Two cDNAs from potato are able to complement a phosphate uptake-deficient yeast mutant: identification of phosphate transporters from higher plants
Acquisition as well as translocation of phosphate are essential processes for plant growth. In many plants, phosphate uptake by roots and distribution within the plant are presumed to occur via a phosphate/proton cotransport mechanism. Here, we describe the isolation of two cDNAs, StPT1 and StPT2, f...
Saved in:
Published in: | The Plant cell Vol. 9; no. 3; pp. 381 - 392 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Society of Plant Physiologists
01-03-1997
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Acquisition as well as translocation of phosphate are essential processes for plant growth. In many plants, phosphate uptake by roots and distribution within the plant are presumed to occur via a phosphate/proton cotransport mechanism. Here, we describe the isolation of two cDNAs, StPT1 and StPT2, from potato (Solanum tuberosum) that show homology to the phosphate/proton cotransporter PHO84 from the yeast Saccharomyces cerevisiae. The predicted products of both cDNAs share 35% identity with the PHO84 sequence. The deduced structure of the encoded proteins revealed 12 membrane-spanning domains with a central hydrophilic region. The molecular mass was calculated to be 59 kD for the StPT1 protein and 58 kD for the StPT2 protein. When expressed in a PHO84-deficient yeast strain, MB192, both cDNAs complemented the mutant. Uptake of radioactive orthophosphate by the yeast mutant expressing either StPT1 or StPT2 was dependent on pH and reduced in the presence of uncouplers of oxidative phosphorylation, such as 2,4-dinitrophenol or carbonyl cyanide m-chlorophenylhydrazone. The Km for Pi uptake of the StPT1 and StPT2 proteins was determined to be 280 and 130 micromolar, respectively. StPT1 is expressed in roots, tubers, and source leaves as well as in floral organs. Deprivation of nitrogen, phosphorus, potassium, and sulfur changed spatial expression as well as the expression level of StPT1. StPT2 expression was detected mainly in root organs when plants were deprived of Pi and to a lesser extent under sulfur deprivation conditions. No expression was found under optimized nutrition conditions or when other macronutrients were lacking |
---|---|
AbstractList | Acquisition as well as translocation of phosphate are essential processes for plant growth. In many plants, phosphate uptake by roots and distribution within the plant are presumed to occur via a phosphate/proton cotransport mechanism. Here, we describe the isolation of two cDNAs, StPT1 and StPT2, from potato (Solanum tuberosum) that show homology to the phosphate/proton cotransporter PHO84 from the yeast Saccharomyces cerevisiae. The predicted products of both cDNAs share 35% identity with the PHO84 sequence. The deduced structure of the encoded proteins revealed 12 membrane-spanning domains with a central hydrophilic region. The molecular mass was calculated to be 59 kD for the StPT1 protein and 58 kD for the StPT2 protein. When expressed in a PHO84-deficient yeast strain, MB192, both cDNAs complemented the mutant. Uptake of radioactive orthophosphate by the yeast mutant expressing either StPT1 or StPT2 was dependent on pH and reduced in the presence of uncouplers of oxidative phosphorylation, such as 2,4-dinitrophenol or carbonyl cyanide m-chlorophenylhydrazone. The K sub(m) for Pi uptake of the StPT1 and StPT2 proteins was determined to be 280 and 130 mu M, respectively. StPT1 is expressed in roots, tubers, and source leaves as well as in floral organs. Deprivation of nitrogen, phosphorus, potassium, and sulfur changed spatial expression as well as the expression level of StPT1. StPT2 expression was detected mainly in root organs when plants were deprived of Pi and to a lesser extent under sulfur deprivation conditions. No expression was found under optimized nutrition conditions or when other macronutrients were lacking. Acquisition as well as translocation of phosphate are essential processes for plant growth. In many plants, phosphate uptake by roots and distribution within the plant are presumed to occur via a phosphate/proton cotransport mechanism. Here, we describe the isolation of two cDNAs, StPT1 and StPT2, from potato (Solanum tuberosum) that show homology to the phosphate/proton cotransporter PHO84 from the yeast Saccharomyces cerevisiae. The predicted products of both cDNAs share 35% identity with the PHO84 sequence. The deduced structure of the encoded proteins revealed 12 membrane-spanning domains with a central hydrophilic region. The molecular mass was calculated to be 59 kD for the StPT1 protein and 58 kD for the StPT2 protein. When expressed in a PHO84-deficient yeast strain, MB192, both cDNAs complemented the mutant. Uptake of radioactive orthophosphate by the yeast mutant expressing either StPT1 or StPT2 was dependent on pH and reduced in the presence of uncouplers of oxidative phosphorylation, such as 2,4-dinitrophenol or carbonyl cyanide m-chlorophenylhydrazone. The K(m) for Pi uptake of the StPT1 and StPT2 proteins was determined to be 280 and 130 microM, respectively. StPT1 is expressed in roots, tubers, and source leaves as well as in floral organs. Deprivation of nitrogen, phosphorus, potassium, and sulfur changed spatial expression as well as the expression level of StPT1. StPT2 expression was detected mainly in root organs when plants were deprived of Pi and to a lesser extent under sulfur deprivation conditions. No expression was found under optimized nutrition conditions or when other macronutrients were lacking. Acquisition as well as translocation of phosphate are essential processes for plant growth. In many plants, phosphate uptake by roots and distribution within the plant are presumed to occur via a phosphate/proton cotransport mechanism. Here, we describe the isolation of two cDNAs, StPT1 and StPT2, from potato (Solanum tuberosum) that show homology to the phosphate/proton cotransporter PHO84 from the yeast Saccharomyces cerevisiae. The predicted products of both cDNAs share 35% identity with the PHO84 sequence. The deduced structure of the encoded proteins revealed 12 membrane-spanning domains with a central hydrophilic region. The molecular mass was calculated to be 59 kD for the StPT1 protein and 58 kD for the StPT2 protein. When expressed in a PHO84-deficient yeast strain, MB192, both cDNAs complemented the mutant. Uptake of radioactive orthophosphate by the yeast mutant expressing either StPT1 or StPT2 was dependent on pH and reduced in the presence of uncouplers of oxidative phosphorylation, such as 2,4-dinitrophenol or carbonyl cyanide m-chlorophenylhydrazone. The K m for Pi uptake of the StPT1 and StPT2 proteins was determined to be 280 and 130 μM, respectively. StPT1 is expressed in roots, tubers, and source leaves as well as in floral organs. Deprivation of nitrogen, phosphorus, potassium, and sulfur changed spatial expression as well as the expression level of StPT1. StPT2 expression was detected mainly in root organs when plants were deprived of Pi and to a lesser extent under sulfur deprivation conditions. No expression was found under optimized nutrition conditions or when other macronutrients were lacking. Acquisition as well as translocation of phosphate are essential processes for plant growth. In many plants, phosphate uptake by roots and distribution within the plant are presumed to occur via a phosphate/proton cotransport mechanism. Here, we describe the isolation of two cDNAs, StPT1 and StPT2, from potato (Solanum tuberosum) that show homology to the phosphate/proton cotransporter PHO84 from the yeast Saccharomyces cerevisiae. The predicted products of both cDNAs share 35% identity with the PHO84 sequence. The deduced structure of the encoded proteins revealed 12 membrane-spanning domains with a central hydrophilic region. The molecular mass was calculated to be 59 kD for the StPT1 protein and 58 kD for the StPT2 protein. When expressed in a PHO84-deficient yeast strain, MB192, both cDNAs complemented the mutant. Uptake of radioactive orthophosphate by the yeast mutant expressing either StPT1 or StPT2 was dependent on pH and reduced in the presence of uncouplers of oxidative phosphorylation, such as 2,4-dinitrophenol or carbonyl cyanide m-chlorophenylhydrazone. The Km for Pi uptake of the StPT1 and StPT2 proteins was determined to be 280 and 130 micromolar, respectively. StPT1 is expressed in roots, tubers, and source leaves as well as in floral organs. Deprivation of nitrogen, phosphorus, potassium, and sulfur changed spatial expression as well as the expression level of StPT1. StPT2 expression was detected mainly in root organs when plants were deprived of Pi and to a lesser extent under sulfur deprivation conditions. No expression was found under optimized nutrition conditions or when other macronutrients were lacking |
Author | Leggewie, G. (Max-Planck-Institut fur Molekulare Pflanzenpysiologie, Golm, Germany.) Willmitzer, L Riesmeier, J.W |
AuthorAffiliation | Institut für Genbiologische Forschung, Berlin, Germany. leggewie@mpimp-golm.mpg.de |
AuthorAffiliation_xml | – name: Institut für Genbiologische Forschung, Berlin, Germany. leggewie@mpimp-golm.mpg.de |
Author_xml | – sequence: 1 fullname: Leggewie, G. (Max-Planck-Institut fur Molekulare Pflanzenpysiologie, Golm, Germany.) – sequence: 2 fullname: Willmitzer, L – sequence: 3 fullname: Riesmeier, J.W |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/9090882$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUcFu1DAQtVBRaQsnbkhIPlRcUBY7iZMYqYeqBYpUwYFW4mY5zmTjksTGdqj6HfxwZ7Wrajlx8sjvvXkz847JwexmIOQ1ZyvOmfiQvFnJVbEqGv6MHHFR5Fkum58HWLOSZWUl-AtyHOMdY4zXXB6SQ8kka5r8iPy9uXfUXH47j7QPbqLeJZ0c1QGobkegWBs3-REmmBPV1A8u-kEnoItP-hdkHfTW2A34ADomOi1Jz-kjtR3-WcR0sm6mrt-TpqDn6F1IEHa2g10PEKgfURtfkue9HiO82r0n5Pbzp5uLq-z6-5evF-fXmSkbkbKeyaJllSllWeWga1ZCK6u-M7hYDm0tO4O3YL2pmlJwKaquMwYPpnMupOhMcULOtn390k7QGRw46FH5YCcdHpTTVv2LzHZQa_dHcVHJXKD-3U4f3O8FYlKTjQZGXALcElXdyJyh1X-JvGJ1WZUSie-3RBNcjAH6p2E4U5usFWatpCoUZo3st_vzP3F34SJ-usXvYnJhv1VesBpb4MmajembLa3XTul1sFHd_pB1wWUti0cCd78a |
CitedBy_id | crossref_primary_10_1146_annurev_arplant_50_1_665 crossref_primary_10_1016_j_tplants_2004_12_003 crossref_primary_10_1093_jxb_erv210 crossref_primary_10_1199_tab_0024 crossref_primary_10_1007_s11105_010_0199_8 crossref_primary_10_1080_01904169909365663 crossref_primary_10_1139_B07_070 crossref_primary_10_1007_s11104_017_3364_0 crossref_primary_10_1016_S0167_7799_99_01332_3 crossref_primary_10_1080_07352680600709917 crossref_primary_10_1007_s11103_014_0186_9 crossref_primary_10_1007_s11103_014_0249_y crossref_primary_10_1071_FP12242 crossref_primary_10_7740_kjcs_2011_56_3_264 crossref_primary_10_1371_journal_pone_0019752 crossref_primary_10_1016_j_plaphy_2018_03_028 crossref_primary_10_1007_s11427_006_2030_1 crossref_primary_10_1007_s11356_014_4020_3 crossref_primary_10_1016_S0168_9452_02_00233_9 crossref_primary_10_1093_mp_ssr058 crossref_primary_10_1186_s12870_014_0334_z crossref_primary_10_3389_fpls_2018_01367 crossref_primary_10_1007_s11104_004_2005_6 crossref_primary_10_18393_ejss_319198 crossref_primary_10_1016_j_cpb_2016_10_004 crossref_primary_10_1016_j_molp_2015_12_012 crossref_primary_10_1080_01904160600830191 crossref_primary_10_1093_treephys_tpq063 crossref_primary_10_1080_14620316_2019_1703562 crossref_primary_10_1016_S0005_2736_00_00141_3 crossref_primary_10_1093_treephys_tpw125 crossref_primary_10_1016_j_scienta_2016_07_007 crossref_primary_10_1093_jxb_erp092 crossref_primary_10_1081_CSS_100104105 crossref_primary_10_3389_fmicb_2016_01083 crossref_primary_10_3390_plants9101384 crossref_primary_10_3389_fpls_2017_00817 crossref_primary_10_1016_j_jbiotec_2017_10_012 crossref_primary_10_3389_fpls_2022_804058 crossref_primary_10_1016_S1369_5266_99_80041_7 crossref_primary_10_1146_annurev_arplant_50_1_361 crossref_primary_10_1093_pcp_pcf002 crossref_primary_10_3389_fpls_2017_00417 crossref_primary_10_1007_s11738_014_1516_x crossref_primary_10_3389_fmicb_2015_00984 crossref_primary_10_1007_s11427_009_0137_x crossref_primary_10_1007_s00572_013_0496_9 crossref_primary_10_3389_fpls_2018_00500 crossref_primary_10_1007_s11103_004_1965_5 crossref_primary_10_1071_FP14043 crossref_primary_10_1007_s11104_004_4732_0 crossref_primary_10_1016_j_envexpbot_2011_07_008 crossref_primary_10_1007_s11104_007_9222_8 crossref_primary_10_1080_07352689_2019_1645402 crossref_primary_10_1007_s11240_004_7461_4 crossref_primary_10_1038_s41598_017_14447_0 crossref_primary_10_1016_j_pmpp_2019_02_010 crossref_primary_10_1094_MPMI_1998_11_1_14 crossref_primary_10_1146_annurev_arplant_52_1_163 crossref_primary_10_1371_journal_pone_0047726 crossref_primary_10_1093_pcp_pce163 crossref_primary_10_1016_S0378_1119_98_00326_6 crossref_primary_10_1007_s10529_008_9757_7 crossref_primary_10_1078_0176_1617_00147 crossref_primary_10_1371_journal_pone_0126186 crossref_primary_10_1007_s00425_012_1836_2 crossref_primary_10_1007_s11703_010_1021_y crossref_primary_10_3923_ja_2006_466_470 crossref_primary_10_1007_s11738_017_2392_y |
ContentType | Journal Article |
Copyright | Copyright 1997 American Society of Plant Physiologists |
Copyright_xml | – notice: Copyright 1997 American Society of Plant Physiologists |
DBID | FBQ CGR CUY CVF ECM EIF NPM AAYXX CITATION 8FD FR3 P64 RC3 7X8 5PM |
DOI | 10.1105/tpc.9.3.381 |
DatabaseName | AGRIS Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Genetics Abstracts Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Botany |
EISSN | 1532-298X |
EndPage | 392 |
ExternalDocumentID | 10_1105_tpc_9_3_381 9090882 3870489 US9731979 |
Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study |
GroupedDBID | --- -DZ -~X 123 29O 2AX 2FS 2WC 2~F 3V. 4.4 53G 5VS 5WD 7X2 7X7 85S 88A 88E 88I 8AF 8AO 8CJ 8FE 8FH 8FI 8FJ 8FW 8R4 8R5 AAHKG AAPXW AAVAP AAWDT AAXTN AAYJJ ABBHK ABJNI ABPLY ABPPZ ABPTD ABPTK ABTLG ABUWG ABXZS ACBTR ACFRR ACGFO ACGOD ACIPB ACIWK ACNCT ACPRK ACUFI ACUTJ ADBBV ADIPN ADIYS ADULT ADVEK ADYHW ADZLD AEEJZ AENEX AESBF AEUPB AFAZZ AFFDN AFFNX AFFZL AFGWE AFKRA AFMIJ AFRAH AFYAG AGCDD AGUYK AHMBA AICQM AJEEA ALMA_UNASSIGNED_HOLDINGS ALXQX ANFBD AQDSO AS~ ATCPS AZQEC BAWUL BBNVY BCRHZ BENPR BHPHI BPHCQ BTFSW BVXVI BYORX C1A CBGCD CCPQU CS3 CWIXF D1J DATOO DFEDG DIK DOOOF DU5 DWIUU DWQXO E3Z EBS ECGQY EJD F20 F5P F8P F9R FBQ FLUFQ FOEOM FRP FYUFA GNUQQ GTFYD GX1 HCIFZ HGD HMCUK HTVGU H~9 ISR JAAYA JBMMH JBS JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST KOP KQ8 KSI KSN LK8 M0K M0L M1P M2P M2Q M7P MV1 MVM N9A NEJ NOMLY OBOKY OJZSN OK1 OWPYF P0- P2P PQQKQ PROAC PSQYO Q2X RHF RHI ROX RPB RPM RWL RXW S0X SA0 TAE TCN TN5 TR2 U5U UBC UKHRP UKR VQA W8F WH7 WHG WOQ XOL XSW Y6R YBU YR2 YSK ZCA ZCG ZCN ~KM ABXSQ AQVQM 0R~ AAHBH AARHZ AAUAY ABMNT ABXVV ACZBC ADACV ADQBN AGMDO AHXOZ ALIPV ATGXG BEYMZ CGR CUY CVF ECM EIF H13 IPSME NPM AAYXX ABEJV CITATION 8FD FR3 P64 RC3 7X8 5PM AASNB |
ID | FETCH-LOGICAL-c485t-f093b06c49462ea704eb96fdc8822eb79dc1530fc68451956ddcc110a21595dc3 |
IEDL.DBID | JLS |
ISSN | 1040-4651 |
IngestDate | Tue Sep 17 21:18:32 EDT 2024 Fri Oct 25 07:04:46 EDT 2024 Fri Oct 25 09:53:14 EDT 2024 Thu Nov 21 22:55:55 EST 2024 Tue Oct 15 23:20:30 EDT 2024 Fri Feb 02 08:16:05 EST 2024 Wed Dec 27 19:15:56 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c485t-f093b06c49462ea704eb96fdc8822eb79dc1530fc68451956ddcc110a21595dc3 |
Notes | F61 F60 F30 9731979 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://academic.oup.com/plcell/article-pdf/9/3/381/34749138/plcell_v9_3_381.pdf |
PMID | 9090882 |
PQID | 16074649 |
PQPubID | 23462 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_156925 proquest_miscellaneous_78920595 proquest_miscellaneous_16074649 crossref_primary_10_1105_tpc_9_3_381 pubmed_primary_9090882 jstor_primary_10_2307_3870489 fao_agris_US9731979 |
PublicationCentury | 1900 |
PublicationDate | 1997-03-01 |
PublicationDateYYYYMMDD | 1997-03-01 |
PublicationDate_xml | – month: 03 year: 1997 text: 1997-03-01 day: 01 |
PublicationDecade | 1990 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Plant cell |
PublicationTitleAlternate | Plant Cell |
PublicationYear | 1997 |
Publisher | American Society of Plant Physiologists |
Publisher_xml | – name: American Society of Plant Physiologists |
References | 8598055 - Curr Genet. 1996 Mar;29(4):344-51 16660902 - Plant Physiol. 1979 Jul;64(1):139-43 8524398 - Nature. 1995 Dec 7;378(6557):626-9 2421601 - Anal Biochem. 1986 Feb 1;152(2):304-7 2531109 - Gene. 1989 Nov 30;83(2):281-9 7568135 - Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9373-7 16668939 - Plant Physiol. 1992 Jun;99(2):672-80 16667890 - Plant Physiol. 1990 Dec;94(4):1561-7 4152 - Biochimie. 1975;57(10):1229-36 8927627 - Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10519-23 2698991 - Methods Enzymol. 1989;174:617-22 9025304 - Plant J. 1997 Jan;11(1):83-92 16667491 - Plant Physiol. 1990 Jun;93(2):479-83 8180624 - Plant J. 1994 Mar;5(3):407-19 7883177 - Gene. 1995 Feb 3;153(1):135-9 7851439 - Eur J Biochem. 1995 Jan 15;227(1-2):566-72 7108955 - J Mol Biol. 1982 May 5;157(1):105-32 8709965 - Mol Gen Genet. 1996 Jul 19;251(5):580-90 2441623 - Anal Biochem. 1987 May 15;163(1):16-20 16666883 - Plant Physiol. 1989 Jul;90(3):820-6 16663996 - Plant Physiol. 1985 Jan;77(1):136-41 8202535 - Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5607-11 2038328 - Mol Cell Biol. 1991 Jun;11(6):3229-38 1464305 - EMBO J. 1992 Dec;11(13):4705-13 1620108 - Mol Cell Biol. 1992 Jul;12(7):2958-66 |
References_xml | |
SSID | ssj0001719 |
Score | 2.0229566 |
Snippet | Acquisition as well as translocation of phosphate are essential processes for plant growth. In many plants, phosphate uptake by roots and distribution within... |
SourceID | pubmedcentral proquest crossref pubmed jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 381 |
SubjectTerms | ABSORCION DE SUSTANCIAS NUTRITIVAS ABSORPTION DE SUBSTANCES NUTRITIVES ADN Amino Acid Sequence Amino acids ANION ANIONES ARN MENSAJERO ARN MESSAGER Carrier Proteins - biosynthesis Carrier Proteins - chemistry Carrier Proteins - genetics Complementary DNA COMPOSICION QUIMICA COMPOSITION CHIMIQUE DISPONIBILIDAD DE NUTRIENTES DISPONIBILITE D'ELEMENT NUTRITIF DNA, Complementary - metabolism DNA, Plant - metabolism ESTRUCTURA CELULAR EXPRESION GENICA EXPRESSION DES GENES FOSFATOS Genetic Complementation Test GENETICA GENETIQUE ION IONES Kinetics Molecular Sequence Data MUTACION MUTANT MUTANTES MUTATION PHOSPHATE Phosphate transport proteins Phosphate-Binding Proteins Phosphates Phosphates - metabolism Plant cells Plant roots Plants Protein Structure, Secondary PROTEINAS VEGETALES PROTEINE VEGETALE Proteins Proton-Phosphate Symporters RACINE RAICES Recombinant Proteins - biosynthesis RNA SACCHAROMYCES CEREVISIAE Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins SECUENCIA NUCLEOTIDICA Sequence Homology, Amino Acid SEQUENCE NUCLEOTIDIQUE SOLANUM TUBEROSUM Solanum tuberosum - genetics Solanum tuberosum - metabolism STRUCTURE CELLULAIRE TRANSFORMACION GENETICA TRANSFORMATION GENETIQUE Yeasts |
Title | Two cDNAs from potato are able to complement a phosphate uptake-deficient yeast mutant: identification of phosphate transporters from higher plants |
URI | https://www.jstor.org/stable/3870489 https://www.ncbi.nlm.nih.gov/pubmed/9090882 https://search.proquest.com/docview/16074649 https://search.proquest.com/docview/78920595 https://pubmed.ncbi.nlm.nih.gov/PMC156925 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1db9MwFL2iExK88FGYyGDFD31Nl8SJY_NW1k1DiGnSVgmeLMd2KAIl1ZJq4nfwh7l2ktIiBLxFcpw4Ojf2cXLuuQDTxJjEYOCEOS4mYcoiHhZCq9CkuNxSEVPtnZgurvPLj3xx5mxypkMujJNVel2g_4uPBKn4Zk8oBlXKxQhGPOKdbG8728a5L94RO2Wcq-vd5-AhbThp13omZnRGeby36oxKVQ_ywz8Ry9_1kTsLzvnj_xvqE3jUE0oy7yLgKdyz1Rjuv62R9H0fw4PToaDbM_hxc1cTvbicN8QllZArPKetsaclc7wowWM3O3R6cqLI1apu1ivkomS5btVXGy6ss5twjZ9cxR_yYeNKEL8hXbJv2X_9I3W50_WXefptf9tOWUJctaS2eQ7L87Ob04uwr8kQ6pRnbVhGghYR06lIWWIVPqwtBCuNRqae2CIXRuMcGpWacW9cw4zRGtFQSC1EZjQ9hIOqruwLILS0KtJGxYwVSNqo0pkokGCljCpOVRLAdMBMrjvrDem3LFEmEVopJJUIbQBjxFOqzzgpyuW1K8UlchHAscdmt6fTvMseoABeD7hLhMH9JVGVrTeNdI57KUv_ckbORYKsNAvgsIuT7U1E5GRjOHK2F0Dbduflvd9SfVl5T2_cRoskO_rHqF_Cw84-12ngXsFBe7uxxzBqzGaC24F37yc-d2fi35CfS-MLIQ |
link.rule.ids | 230,315,782,786,808,814,887,27933,27934,58034,58037,58052,58267,58270,58285 |
linkProvider | JSTOR |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1db9MwFL2iA2m88FGYCDDmh76mS2LHiXkr66YitmrSWgmeLMd2VgRKqiUV4nfwh7nOR2kRAt4iOU4cnRv7JD73XIBRZExkMHD8BBcTn_Eg9TOhlW8YLrdUhFQ3Tkyzm2T-MZ2eO5ucUZ8L42SVjS6w2cVHgpR9tacUg4qlYgD34zSgrM1Q2M63YdKU7widNs5V9u6y8JA4nNZrPRZjOqZpuLfuDHJV9gLEP1HL3xWSO0vOxeP_G-wTeNRRSjJpY-Ap3LPFEB68K5H2fR_C4Vlf0u0Z_Fh8K4mezicVcWkl5BrPqUvsackEL0rw2M0PraKcKHK9Kqv1CtkoWa5r9cX6U-sMJ1zjJ1fzh1xtXBHit6RN9827_3-kzHe6_rJPv-tu22pLiKuXVFfPYXlxvjib-V1VBl-zNK79PBA0C7hmgvHIKnxYmwmeG41cPbJZIozGWTTINU8b6xpujNaIhkJyIWKj6REcFGVhXwChuVWBNirkPEPaRpWORYYUi3GqUqoiD0Y9ZnLdmm_I5qMliCVCK4WkEqH1YIh4SnWL06Jc3rhiXCIRHhw32Oz2dKp32QHkwUmPu0QY3D6JKmy5qaTz3GOc_eWMJBUR8tLYg6M2TrY3EYETjuHI-V4Abdudm_d-S_F51bh644e0iOKX_xj1CRzOFleX8vL9_MMreNia6TpF3Gs4qO829hgGldm8ad6Qn7XRDGQ |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nj9MwEB3RBQEXPsquCLCsD3vgkjaJEyfmVrZbLQKqSruV4GQ5tkMRqKm2qRAX_gR_mJl8lBYh4BbJcezoTezn-PkNwGlkbWQxcPwUJxM_FkHm59Jo38Y43XIZclM7MV1cptP32ficbHJedGdhSFZZ6wLrXXwkSPkXN1zZYsgxsOJM9uAmbfSQeC_6PtmOuWFap_AISR9H2b3bk3hIHobVygzkgA94Fu7NPb1Cl50I8U_08neV5M60M7n__x1-APdaaslGTSw8hBtu2Ydbr0qkf9_6cOesS-32CH5cfS2ZGU9Ha0bHS9gM76lKrOnYCB_M8JrGiUZZzjSbLcr1aoGslM1Xlf7s_LEj4wkq_EC5f9i7DSUjfsmaY79F-x-QlcVO1V826tdts43GhFHepGp9CPPJ-dXZhd9mZ_BNnCWVXwSS54EwsYxF5DS-rMulKKxBzh65PJXW4GgaFEZktYWNsNYYREQjyZCJNfwIDpbl0j0GxgunA2N1KESO9I1rk8gcqVYsuM64jjw47XBTq8aEQ9WLlyBRCK-SiiuE14M-Yqr0Rxwe1fySknLJVHpwXOOzW5PU76oFyIOTDnuFMNB-iV66crNW5L0Xi_gvd6SZjJCfJh4cNbGybUQGJCDDnou9INqWk6v3fsny06J298YFtYySJ__o9Qncno0n6u3r6ZuncLfx1CVh3DM4qK437hh6a7t5Xn8kPwGm-Q8Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+cDNAs+from+Potato+Are+Able+to+Complement+a+Phosphate+Uptake-Deficient+Yeast+Mutant%3A+Identification+of+Phosphate+Transporters+from+Higher+Plants&rft.jtitle=The+Plant+cell&rft.au=Leggewie%2C+Georg&rft.au=Willmitzer%2C+Lothar&rft.au=Riesmeier%2C+J%C3%B6rg+W.&rft.date=1997-03-01&rft.pub=American+Society+of+Plant+Physiologists&rft.issn=1040-4651&rft.eissn=1532-298X&rft.volume=9&rft.issue=3&rft.spage=381&rft.epage=392&rft_id=info:doi/10.1105%2Ftpc.9.3.381&rft.externalDocID=3870489 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-4651&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-4651&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-4651&client=summon |