Mapping Lorey's height over Hyrcanian forests of Iran using synergy of ICESat/GLAS and optical images
Lorey's height, representative of mean height in uneven-aged forest stands, is a valuable parameter for forest ecosystem management. While in situ measures provide the most precise information, remote-sensing techniques may provide less expensive but denser and more operational alternative of L...
Saved in:
Published in: | European journal of remote sensing Vol. 51; no. 1; pp. 100 - 115 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Cagiari
Taylor & Francis
01-01-2018
Taylor & Francis Ltd Taylor & Francis Group |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Lorey's height, representative of mean height in uneven-aged forest stands, is a valuable parameter for forest ecosystem management. While in situ measures provide the most precise information, remote-sensing techniques may provide less expensive but denser and more operational alternative of Lorey's height estimation over highly mountainous areas. This research aims first to evaluate the performances of two nonparametric data mining methods, random forest (RF) and artificial neural network (ANN), for estimation of Lorey's height using ice, cloud and land elevation satellite/geoscience laser altimeter system (ICESat/GLAS) in Hyrcanian forests of Iran and then to provide Lorey's height map using a synergy of ICESat/GLAS and optical images (TM and SPOT). RF and ANN GLAS height models were developed using waveform deterministic metrics, principal components (PCs) from principal component analysis (PCA) and terrain index (TI) extracted from a digital elevation model (DEM). The best result was obtained using an ANN combining first three PCs of PCA and waveform extent ʺW
ext
ʺ (RMSE = 3.4 m, RMSE% = 12.4). In order to map Lorey's height, GLAS-estimated heights were regressed against indices derived from optical images and also topographic information. The best model (RF regression with RMSE = 5.5 m and = 0.59) was applied on the entire study area, and a wall-to-wall height map was generated. This map showed relatively good compatibility with in situ measurements collected in part of the study area. |
---|---|
AbstractList | Lorey’s height, representative of mean height in uneven-aged forest stands, is a valuable parameter for forest ecosystem management. While in situ measures provide the most precise information, remote-sensing techniques may provide less expensive but denser and more operational alternative of Lorey’s height estimation over highly mountainous areas. This research aims first to evaluate the performances of two nonparametric data mining methods, random forest (RF) and artificial neural network (ANN), for estimation of Lorey’s height using ice, cloud and land elevation satellite/geoscience laser altimeter system (ICESat/GLAS) in Hyrcanian forests of Iran and then to provide Lorey’s height map using a synergy of ICESat/GLAS and optical images (TM and SPOT). RF and ANN GLAS height models were developed using waveform deterministic metrics, principal components (PCs) from principal component analysis (PCA) and terrain index (TI) extracted from a digital elevation model (DEM). The best result was obtained using an ANN combining first three PCs of PCA and waveform extent ʺWextʺ (RMSE = 3.4 m, RMSE% = 12.4). In order to map Lorey’s height, GLAS-estimated heights were regressed against indices derived from optical images and also topographic information. The best model (RF regression with RMSE = 5.5 m and = 0.59) was applied on the entire study area, and a wall-to-wall height map was generated. This map showed relatively good compatibility with in situ measurements collected in part of the study area. Lorey's height, representative of mean height in uneven-aged forest stands, is a valuable parameter for forest ecosystem management. While in situ measures provide the most precise information, remote-sensing techniques may provide less expensive but denser and more operational alternative of Lorey's height estimation over highly mountainous areas. This research aims first to evaluate the performances of two nonparametric data mining methods, random forest (RF) and artificial neural network (ANN), for estimation of Lorey's height using ice, cloud and land elevation satellite/geoscience laser altimeter system (ICESat/GLAS) in Hyrcanian forests of Iran and then to provide Lorey's height map using a synergy of ICESat/GLAS and optical images (TM and SPOT). RF and ANN GLAS height models were developed using waveform deterministic metrics, principal components (PCs) from principal component analysis (PCA) and terrain index (TI) extracted from a digital elevation model (DEM). The best result was obtained using an ANN combining first three PCs of PCA and waveform extent ʺW ext ʺ (RMSE = 3.4 m, RMSE% = 12.4). In order to map Lorey's height, GLAS-estimated heights were regressed against indices derived from optical images and also topographic information. The best model (RF regression with RMSE = 5.5 m and = 0.59) was applied on the entire study area, and a wall-to-wall height map was generated. This map showed relatively good compatibility with in situ measurements collected in part of the study area. |
Author | Gond, Valery Namiranian, Manouchehr Rajab Pourrahmati, Manizheh Darvishsefat, Ali A Baghdadi, Nicolas Bailly, Jean-Stéphane Zargham, Nosratollah |
Author_xml | – sequence: 1 givenname: Manizheh surname: Rajab Pourrahmati fullname: Rajab Pourrahmati, Manizheh email: mrajabpour@ut.ac.ir organization: Faculty of Natural Resources, University of Tehran – sequence: 2 givenname: Nicolas surname: Baghdadi fullname: Baghdadi, Nicolas organization: IRSTEA, Université de Montpellier, UMR TETIS – sequence: 3 givenname: Ali A surname: Darvishsefat fullname: Darvishsefat, Ali A organization: Faculty of Natural Resources, University of Tehran – sequence: 4 givenname: Manouchehr surname: Namiranian fullname: Namiranian, Manouchehr organization: Faculty of Natural Resources, University of Tehran – sequence: 5 givenname: Valery surname: Gond fullname: Gond, Valery organization: CIRAD, Université de Montpellier, UPR B&SEF – sequence: 6 givenname: Jean-Stéphane surname: Bailly fullname: Bailly, Jean-Stéphane organization: LISAH, Université de Montpellier, INRA, IRD, Montpellier SupAgro – sequence: 7 givenname: Nosratollah surname: Zargham fullname: Zargham, Nosratollah organization: Faculty of Natural Resources, University of Tehran |
BackLink | https://hal.science/hal-01678027$$DView record in HAL |
BookMark | eNp9UcFu3CAURFEqJU3zCZWQeqh62A1g7GduXa2S7Equekh7RtiA1ysHXPAm8t8Hx2nVXsrlwbyZecC8R-fOO4PQR0rWlJTkhjEQwHK-ZoTCmnKSA4UzdDnjq7lx_tf-Al3HeCRplYRAKS6R-aaGoXMtrnww0-eID6ZrDyP2Tybg3RQa5TrlsE3dOEbsLd6HdD7FWRMnZ0I7vaLb2wc13txXmwesnMZ-GLtG9bh7VK2JH9A7q_port_qFfp5d_tju1tV3-_32021aniZjytDwFgqoMhYQ1hdW2rLugZiC0HACtDAE1Q3hNuGUM11QWtaUGAZQMZqm12h_eKrvTrKIaTpYZJedfIV8KGVKqSL9UYWvC4Nn2dQnooWRSZUrpOXAqVLlby-LF4H1f9jtdtUcsYILaAkDJ5o4n5auEPwv07pp-TRn4JLT5WMijwjhYA8sfKF1QQfYzD2jy0lcg5T_g5TzmHKtzCT7uui61zK4VE9-9BrOaqp98GmNJouyuz_Fi9okKVs |
CitedBy_id | crossref_primary_10_3390_rs11060721 crossref_primary_10_1007_s10457_021_00625_7 crossref_primary_10_1109_JSTARS_2024_3383777 crossref_primary_10_1029_2021JG006668 crossref_primary_10_1016_j_jag_2021_102506 crossref_primary_10_1080_01431161_2018_1530808 crossref_primary_10_1109_JSTARS_2021_3092836 crossref_primary_10_3390_f13010104 crossref_primary_10_1016_j_rse_2021_112652 crossref_primary_10_3389_ffgc_2022_753100 crossref_primary_10_3390_rs13112136 |
Cites_doi | 10.1023/A:1010933404324 10.5194/isprsannals-II-5-W2-301-2013 10.1109/TGRS.2010.2068574 10.1016/S0169-2070(97)00044-7 10.1093/oso/9780195115383.001.0001 10.3390/rs4082210 10.1093/bioinformatics/17.9.763 10.1007/s11707-014-0473-4 10.1029/2005GL023971 10.1198/tast.2009.08199 10.1016/j.rse.2009.08.018 10.1109/JSTARS.2013.2261978 10.1093/forestry/cpq022 10.1016/j.foreco.2005.08.036 10.5815/ijitcs.2012.06.08 10.1080/01431161.2010.547533 10.1016/j.rse.2010.02.016 10.1109/5326.897072 10.3390/rs6053693 10.1051/kmae/2013052 10.3390/rs9030213 10.1080/01431160903380656 10.2989/SHFJ.2007.69.3.8.358 10.1080/01431160701736380 10.1061/(ASCE)IR.1943-4774.0000208 10.1080/01431160903380557 10.3390/rs4041004 10.2307/1938482 10.1016/j.ecolind.2014.12.028 10.1007/s11707-011-0174-1 10.1016/0925-2312(95)00039-9 10.1117/12.833596 10.14358/PERS.77.7.733 10.1117/1.2795724 10.1016/j.rse.2006.02.022 10.1007/978-1-4419-7390-0 10.1109/JSTARS.2015.2478478 10.3390/f5020363 10.1016/S0034-4257(01)00281-4 10.3390/rs61212409 10.1029/2010GL043622 10.5589/m06-030 10.1029/2011JG001708 10.1080/01431160903380623 10.3390/rs61211883 10.3390/rs8030240 10.1016/j.rse.2008.11.010 10.1016/j.snb.2012.11.071 10.1007/s11430-014-4905-5 |
ContentType | Journal Article |
Copyright | 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2017 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2017 – notice: 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 0YH AAYXX CITATION 3V. 7TG 7XB 8FD 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH H8D KL. L7M M2O MBDVC PIMPY PQEST PQQKQ PQUKI PRINS Q9U 1XC VOOES DOA |
DOI | 10.1080/22797254.2017.1405717 |
DatabaseName | Taylor & Francis Open Access CrossRef ProQuest Central (Corporate) Meteorological & Geoastrophysical Abstracts ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Student Research Library Prep Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace Research Library Research Library (Corporate) Publicly Available Content Database (Proquest) (PQ_SDU_P3) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep ProQuest Central Student Technology Research Database ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central Aerospace Database Meteorological & Geoastrophysical Abstracts ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest One Academic Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Statistics Computer Science Environmental Sciences |
EISSN | 2279-7254 |
EndPage | 115 |
ExternalDocumentID | oai_doaj_org_article_64b8e4bbf1144bbd9639a5d723a7ad8a oai_HAL_hal_01678027v1 10_1080_22797254_2017_1405717 1405717 |
Genre | Original Articles |
GeographicLocations | Iran |
GeographicLocations_xml | – name: Iran |
GrantInformation_xml | – fundername: French Space Study Center grantid: CNES; DAR 2016 TOSCA funderid: 10.13039/501100002830 |
GroupedDBID | .4S 0YH 5VS 8G5 ABUWG ACGFS ADBBV AEGXH AENEX AFKRA ALMA_UNASSIGNED_HOLDINGS ARCSS AZQEC BCNDV BENPR BPHCQ DWQXO EBS EJD GNUQQ GROUPED_DOAJ GUQSH H13 KQ8 M2O M4Z M~E OK1 PIMPY PQEST PQQKQ PQUKI PROAC RNS TFW TUS AAHBH AAYXX CCPQU CITATION TDBHL 3V. 7TG 7XB 8FD 8FK H8D KL. L7M MBDVC PRINS Q9U 1XC VOOES |
ID | FETCH-LOGICAL-c485t-e07ef197632c02bbf1f8bb70f6907f97d74f1fbc04fc01d4d61b1617237732bf3 |
IEDL.DBID | DOA |
ISSN | 2279-7254 |
IngestDate | Tue Oct 22 15:12:42 EDT 2024 Tue Oct 29 06:32:08 EDT 2024 Thu Oct 10 19:48:32 EDT 2024 Thu Sep 26 21:40:58 EDT 2024 Tue Jul 04 18:19:58 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | LOREY'S HEIGHT OPTICAL IMAGES ARTIFICIAL NEURAL NETWORK (ANN) IRAN RANDOM FOREST (RF) ICESAT/GLAS |
Language | English |
License | open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c485t-e07ef197632c02bbf1f8bb70f6907f97d74f1fbc04fc01d4d61b1617237732bf3 |
ORCID | 0000-0002-9461-4120 0000-0002-0080-3140 0000-0003-4163-5275 |
OpenAccessLink | https://doaj.org/article/64b8e4bbf1144bbd9639a5d723a7ad8a |
PQID | 2195306975 |
PQPubID | 3933194 |
PageCount | 16 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_22797254_2017_1405717 hal_primary_oai_HAL_hal_01678027v1 doaj_primary_oai_doaj_org_article_64b8e4bbf1144bbd9639a5d723a7ad8a crossref_primary_10_1080_22797254_2017_1405717 proquest_journals_2195306975 |
PublicationCentury | 2000 |
PublicationDate | 2018-01-01 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cagiari |
PublicationPlace_xml | – name: Cagiari |
PublicationTitle | European journal of remote sensing |
PublicationYear | 2018 |
Publisher | Taylor & Francis Taylor & Francis Ltd Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd – name: Taylor & Francis Group |
References | CIT0030 CIT0032 Horning N. (CIT0025) 2010 CIT0031 Drew C.A. (CIT0011) 2011 CIT0034 Fernández-Delgado M. (CIT0017) 2014; 15 CIT0033 CIT0036 CIT0038 CIT0037 Sun G. (CIT0055) 2007 CIT0041 Pang Y. (CIT0045) 2008 Khorrami R.A. (CIT0029) 2014; 6 CIT0043 CIT0042 CIT0001 CIT0044 CIT0003 CIT0047 CIT0002 Maillard P. (CIT0039) 2006 CIT0046 CIT0005 CIT0049 CIT0048 CIT0006 CIT0009 CIT0008 CIT0050 CIT0052 CIT0051 CIT0010 CIT0054 CIT0053 CIT0012 CIT0056 Bailey D.L. (CIT0004) 1990 CIT0014 CIT0058 CIT0013 CIT0057 CIT0016 CIT0015 CIT0059 CIT0018 CIT0019 CIT0061 CIT0060 Liaw A. (CIT0035) 2002; 2 CIT0063 CIT0062 Namiranian M. (CIT0040) 2006 CIT0020 CIT0023 CIT0022 Cairns M. (CIT0007) 1995; 20 Goovaerts P. (CIT0021) 1997 Katz J.O. (CIT0027) 1992; 10 CIT0024 CIT0026 CIT0028 |
References_xml | – ident: CIT0006 doi: 10.1023/A:1010933404324 – ident: CIT0058 doi: 10.5194/isprsannals-II-5-W2-301-2013 – ident: CIT0043 doi: 10.1109/TGRS.2010.2068574 – ident: CIT0062 doi: 10.1016/S0169-2070(97)00044-7 – volume-title: Geostatistics for natural resources evaluation year: 1997 ident: CIT0021 doi: 10.1093/oso/9780195115383.001.0001 contributor: fullname: Goovaerts P. – ident: CIT0024 doi: 10.3390/rs4082210 – ident: CIT0061 doi: 10.1093/bioinformatics/17.9.763 – ident: CIT0054 doi: 10.1007/s11707-014-0473-4 – volume: 6 start-page: 127 issue: 2 year: 2014 ident: CIT0029 publication-title: Iranian Journal of Forest contributor: fullname: Khorrami R.A. – ident: CIT0033 doi: 10.1029/2005GL023971 – ident: CIT0022 doi: 10.1198/tast.2009.08199 – ident: CIT0012 doi: 10.1016/j.rse.2009.08.018 – ident: CIT0003 doi: 10.1109/JSTARS.2013.2261978 – ident: CIT0031 doi: 10.1093/forestry/cpq022 – ident: CIT0018 doi: 10.1016/j.foreco.2005.08.036 – ident: CIT0030 doi: 10.5815/ijitcs.2012.06.08 – ident: CIT0059 doi: 10.1080/01431161.2010.547533 – volume: 15 start-page: 3133 issue: 1 year: 2014 ident: CIT0017 publication-title: The Journal of Machine Learning Research contributor: fullname: Fernández-Delgado M. – ident: CIT0009 doi: 10.1016/j.rse.2010.02.016 – volume: 2 start-page: 18 issue: 3 year: 2002 ident: CIT0035 publication-title: R News contributor: fullname: Liaw A. – ident: CIT0063 doi: 10.1109/5326.897072 – ident: CIT0002 doi: 10.3390/rs6053693 – ident: CIT0005 – ident: CIT0044 doi: 10.1051/kmae/2013052 – volume-title: Proceedings of the ISPRS Commission VII Symposium ‘Remote Sensing: From Pixels to Processes’, Enschede year: 2006 ident: CIT0039 contributor: fullname: Maillard P. – ident: CIT0013 doi: 10.3390/rs9030213 – ident: CIT0036 – ident: CIT0047 doi: 10.1080/01431160903380656 – ident: CIT0050 doi: 10.2989/SHFJ.2007.69.3.8.358 – ident: CIT0052 doi: 10.1080/01431160701736380 – ident: CIT0014 doi: 10.1061/(ASCE)IR.1943-4774.0000208 – ident: CIT0041 doi: 10.1080/01431160903380557 – start-page: 3 year: 1990 ident: CIT0004 publication-title: AI Expert contributor: fullname: Bailey D.L. – ident: CIT0037 doi: 10.3390/rs4041004 – ident: CIT0051 doi: 10.2307/1938482 – volume-title: International symposium on physical measurements and signatures in remote sensing year: 2007 ident: CIT0055 contributor: fullname: Sun G. – ident: CIT0046 – ident: CIT0060 doi: 10.1016/j.ecolind.2014.12.028 – ident: CIT0020 doi: 10.1007/s11707-011-0174-1 – ident: CIT0026 doi: 10.1016/0925-2312(95)00039-9 – ident: CIT0019 doi: 10.1117/12.833596 – start-page: 777 issue: 7 year: 2008 ident: CIT0045 publication-title: Iaprs contributor: fullname: Pang Y. – ident: CIT0008 doi: 10.14358/PERS.77.7.733 – volume-title: International Conference on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences year: 2010 ident: CIT0025 contributor: fullname: Horning N. – ident: CIT0034 doi: 10.1117/1.2795724 – volume: 20 start-page: 401 issue: 6 year: 1995 ident: CIT0007 publication-title: Interciencia contributor: fullname: Cairns M. – ident: CIT0028 doi: 10.1016/j.rse.2006.02.022 – volume-title: Predictive species and habitat modeling in landscape ecology: Concepts and applications year: 2011 ident: CIT0011 doi: 10.1007/978-1-4419-7390-0 contributor: fullname: Drew C.A. – volume-title: Measurement of tree and forest biometry year: 2006 ident: CIT0040 contributor: fullname: Namiranian M. – ident: CIT0049 doi: 10.1109/JSTARS.2015.2478478 – ident: CIT0023 doi: 10.3390/f5020363 – ident: CIT0010 doi: 10.1016/S0034-4257(01)00281-4 – ident: CIT0048 doi: 10.3390/rs61212409 – volume: 10 start-page: 160 issue: 4 year: 1992 ident: CIT0027 publication-title: Technical Analysis for Stocks and Commodities contributor: fullname: Katz J.O. – ident: CIT0032 doi: 10.1029/2010GL043622 – ident: CIT0001 doi: 10.5589/m06-030 – ident: CIT0053 doi: 10.1029/2011JG001708 – ident: CIT0056 doi: 10.1080/01431160903380623 – ident: CIT0015 doi: 10.3390/rs61211883 – ident: CIT0016 doi: 10.3390/rs8030240 – ident: CIT0042 doi: 10.1016/j.rse.2008.11.010 – ident: CIT0038 doi: 10.1016/j.snb.2012.11.071 – ident: CIT0057 doi: 10.1007/s11430-014-4905-5 |
SSID | ssj0000800789 |
Score | 2.1913092 |
Snippet | Lorey's height, representative of mean height in uneven-aged forest stands, is a valuable parameter for forest ecosystem management. While in situ measures... Lorey’s height, representative of mean height in uneven-aged forest stands, is a valuable parameter for forest ecosystem management. While in situ measures... |
SourceID | doaj hal proquest crossref informaworld |
SourceType | Open Website Open Access Repository Aggregation Database Publisher |
StartPage | 100 |
SubjectTerms | Applications artificial neural network (ANN) Artificial neural networks Computer Science Data mining Digital Elevation Models Ecosystem management Elevation Engineering Sciences Environmental Engineering Environmental Sciences Forest ecosystems Forest management Forests Global Changes ICESat/GLAS Image Processing In situ measurement Iran Laser altimeters Lorey's height Machine Learning Mapping Mountainous areas Neural networks optical images Optics Photonic Principal components analysis random forest (RF) Regression analysis Regression models Remote sensing Satellites Sensing techniques Statistics Waveforms |
Title | Mapping Lorey's height over Hyrcanian forests of Iran using synergy of ICESat/GLAS and optical images |
URI | https://www.tandfonline.com/doi/abs/10.1080/22797254.2017.1405717 https://www.proquest.com/docview/2195306975 https://hal.science/hal-01678027 https://doaj.org/article/64b8e4bbf1144bbd9639a5d723a7ad8a |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELaABRbEU5SXLMQaajsPO2OBQpEKS0Fis_yIW5BoK1KQuvE3-Hv8Es5OCkUMLEyRTpGdfOec7y7n7xA6zrV1NtUqEgVTUZJnNNKZyCOwx8Y4wiFCCKmLHr-5F-dtT5Pz1erL14RV9MAVcM0s0aJItHbguMPFwoLJVWo5ixVXVlSuEcnmgqnH2g_iIp8d2RGk6ZnyOAtpFMrBPoCfEpqUfW9GgbMftphBqIic5y39ZafD5nOxhlZrrxG3qqddRwvFcAMt1w3MB9NN1L9Wnmihj7sj0M3H23uJByHpiX2JJu5MnwFCWAkYpoPxSzxy-Aq2Kezr3vu4nIYjgEF61u6pSfOy2-phNbR4NA7ZbvzwBJan3EJ3F-3bs05U91CITCLSSVQQXjgKPkfMDGEeRie05sT5qNjl3PIERNqQxBlCbWIzqn3Iw2LOY6ZdvI2WhqNhsYMwMSa1VFvLjE6EA0cjzRQn2oJ-VEaLBjqZgSnHFVWGpDUD6Qx96dGXNfoNdOoh_7rZM10HAehf1vqXf-m_gY5AYT_G6LS60sv8CQsBYfcrbaB8Xp9yErIhrmpdIuM_nnJ_pnxZf9-lZP7vI8lynu7-x0vsoRWYUlSpnX20NHl-KQ7QYmlfDsO6_gSFxPlt |
link.rule.ids | 230,315,782,786,866,887,2106,27933,27934 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+Lorey%27s+height+over+Hyrcanian+forests+of+Iran+using+synergy+of+ICESat%2FGLAS+and+optical+images&rft.jtitle=European+journal+of+remote+sensing&rft.au=Rajab+Pourrahmati%2C+Manizheh&rft.au=Baghdadi%2C+Nicolas&rft.au=Darvishsefat%2C+Ali+A&rft.au=Namiranian%2C+Manouchehr&rft.date=2018-01-01&rft.pub=Taylor+%26+Francis&rft.eissn=2279-7254&rft.volume=51&rft.issue=1&rft.spage=100&rft.epage=115&rft_id=info:doi/10.1080%2F22797254.2017.1405717&rft.externalDBID=0YH&rft.externalDocID=1405717 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2279-7254&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2279-7254&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2279-7254&client=summon |