 article-title: Metabolic Syndrome ePoster—Brain and Neuron publication-title: Nat Med [Online] contributor: fullname: Yi CX – ident: e_1_2_5_14_1 doi: 10.1677/JOE-09-0132 – ident: e_1_2_5_20_1 doi: 10.1080/078538902321117698 |
SSID | ssj0011497 |
Score | 2.5620885 |
Snippet | The arcuate nucleus (ARC) of the hypothalamus plays a key role in sensing metabolic feedback and regulating energy homeostasis. Recent studies revealed... |
SourceID | pubmedcentral proquest crossref pubmed wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 17 |
SubjectTerms | Animals Antigens, CD - metabolism Antigens, Differentiation, Myelomonocytic - metabolism Body Weight - drug effects Body Weight - physiology Cytokinins - metabolism Diet, High-Fat - adverse effects Disease Models, Animal high calorie diet Hormones Hormones - pharmacology leptin Leptin - deficiency Leptin - pharmacology Mice Mice, Inbred C57BL Mice, Transgenic Microglia - drug effects Microglia - metabolism Obesity Obesity - chemically induced Obesity - physiopathology Peptides - pharmacology Receptor, Melanocortin, Type 4 - deficiency Receptors, Interleukin-8A - genetics Receptors, Interleukin-8A - metabolism Receptors, Leptin - deficiency Receptors, Leptin - genetics Rodents Signal Transduction - drug effects Supraoptic Nucleus - cytology Venoms - pharmacology |
Title | Hormones and diet, but not body weight, control hypothalamic microglial activity |
URI | https://api.istex.fr/ark:/67375/WNG-D2M33ZBK-V/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fglia.22580 https://www.ncbi.nlm.nih.gov/pubmed/24166765 https://www.proquest.com/docview/1460800322 https://pubmed.ncbi.nlm.nih.gov/PMC4213950 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VeuFCS3k0PCpLrTggUrK2EydSL0t5bMVDSC0t4mLZcVJWXQJid9Xuv2fG2Q1dtUJC3CJlkjiesf3NePwNwIc8ahlZRmWouItCmUobGhlnYZZHNpccTcbvmHa-qtOLdG-faHI-Tc7C1PwQTcCNRoafr2mAG9vfeSAN_dnrmo9ojSk57Ogm-PMb4qzZQkDoX9N8ZjLE61bDTcp3Hh6dWo1eUsf--R_U_Ddj8m8k65eig1fP-4nXMD-GoKxd28wCvCiqN7DYrtD9vh6xTeaTQn20fRHOOohpic6fmcox1y0G28wOB6y6GTB740bstw-tbrNxyju7Gt2i7k2Pytyza8r2o4_3GJ2foDIVS3B-sP_tcyccF2EIc6pPFQqRJyWucrFyXKosMVlSllFipMgFzyNe4PKW2CwuIkvoo2WKEhGRIyJTJeJCiWWYrbCdb4GVxC4mSpe10lQap1LLI4eiaYEYNOc2gPcTZejbmmtD16zKXFNbte-oADa9nhoRc_eLstNUrH-cHuo9fiLE5e6R_h7A-kSRejww--TpEEbGaSyAlVqnzYsQzFDGbxyAmtJ2I0BU3NN3qu6Vp-SWHJF0jG3b8tp-pPn68PhL21-tPkV4DeYQqsk6-LMOs4O7YbEBM303fOfN_h5eIgMH |
link.rule.ids | 230,315,782,786,887,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VOJQLffBKS1tLrTggAlnbiZMDh215LGJZIfGqerGcOIEVS0Cwq3b_PTPObugKhFT1ZikTx_F47M_j8TcA37KgYWQRFL7iNvBlLFPfyDDxkyxIM8lxyLgT09ax6vyMt3eIJmdrfBem4oeoHW5kGW6-JgMnh_TmI2voRa9rNnA4xrhjn5ERVks3OMRRfYiA4L8i-kykj-VGzU7KNx_fnViPZqhr_zwHNp_GTP6NZd1itPvmP3_jLcyNUChrVsPmHbzKy_cw3yxxB349ZKvMxYU6h_s8HLUQ1hKjPzOlZbab99dZOuiz8qbP0hs7ZL-dd3WdjaLe2eXwFtVvepTpnl1TwB99vMfoCgVlqliA092dkx8tf5SHwc8oRZUvRBYVuNCFynKpksgkUVEEkZEiEzwLeI4rXJQmYR6kBEAaJi8QFFniMlUizJVYhOkS27kMrCCCMVHYpBHH0lgVpzywKBrnCEMznnrwdawNfVvRbeiKWJlraqt2HeXBqlNULWLurihATYX6vLOnt_mhEL--H-gzD1bGmtQj27ynzQ7BZJzJPFiqlFpXhHiGgn5DD9SEumsBYuOefFJ2Lx0rt-QIpkNs25pT9wvN13vt_aYrffgX4S_wunVy2Nbt_c7BR5hF5CYrX9AKTPfvBvknmLq3g8_OBh4AsqEHLw |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Rb9MwED7BJiFeYGwDAgMsgfaAFpbaTpxIvBS6rtNGVYltIF4sJ45ZRZdVWyvWf8-d02ZUIKSJt0i5JI7P5_t8Pn8H8KaIWka6yIWK2yiUqcxDI-MszIooLyTHIeN3THufVf9r2tkjmpz3i7MwNT9EE3Ajy_DzNRn42LrdG9LQ76OheYejMcUF-6pEHE7M-UIMmj0ExP41z2cmQ7xuNeSkfPfm2SV3tEo9e_03rPlnyuTvUNb7ou7D__uLNXgwx6CsXQ-aR3CnrNZho13h-vt8xraZzwr14fYNGPQQ1BKfPzOVZXZYTnZYPp2w6mLC8gs7Yz99bHWHzXPe2dlsjMo3I6pzz84p3Y8-PmJ0gILqVGzCSXfv-GMvnFdhCAsqUBUKUSQO3VysLJcqS0yWOBclRopC8CLiJfq3JM_iMsoJfrRM6RASWWIyVSIulXgMKxW28ykwR_RiwtmslabSWJXmPLIompYIQgueB_B6oQw9rsk2dE2rzDW1VfuOCmDb66kRMZc_KD1NxfpLf193-Cchvn041KcBbC0UqeeWeUVLHQLJOI8F8KTWafMiRDOU8hsHoJa03QgQF_fynWp45jm5JUcoHWPb3npt_6P5ev_ooO2vnt1G-BXcG3S6-uigf_gc7iNsk3UgaAtWJpfT8gXcvbLTl94CfgF7AQXV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hormones+and+diet%2C+but+not+body+weight%2C+control+hypothalamic+microglial+activity&rft.jtitle=Glia&rft.au=Gao%2C+Yuanqing&rft.au=Ottaway%2C+Nickki&rft.au=Schriever%2C+Sonja+C.&rft.au=Legutko%2C+Beata&rft.date=2014-01-01&rft.issn=0894-1491&rft.eissn=1098-1136&rft.volume=62&rft.issue=1&rft.spage=17&rft.epage=25&rft_id=info:doi/10.1002%2Fglia.22580&rft.externalDBID=10.1002%252Fglia.22580&rft.externalDocID=GLIA22580 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-1491&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-1491&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-1491&client=summon |