Two cDNAs from potato are able to complement a phosphate uptake-deficient yeast mutant: identification of phosphate transporters from higher plants

Acquisition as well as translocation of phosphate are essential processes for plant growth. In many plants, phosphate uptake by roots and distribution within the plant are presumed to occur via a phosphate/proton cotransport mechanism. Here, we describe the isolation of two cDNAs, StPT1 and StPT2, f...

Full description

Saved in:
Bibliographic Details
Published in:The Plant cell Vol. 9; no. 3; pp. 381 - 392
Main Authors: Leggewie, G. (Max-Planck-Institut fur Molekulare Pflanzenpysiologie, Golm, Germany.), Willmitzer, L, Riesmeier, J.W
Format: Journal Article
Language:English
Published: United States American Society of Plant Physiologists 01-03-1997
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Acquisition as well as translocation of phosphate are essential processes for plant growth. In many plants, phosphate uptake by roots and distribution within the plant are presumed to occur via a phosphate/proton cotransport mechanism. Here, we describe the isolation of two cDNAs, StPT1 and StPT2, from potato (Solanum tuberosum) that show homology to the phosphate/proton cotransporter PHO84 from the yeast Saccharomyces cerevisiae. The predicted products of both cDNAs share 35% identity with the PHO84 sequence. The deduced structure of the encoded proteins revealed 12 membrane-spanning domains with a central hydrophilic region. The molecular mass was calculated to be 59 kD for the StPT1 protein and 58 kD for the StPT2 protein. When expressed in a PHO84-deficient yeast strain, MB192, both cDNAs complemented the mutant. Uptake of radioactive orthophosphate by the yeast mutant expressing either StPT1 or StPT2 was dependent on pH and reduced in the presence of uncouplers of oxidative phosphorylation, such as 2,4-dinitrophenol or carbonyl cyanide m-chlorophenylhydrazone. The Km for Pi uptake of the StPT1 and StPT2 proteins was determined to be 280 and 130 micromolar, respectively. StPT1 is expressed in roots, tubers, and source leaves as well as in floral organs. Deprivation of nitrogen, phosphorus, potassium, and sulfur changed spatial expression as well as the expression level of StPT1. StPT2 expression was detected mainly in root organs when plants were deprived of Pi and to a lesser extent under sulfur deprivation conditions. No expression was found under optimized nutrition conditions or when other macronutrients were lacking
AbstractList Acquisition as well as translocation of phosphate are essential processes for plant growth. In many plants, phosphate uptake by roots and distribution within the plant are presumed to occur via a phosphate/proton cotransport mechanism. Here, we describe the isolation of two cDNAs, StPT1 and StPT2, from potato (Solanum tuberosum) that show homology to the phosphate/proton cotransporter PHO84 from the yeast Saccharomyces cerevisiae. The predicted products of both cDNAs share 35% identity with the PHO84 sequence. The deduced structure of the encoded proteins revealed 12 membrane-spanning domains with a central hydrophilic region. The molecular mass was calculated to be 59 kD for the StPT1 protein and 58 kD for the StPT2 protein. When expressed in a PHO84-deficient yeast strain, MB192, both cDNAs complemented the mutant. Uptake of radioactive orthophosphate by the yeast mutant expressing either StPT1 or StPT2 was dependent on pH and reduced in the presence of uncouplers of oxidative phosphorylation, such as 2,4-dinitrophenol or carbonyl cyanide m-chlorophenylhydrazone. The K sub(m) for Pi uptake of the StPT1 and StPT2 proteins was determined to be 280 and 130 mu M, respectively. StPT1 is expressed in roots, tubers, and source leaves as well as in floral organs. Deprivation of nitrogen, phosphorus, potassium, and sulfur changed spatial expression as well as the expression level of StPT1. StPT2 expression was detected mainly in root organs when plants were deprived of Pi and to a lesser extent under sulfur deprivation conditions. No expression was found under optimized nutrition conditions or when other macronutrients were lacking.
Acquisition as well as translocation of phosphate are essential processes for plant growth. In many plants, phosphate uptake by roots and distribution within the plant are presumed to occur via a phosphate/proton cotransport mechanism. Here, we describe the isolation of two cDNAs, StPT1 and StPT2, from potato (Solanum tuberosum) that show homology to the phosphate/proton cotransporter PHO84 from the yeast Saccharomyces cerevisiae. The predicted products of both cDNAs share 35% identity with the PHO84 sequence. The deduced structure of the encoded proteins revealed 12 membrane-spanning domains with a central hydrophilic region. The molecular mass was calculated to be 59 kD for the StPT1 protein and 58 kD for the StPT2 protein. When expressed in a PHO84-deficient yeast strain, MB192, both cDNAs complemented the mutant. Uptake of radioactive orthophosphate by the yeast mutant expressing either StPT1 or StPT2 was dependent on pH and reduced in the presence of uncouplers of oxidative phosphorylation, such as 2,4-dinitrophenol or carbonyl cyanide m-chlorophenylhydrazone. The K(m) for Pi uptake of the StPT1 and StPT2 proteins was determined to be 280 and 130 microM, respectively. StPT1 is expressed in roots, tubers, and source leaves as well as in floral organs. Deprivation of nitrogen, phosphorus, potassium, and sulfur changed spatial expression as well as the expression level of StPT1. StPT2 expression was detected mainly in root organs when plants were deprived of Pi and to a lesser extent under sulfur deprivation conditions. No expression was found under optimized nutrition conditions or when other macronutrients were lacking.
Acquisition as well as translocation of phosphate are essential processes for plant growth. In many plants, phosphate uptake by roots and distribution within the plant are presumed to occur via a phosphate/proton cotransport mechanism. Here, we describe the isolation of two cDNAs, StPT1 and StPT2, from potato (Solanum tuberosum) that show homology to the phosphate/proton cotransporter PHO84 from the yeast Saccharomyces cerevisiae. The predicted products of both cDNAs share 35% identity with the PHO84 sequence. The deduced structure of the encoded proteins revealed 12 membrane-spanning domains with a central hydrophilic region. The molecular mass was calculated to be 59 kD for the StPT1 protein and 58 kD for the StPT2 protein. When expressed in a PHO84-deficient yeast strain, MB192, both cDNAs complemented the mutant. Uptake of radioactive orthophosphate by the yeast mutant expressing either StPT1 or StPT2 was dependent on pH and reduced in the presence of uncouplers of oxidative phosphorylation, such as 2,4-dinitrophenol or carbonyl cyanide m-chlorophenylhydrazone. The K m for Pi uptake of the StPT1 and StPT2 proteins was determined to be 280 and 130 μM, respectively. StPT1 is expressed in roots, tubers, and source leaves as well as in floral organs. Deprivation of nitrogen, phosphorus, potassium, and sulfur changed spatial expression as well as the expression level of StPT1. StPT2 expression was detected mainly in root organs when plants were deprived of Pi and to a lesser extent under sulfur deprivation conditions. No expression was found under optimized nutrition conditions or when other macronutrients were lacking.
Acquisition as well as translocation of phosphate are essential processes for plant growth. In many plants, phosphate uptake by roots and distribution within the plant are presumed to occur via a phosphate/proton cotransport mechanism. Here, we describe the isolation of two cDNAs, StPT1 and StPT2, from potato (Solanum tuberosum) that show homology to the phosphate/proton cotransporter PHO84 from the yeast Saccharomyces cerevisiae. The predicted products of both cDNAs share 35% identity with the PHO84 sequence. The deduced structure of the encoded proteins revealed 12 membrane-spanning domains with a central hydrophilic region. The molecular mass was calculated to be 59 kD for the StPT1 protein and 58 kD for the StPT2 protein. When expressed in a PHO84-deficient yeast strain, MB192, both cDNAs complemented the mutant. Uptake of radioactive orthophosphate by the yeast mutant expressing either StPT1 or StPT2 was dependent on pH and reduced in the presence of uncouplers of oxidative phosphorylation, such as 2,4-dinitrophenol or carbonyl cyanide m-chlorophenylhydrazone. The Km for Pi uptake of the StPT1 and StPT2 proteins was determined to be 280 and 130 micromolar, respectively. StPT1 is expressed in roots, tubers, and source leaves as well as in floral organs. Deprivation of nitrogen, phosphorus, potassium, and sulfur changed spatial expression as well as the expression level of StPT1. StPT2 expression was detected mainly in root organs when plants were deprived of Pi and to a lesser extent under sulfur deprivation conditions. No expression was found under optimized nutrition conditions or when other macronutrients were lacking
Author Leggewie, G. (Max-Planck-Institut fur Molekulare Pflanzenpysiologie, Golm, Germany.)
Willmitzer, L
Riesmeier, J.W
AuthorAffiliation Institut für Genbiologische Forschung, Berlin, Germany. leggewie@mpimp-golm.mpg.de
AuthorAffiliation_xml – name: Institut für Genbiologische Forschung, Berlin, Germany. leggewie@mpimp-golm.mpg.de
Author_xml – sequence: 1
  fullname: Leggewie, G. (Max-Planck-Institut fur Molekulare Pflanzenpysiologie, Golm, Germany.)
– sequence: 2
  fullname: Willmitzer, L
– sequence: 3
  fullname: Riesmeier, J.W
BackLink https://www.ncbi.nlm.nih.gov/pubmed/9090882$$D View this record in MEDLINE/PubMed
BookMark eNqFUcFu1DAQtVBRaQsnbkhIPlRcUBY7iZMYqYeqBYpUwYFW4mY5zmTjksTGdqj6HfxwZ7Wrajlx8sjvvXkz847JwexmIOQ1ZyvOmfiQvFnJVbEqGv6MHHFR5Fkum58HWLOSZWUl-AtyHOMdY4zXXB6SQ8kka5r8iPy9uXfUXH47j7QPbqLeJZ0c1QGobkegWBs3-REmmBPV1A8u-kEnoItP-hdkHfTW2A34ADomOi1Jz-kjtR3-WcR0sm6mrt-TpqDn6F1IEHa2g10PEKgfURtfkue9HiO82r0n5Pbzp5uLq-z6-5evF-fXmSkbkbKeyaJllSllWeWga1ZCK6u-M7hYDm0tO4O3YL2pmlJwKaquMwYPpnMupOhMcULOtn390k7QGRw46FH5YCcdHpTTVv2LzHZQa_dHcVHJXKD-3U4f3O8FYlKTjQZGXALcElXdyJyh1X-JvGJ1WZUSie-3RBNcjAH6p2E4U5usFWatpCoUZo3st_vzP3F34SJ-usXvYnJhv1VesBpb4MmajembLa3XTul1sFHd_pB1wWUti0cCd78a
CitedBy_id crossref_primary_10_1146_annurev_arplant_50_1_665
crossref_primary_10_1016_j_tplants_2004_12_003
crossref_primary_10_1093_jxb_erv210
crossref_primary_10_1199_tab_0024
crossref_primary_10_1007_s11105_010_0199_8
crossref_primary_10_1080_01904169909365663
crossref_primary_10_1139_B07_070
crossref_primary_10_1007_s11104_017_3364_0
crossref_primary_10_1016_S0167_7799_99_01332_3
crossref_primary_10_1080_07352680600709917
crossref_primary_10_1007_s11103_014_0186_9
crossref_primary_10_1007_s11103_014_0249_y
crossref_primary_10_1071_FP12242
crossref_primary_10_7740_kjcs_2011_56_3_264
crossref_primary_10_1371_journal_pone_0019752
crossref_primary_10_1016_j_plaphy_2018_03_028
crossref_primary_10_1007_s11427_006_2030_1
crossref_primary_10_1007_s11356_014_4020_3
crossref_primary_10_1016_S0168_9452_02_00233_9
crossref_primary_10_1093_mp_ssr058
crossref_primary_10_1186_s12870_014_0334_z
crossref_primary_10_3389_fpls_2018_01367
crossref_primary_10_1007_s11104_004_2005_6
crossref_primary_10_18393_ejss_319198
crossref_primary_10_1016_j_cpb_2016_10_004
crossref_primary_10_1016_j_molp_2015_12_012
crossref_primary_10_1080_01904160600830191
crossref_primary_10_1093_treephys_tpq063
crossref_primary_10_1080_14620316_2019_1703562
crossref_primary_10_1016_S0005_2736_00_00141_3
crossref_primary_10_1093_treephys_tpw125
crossref_primary_10_1016_j_scienta_2016_07_007
crossref_primary_10_1093_jxb_erp092
crossref_primary_10_1081_CSS_100104105
crossref_primary_10_3389_fmicb_2016_01083
crossref_primary_10_3390_plants9101384
crossref_primary_10_3389_fpls_2017_00817
crossref_primary_10_1016_j_jbiotec_2017_10_012
crossref_primary_10_3389_fpls_2022_804058
crossref_primary_10_1016_S1369_5266_99_80041_7
crossref_primary_10_1146_annurev_arplant_50_1_361
crossref_primary_10_1093_pcp_pcf002
crossref_primary_10_3389_fpls_2017_00417
crossref_primary_10_1007_s11738_014_1516_x
crossref_primary_10_3389_fmicb_2015_00984
crossref_primary_10_1007_s11427_009_0137_x
crossref_primary_10_1007_s00572_013_0496_9
crossref_primary_10_3389_fpls_2018_00500
crossref_primary_10_1007_s11103_004_1965_5
crossref_primary_10_1071_FP14043
crossref_primary_10_1007_s11104_004_4732_0
crossref_primary_10_1016_j_envexpbot_2011_07_008
crossref_primary_10_1007_s11104_007_9222_8
crossref_primary_10_1080_07352689_2019_1645402
crossref_primary_10_1007_s11240_004_7461_4
crossref_primary_10_1038_s41598_017_14447_0
crossref_primary_10_1016_j_pmpp_2019_02_010
crossref_primary_10_1094_MPMI_1998_11_1_14
crossref_primary_10_1146_annurev_arplant_52_1_163
crossref_primary_10_1371_journal_pone_0047726
crossref_primary_10_1093_pcp_pce163
crossref_primary_10_1016_S0378_1119_98_00326_6
crossref_primary_10_1007_s10529_008_9757_7
crossref_primary_10_1078_0176_1617_00147
crossref_primary_10_1371_journal_pone_0126186
crossref_primary_10_1007_s00425_012_1836_2
crossref_primary_10_1007_s11703_010_1021_y
crossref_primary_10_3923_ja_2006_466_470
crossref_primary_10_1007_s11738_017_2392_y
ContentType Journal Article
Copyright Copyright 1997 American Society of Plant Physiologists
Copyright_xml – notice: Copyright 1997 American Society of Plant Physiologists
DBID FBQ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
8FD
FR3
P64
RC3
7X8
5PM
DOI 10.1105/tpc.9.3.381
DatabaseName AGRIS
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Genetics Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts
MEDLINE - Academic


MEDLINE

Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Botany
EISSN 1532-298X
EndPage 392
ExternalDocumentID 10_1105_tpc_9_3_381
9090882
3870489
US9731979
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GroupedDBID ---
-DZ
-~X
123
29O
2AX
2FS
2WC
2~F
3V.
4.4
53G
5VS
5WD
7X2
7X7
85S
88A
88E
88I
8AF
8AO
8CJ
8FE
8FH
8FI
8FJ
8FW
8R4
8R5
AAHKG
AAPXW
AAVAP
AAWDT
AAXTN
AAYJJ
ABBHK
ABJNI
ABPLY
ABPPZ
ABPTD
ABPTK
ABTLG
ABUWG
ABXZS
ACBTR
ACFRR
ACGFO
ACGOD
ACIPB
ACIWK
ACNCT
ACPRK
ACUFI
ACUTJ
ADBBV
ADIPN
ADIYS
ADULT
ADVEK
ADYHW
ADZLD
AEEJZ
AENEX
AESBF
AEUPB
AFAZZ
AFFDN
AFFNX
AFFZL
AFGWE
AFKRA
AFMIJ
AFRAH
AFYAG
AGCDD
AGUYK
AHMBA
AICQM
AJEEA
ALMA_UNASSIGNED_HOLDINGS
ALXQX
ANFBD
AQDSO
AS~
ATCPS
AZQEC
BAWUL
BBNVY
BCRHZ
BENPR
BHPHI
BPHCQ
BTFSW
BVXVI
BYORX
C1A
CBGCD
CCPQU
CS3
CWIXF
D1J
DATOO
DFEDG
DIK
DOOOF
DU5
DWIUU
DWQXO
E3Z
EBS
ECGQY
EJD
F20
F5P
F8P
F9R
FBQ
FLUFQ
FOEOM
FRP
FYUFA
GNUQQ
GTFYD
GX1
HCIFZ
HGD
HMCUK
HTVGU
H~9
ISR
JAAYA
JBMMH
JBS
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
KOP
KQ8
KSI
KSN
LK8
M0K
M0L
M1P
M2P
M2Q
M7P
MV1
MVM
N9A
NEJ
NOMLY
OBOKY
OJZSN
OK1
OWPYF
P0-
P2P
PQQKQ
PROAC
PSQYO
Q2X
RHF
RHI
ROX
RPB
RPM
RWL
RXW
S0X
SA0
TAE
TCN
TN5
TR2
U5U
UBC
UKHRP
UKR
VQA
W8F
WH7
WHG
WOQ
XOL
XSW
Y6R
YBU
YR2
YSK
ZCA
ZCG
ZCN
~KM
ABXSQ
AQVQM
0R~
AAHBH
AARHZ
AAUAY
ABMNT
ABXVV
ACZBC
ADACV
ADQBN
AGMDO
AHXOZ
ALIPV
ATGXG
BEYMZ
CGR
CUY
CVF
ECM
EIF
H13
IPSME
NPM
AAYXX
ABEJV
CITATION
8FD
FR3
P64
RC3
7X8
5PM
AASNB
ID FETCH-LOGICAL-c485t-f093b06c49462ea704eb96fdc8822eb79dc1530fc68451956ddcc110a21595dc3
IEDL.DBID JLS
ISSN 1040-4651
IngestDate Tue Sep 17 21:18:32 EDT 2024
Fri Oct 25 07:04:46 EDT 2024
Fri Oct 25 09:53:14 EDT 2024
Thu Nov 21 22:55:55 EST 2024
Tue Oct 15 23:20:30 EDT 2024
Fri Feb 02 08:16:05 EST 2024
Wed Dec 27 19:15:56 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-f093b06c49462ea704eb96fdc8822eb79dc1530fc68451956ddcc110a21595dc3
Notes F61
F60
F30
9731979
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://academic.oup.com/plcell/article-pdf/9/3/381/34749138/plcell_v9_3_381.pdf
PMID 9090882
PQID 16074649
PQPubID 23462
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_156925
proquest_miscellaneous_78920595
proquest_miscellaneous_16074649
crossref_primary_10_1105_tpc_9_3_381
pubmed_primary_9090882
jstor_primary_10_2307_3870489
fao_agris_US9731979
PublicationCentury 1900
PublicationDate 1997-03-01
PublicationDateYYYYMMDD 1997-03-01
PublicationDate_xml – month: 03
  year: 1997
  text: 1997-03-01
  day: 01
PublicationDecade 1990
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Plant cell
PublicationTitleAlternate Plant Cell
PublicationYear 1997
Publisher American Society of Plant Physiologists
Publisher_xml – name: American Society of Plant Physiologists
References 8598055 - Curr Genet. 1996 Mar;29(4):344-51
16660902 - Plant Physiol. 1979 Jul;64(1):139-43
8524398 - Nature. 1995 Dec 7;378(6557):626-9
2421601 - Anal Biochem. 1986 Feb 1;152(2):304-7
2531109 - Gene. 1989 Nov 30;83(2):281-9
7568135 - Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9373-7
16668939 - Plant Physiol. 1992 Jun;99(2):672-80
16667890 - Plant Physiol. 1990 Dec;94(4):1561-7
4152 - Biochimie. 1975;57(10):1229-36
8927627 - Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10519-23
2698991 - Methods Enzymol. 1989;174:617-22
9025304 - Plant J. 1997 Jan;11(1):83-92
16667491 - Plant Physiol. 1990 Jun;93(2):479-83
8180624 - Plant J. 1994 Mar;5(3):407-19
7883177 - Gene. 1995 Feb 3;153(1):135-9
7851439 - Eur J Biochem. 1995 Jan 15;227(1-2):566-72
7108955 - J Mol Biol. 1982 May 5;157(1):105-32
8709965 - Mol Gen Genet. 1996 Jul 19;251(5):580-90
2441623 - Anal Biochem. 1987 May 15;163(1):16-20
16666883 - Plant Physiol. 1989 Jul;90(3):820-6
16663996 - Plant Physiol. 1985 Jan;77(1):136-41
8202535 - Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5607-11
2038328 - Mol Cell Biol. 1991 Jun;11(6):3229-38
1464305 - EMBO J. 1992 Dec;11(13):4705-13
1620108 - Mol Cell Biol. 1992 Jul;12(7):2958-66
References_xml
SSID ssj0001719
Score 2.0229566
Snippet Acquisition as well as translocation of phosphate are essential processes for plant growth. In many plants, phosphate uptake by roots and distribution within...
SourceID pubmedcentral
proquest
crossref
pubmed
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 381
SubjectTerms ABSORCION DE SUSTANCIAS NUTRITIVAS
ABSORPTION DE SUBSTANCES NUTRITIVES
ADN
Amino Acid Sequence
Amino acids
ANION
ANIONES
ARN MENSAJERO
ARN MESSAGER
Carrier Proteins - biosynthesis
Carrier Proteins - chemistry
Carrier Proteins - genetics
Complementary DNA
COMPOSICION QUIMICA
COMPOSITION CHIMIQUE
DISPONIBILIDAD DE NUTRIENTES
DISPONIBILITE D'ELEMENT NUTRITIF
DNA, Complementary - metabolism
DNA, Plant - metabolism
ESTRUCTURA CELULAR
EXPRESION GENICA
EXPRESSION DES GENES
FOSFATOS
Genetic Complementation Test
GENETICA
GENETIQUE
ION
IONES
Kinetics
Molecular Sequence Data
MUTACION
MUTANT
MUTANTES
MUTATION
PHOSPHATE
Phosphate transport proteins
Phosphate-Binding Proteins
Phosphates
Phosphates - metabolism
Plant cells
Plant roots
Plants
Protein Structure, Secondary
PROTEINAS VEGETALES
PROTEINE VEGETALE
Proteins
Proton-Phosphate Symporters
RACINE
RAICES
Recombinant Proteins - biosynthesis
RNA
SACCHAROMYCES CEREVISIAE
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins
SECUENCIA NUCLEOTIDICA
Sequence Homology, Amino Acid
SEQUENCE NUCLEOTIDIQUE
SOLANUM TUBEROSUM
Solanum tuberosum - genetics
Solanum tuberosum - metabolism
STRUCTURE CELLULAIRE
TRANSFORMACION GENETICA
TRANSFORMATION GENETIQUE
Yeasts
Title Two cDNAs from potato are able to complement a phosphate uptake-deficient yeast mutant: identification of phosphate transporters from higher plants
URI https://www.jstor.org/stable/3870489
https://www.ncbi.nlm.nih.gov/pubmed/9090882
https://search.proquest.com/docview/16074649
https://search.proquest.com/docview/78920595
https://pubmed.ncbi.nlm.nih.gov/PMC156925
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1db9MwFL2iExK88FGYyGDFD31Nl8SJY_NW1k1DiGnSVgmeLMd2KAIl1ZJq4nfwh7l2ktIiBLxFcpw4Ojf2cXLuuQDTxJjEYOCEOS4mYcoiHhZCq9CkuNxSEVPtnZgurvPLj3xx5mxypkMujJNVel2g_4uPBKn4Zk8oBlXKxQhGPOKdbG8728a5L94RO2Wcq-vd5-AhbThp13omZnRGeby36oxKVQ_ywz8Ry9_1kTsLzvnj_xvqE3jUE0oy7yLgKdyz1Rjuv62R9H0fw4PToaDbM_hxc1cTvbicN8QllZArPKetsaclc7wowWM3O3R6cqLI1apu1ivkomS5btVXGy6ss5twjZ9cxR_yYeNKEL8hXbJv2X_9I3W50_WXefptf9tOWUJctaS2eQ7L87Ob04uwr8kQ6pRnbVhGghYR06lIWWIVPqwtBCuNRqae2CIXRuMcGpWacW9cw4zRGtFQSC1EZjQ9hIOqruwLILS0KtJGxYwVSNqo0pkokGCljCpOVRLAdMBMrjvrDem3LFEmEVopJJUIbQBjxFOqzzgpyuW1K8UlchHAscdmt6fTvMseoABeD7hLhMH9JVGVrTeNdI57KUv_ckbORYKsNAvgsIuT7U1E5GRjOHK2F0Dbduflvd9SfVl5T2_cRoskO_rHqF_Cw84-12ngXsFBe7uxxzBqzGaC24F37yc-d2fi35CfS-MLIQ
link.rule.ids 230,315,782,786,808,814,887,27933,27934,58034,58037,58052,58267,58270,58285
linkProvider JSTOR
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1db9MwFL2iA2m88FGYCDDmh76mS2LHiXkr66YitmrSWgmeLMd2VgRKqiUV4nfwh7nOR2kRAt4iOU4cnRv7JD73XIBRZExkMHD8BBcTn_Eg9TOhlW8YLrdUhFQ3Tkyzm2T-MZ2eO5ucUZ8L42SVjS6w2cVHgpR9tacUg4qlYgD34zSgrM1Q2M63YdKU7widNs5V9u6y8JA4nNZrPRZjOqZpuLfuDHJV9gLEP1HL3xWSO0vOxeP_G-wTeNRRSjJpY-Ap3LPFEB68K5H2fR_C4Vlf0u0Z_Fh8K4mezicVcWkl5BrPqUvsackEL0rw2M0PraKcKHK9Kqv1CtkoWa5r9cX6U-sMJ1zjJ1fzh1xtXBHit6RN9827_3-kzHe6_rJPv-tu22pLiKuXVFfPYXlxvjib-V1VBl-zNK79PBA0C7hmgvHIKnxYmwmeG41cPbJZIozGWTTINU8b6xpujNaIhkJyIWKj6REcFGVhXwChuVWBNirkPEPaRpWORYYUi3GqUqoiD0Y9ZnLdmm_I5qMliCVCK4WkEqH1YIh4SnWL06Jc3rhiXCIRHhw32Oz2dKp32QHkwUmPu0QY3D6JKmy5qaTz3GOc_eWMJBUR8tLYg6M2TrY3EYETjuHI-V4Abdudm_d-S_F51bh644e0iOKX_xj1CRzOFleX8vL9_MMreNia6TpF3Gs4qO829hgGldm8ad6Qn7XRDGQ
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nj9MwEB3RBQEXPsquCLCsD3vgkjaJEyfmVrZbLQKqSruV4GQ5tkMRqKm2qRAX_gR_mJl8lBYh4BbJcezoTezn-PkNwGlkbWQxcPwUJxM_FkHm59Jo38Y43XIZclM7MV1cptP32ficbHJedGdhSFZZ6wLrXXwkSPkXN1zZYsgxsOJM9uAmbfSQeC_6PtmOuWFap_AISR9H2b3bk3hIHobVygzkgA94Fu7NPb1Cl50I8U_08neV5M60M7n__x1-APdaaslGTSw8hBtu2Ydbr0qkf9_6cOesS-32CH5cfS2ZGU9Ha0bHS9gM76lKrOnYCB_M8JrGiUZZzjSbLcr1aoGslM1Xlf7s_LEj4wkq_EC5f9i7DSUjfsmaY79F-x-QlcVO1V826tdts43GhFHepGp9CPPJ-dXZhd9mZ_BNnCWVXwSS54EwsYxF5DS-rMulKKxBzh65PJXW4GgaFEZktYWNsNYYREQjyZCJNfwIDpbl0j0GxgunA2N1KESO9I1rk8gcqVYsuM64jjw47XBTq8aEQ9WLlyBRCK-SiiuE14M-Yqr0Rxwe1fySknLJVHpwXOOzW5PU76oFyIOTDnuFMNB-iV66crNW5L0Xi_gvd6SZjJCfJh4cNbGybUQGJCDDnou9INqWk6v3fsny06J298YFtYySJ__o9Qncno0n6u3r6ZuncLfx1CVh3DM4qK437hh6a7t5Xn8kPwGm-Q8Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+cDNAs+from+Potato+Are+Able+to+Complement+a+Phosphate+Uptake-Deficient+Yeast+Mutant%3A+Identification+of+Phosphate+Transporters+from+Higher+Plants&rft.jtitle=The+Plant+cell&rft.au=Leggewie%2C+Georg&rft.au=Willmitzer%2C+Lothar&rft.au=Riesmeier%2C+J%C3%B6rg+W.&rft.date=1997-03-01&rft.pub=American+Society+of+Plant+Physiologists&rft.issn=1040-4651&rft.eissn=1532-298X&rft.volume=9&rft.issue=3&rft.spage=381&rft.epage=392&rft_id=info:doi/10.1105%2Ftpc.9.3.381&rft.externalDocID=3870489
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-4651&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-4651&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-4651&client=summon