Mapping Lorey's height over Hyrcanian forests of Iran using synergy of ICESat/GLAS and optical images

Lorey's height, representative of mean height in uneven-aged forest stands, is a valuable parameter for forest ecosystem management. While in situ measures provide the most precise information, remote-sensing techniques may provide less expensive but denser and more operational alternative of L...

Full description

Saved in:
Bibliographic Details
Published in:European journal of remote sensing Vol. 51; no. 1; pp. 100 - 115
Main Authors: Rajab Pourrahmati, Manizheh, Baghdadi, Nicolas, Darvishsefat, Ali A, Namiranian, Manouchehr, Gond, Valery, Bailly, Jean-Stéphane, Zargham, Nosratollah
Format: Journal Article
Language:English
Published: Cagiari Taylor & Francis 01-01-2018
Taylor & Francis Ltd
Taylor & Francis Group
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Lorey's height, representative of mean height in uneven-aged forest stands, is a valuable parameter for forest ecosystem management. While in situ measures provide the most precise information, remote-sensing techniques may provide less expensive but denser and more operational alternative of Lorey's height estimation over highly mountainous areas. This research aims first to evaluate the performances of two nonparametric data mining methods, random forest (RF) and artificial neural network (ANN), for estimation of Lorey's height using ice, cloud and land elevation satellite/geoscience laser altimeter system (ICESat/GLAS) in Hyrcanian forests of Iran and then to provide Lorey's height map using a synergy of ICESat/GLAS and optical images (TM and SPOT). RF and ANN GLAS height models were developed using waveform deterministic metrics, principal components (PCs) from principal component analysis (PCA) and terrain index (TI) extracted from a digital elevation model (DEM). The best result was obtained using an ANN combining first three PCs of PCA and waveform extent ʺW ext ʺ (RMSE = 3.4 m, RMSE% = 12.4). In order to map Lorey's height, GLAS-estimated heights were regressed against indices derived from optical images and also topographic information. The best model (RF regression with RMSE = 5.5 m and = 0.59) was applied on the entire study area, and a wall-to-wall height map was generated. This map showed relatively good compatibility with in situ measurements collected in part of the study area.
AbstractList Lorey’s height, representative of mean height in uneven-aged forest stands, is a valuable parameter for forest ecosystem management. While in situ measures provide the most precise information, remote-sensing techniques may provide less expensive but denser and more operational alternative of Lorey’s height estimation over highly mountainous areas. This research aims first to evaluate the performances of two nonparametric data mining methods, random forest (RF) and artificial neural network (ANN), for estimation of Lorey’s height using ice, cloud and land elevation satellite/geoscience laser altimeter system (ICESat/GLAS) in Hyrcanian forests of Iran and then to provide Lorey’s height map using a synergy of ICESat/GLAS and optical images (TM and SPOT). RF and ANN GLAS height models were developed using waveform deterministic metrics, principal components (PCs) from principal component analysis (PCA) and terrain index (TI) extracted from a digital elevation model (DEM). The best result was obtained using an ANN combining first three PCs of PCA and waveform extent ʺWextʺ (RMSE = 3.4 m, RMSE% = 12.4). In order to map Lorey’s height, GLAS-estimated heights were regressed against indices derived from optical images and also topographic information. The best model (RF regression with RMSE = 5.5 m and = 0.59) was applied on the entire study area, and a wall-to-wall height map was generated. This map showed relatively good compatibility with in situ measurements collected in part of the study area.
Lorey's height, representative of mean height in uneven-aged forest stands, is a valuable parameter for forest ecosystem management. While in situ measures provide the most precise information, remote-sensing techniques may provide less expensive but denser and more operational alternative of Lorey's height estimation over highly mountainous areas. This research aims first to evaluate the performances of two nonparametric data mining methods, random forest (RF) and artificial neural network (ANN), for estimation of Lorey's height using ice, cloud and land elevation satellite/geoscience laser altimeter system (ICESat/GLAS) in Hyrcanian forests of Iran and then to provide Lorey's height map using a synergy of ICESat/GLAS and optical images (TM and SPOT). RF and ANN GLAS height models were developed using waveform deterministic metrics, principal components (PCs) from principal component analysis (PCA) and terrain index (TI) extracted from a digital elevation model (DEM). The best result was obtained using an ANN combining first three PCs of PCA and waveform extent ʺW ext ʺ (RMSE = 3.4 m, RMSE% = 12.4). In order to map Lorey's height, GLAS-estimated heights were regressed against indices derived from optical images and also topographic information. The best model (RF regression with RMSE = 5.5 m and = 0.59) was applied on the entire study area, and a wall-to-wall height map was generated. This map showed relatively good compatibility with in situ measurements collected in part of the study area.
Author Gond, Valery
Namiranian, Manouchehr
Rajab Pourrahmati, Manizheh
Darvishsefat, Ali A
Baghdadi, Nicolas
Bailly, Jean-Stéphane
Zargham, Nosratollah
Author_xml – sequence: 1
  givenname: Manizheh
  surname: Rajab Pourrahmati
  fullname: Rajab Pourrahmati, Manizheh
  email: mrajabpour@ut.ac.ir
  organization: Faculty of Natural Resources, University of Tehran
– sequence: 2
  givenname: Nicolas
  surname: Baghdadi
  fullname: Baghdadi, Nicolas
  organization: IRSTEA, Université de Montpellier, UMR TETIS
– sequence: 3
  givenname: Ali A
  surname: Darvishsefat
  fullname: Darvishsefat, Ali A
  organization: Faculty of Natural Resources, University of Tehran
– sequence: 4
  givenname: Manouchehr
  surname: Namiranian
  fullname: Namiranian, Manouchehr
  organization: Faculty of Natural Resources, University of Tehran
– sequence: 5
  givenname: Valery
  surname: Gond
  fullname: Gond, Valery
  organization: CIRAD, Université de Montpellier, UPR B&SEF
– sequence: 6
  givenname: Jean-Stéphane
  surname: Bailly
  fullname: Bailly, Jean-Stéphane
  organization: LISAH, Université de Montpellier, INRA, IRD, Montpellier SupAgro
– sequence: 7
  givenname: Nosratollah
  surname: Zargham
  fullname: Zargham, Nosratollah
  organization: Faculty of Natural Resources, University of Tehran
BackLink https://hal.science/hal-01678027$$DView record in HAL
BookMark eNp9UcFu3CAURFEqJU3zCZWQeqh62A1g7GduXa2S7Equekh7RtiA1ysHXPAm8t8Hx2nVXsrlwbyZecC8R-fOO4PQR0rWlJTkhjEQwHK-ZoTCmnKSA4UzdDnjq7lx_tf-Al3HeCRplYRAKS6R-aaGoXMtrnww0-eID6ZrDyP2Tybg3RQa5TrlsE3dOEbsLd6HdD7FWRMnZ0I7vaLb2wc13txXmwesnMZ-GLtG9bh7VK2JH9A7q_port_qFfp5d_tju1tV3-_32021aniZjytDwFgqoMhYQ1hdW2rLugZiC0HACtDAE1Q3hNuGUM11QWtaUGAZQMZqm12h_eKrvTrKIaTpYZJedfIV8KGVKqSL9UYWvC4Nn2dQnooWRSZUrpOXAqVLlby-LF4H1f9jtdtUcsYILaAkDJ5o4n5auEPwv07pp-TRn4JLT5WMijwjhYA8sfKF1QQfYzD2jy0lcg5T_g5TzmHKtzCT7uui61zK4VE9-9BrOaqp98GmNJouyuz_Fi9okKVs
CitedBy_id crossref_primary_10_3390_rs11060721
crossref_primary_10_1007_s10457_021_00625_7
crossref_primary_10_1109_JSTARS_2024_3383777
crossref_primary_10_1029_2021JG006668
crossref_primary_10_1016_j_jag_2021_102506
crossref_primary_10_1080_01431161_2018_1530808
crossref_primary_10_1109_JSTARS_2021_3092836
crossref_primary_10_3390_f13010104
crossref_primary_10_1016_j_rse_2021_112652
crossref_primary_10_3389_ffgc_2022_753100
crossref_primary_10_3390_rs13112136
Cites_doi 10.1023/A:1010933404324
10.5194/isprsannals-II-5-W2-301-2013
10.1109/TGRS.2010.2068574
10.1016/S0169-2070(97)00044-7
10.1093/oso/9780195115383.001.0001
10.3390/rs4082210
10.1093/bioinformatics/17.9.763
10.1007/s11707-014-0473-4
10.1029/2005GL023971
10.1198/tast.2009.08199
10.1016/j.rse.2009.08.018
10.1109/JSTARS.2013.2261978
10.1093/forestry/cpq022
10.1016/j.foreco.2005.08.036
10.5815/ijitcs.2012.06.08
10.1080/01431161.2010.547533
10.1016/j.rse.2010.02.016
10.1109/5326.897072
10.3390/rs6053693
10.1051/kmae/2013052
10.3390/rs9030213
10.1080/01431160903380656
10.2989/SHFJ.2007.69.3.8.358
10.1080/01431160701736380
10.1061/(ASCE)IR.1943-4774.0000208
10.1080/01431160903380557
10.3390/rs4041004
10.2307/1938482
10.1016/j.ecolind.2014.12.028
10.1007/s11707-011-0174-1
10.1016/0925-2312(95)00039-9
10.1117/12.833596
10.14358/PERS.77.7.733
10.1117/1.2795724
10.1016/j.rse.2006.02.022
10.1007/978-1-4419-7390-0
10.1109/JSTARS.2015.2478478
10.3390/f5020363
10.1016/S0034-4257(01)00281-4
10.3390/rs61212409
10.1029/2010GL043622
10.5589/m06-030
10.1029/2011JG001708
10.1080/01431160903380623
10.3390/rs61211883
10.3390/rs8030240
10.1016/j.rse.2008.11.010
10.1016/j.snb.2012.11.071
10.1007/s11430-014-4905-5
ContentType Journal Article
Copyright 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2017
2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2017
– notice: 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 0YH
AAYXX
CITATION
3V.
7TG
7XB
8FD
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
H8D
KL.
L7M
M2O
MBDVC
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
1XC
VOOES
DOA
DOI 10.1080/22797254.2017.1405717
DatabaseName Taylor & Francis Open Access
CrossRef
ProQuest Central (Corporate)
Meteorological & Geoastrophysical Abstracts
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Student
Research Library Prep
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
Research Library
Research Library (Corporate)
Publicly Available Content Database (Proquest) (PQ_SDU_P3)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
Aerospace Database
Meteorological & Geoastrophysical Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest One Academic
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
DatabaseTitleList

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Statistics
Computer Science
Environmental Sciences
EISSN 2279-7254
EndPage 115
ExternalDocumentID oai_doaj_org_article_64b8e4bbf1144bbd9639a5d723a7ad8a
oai_HAL_hal_01678027v1
10_1080_22797254_2017_1405717
1405717
Genre Original Articles
GeographicLocations Iran
GeographicLocations_xml – name: Iran
GrantInformation_xml – fundername: French Space Study Center
  grantid: CNES; DAR 2016 TOSCA
  funderid: 10.13039/501100002830
GroupedDBID .4S
0YH
5VS
8G5
ABUWG
ACGFS
ADBBV
AEGXH
AENEX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AZQEC
BCNDV
BENPR
BPHCQ
DWQXO
EBS
EJD
GNUQQ
GROUPED_DOAJ
GUQSH
H13
KQ8
M2O
M4Z
M~E
OK1
PIMPY
PQEST
PQQKQ
PQUKI
PROAC
RNS
TFW
TUS
AAHBH
AAYXX
CCPQU
CITATION
TDBHL
3V.
7TG
7XB
8FD
8FK
H8D
KL.
L7M
MBDVC
PRINS
Q9U
1XC
VOOES
ID FETCH-LOGICAL-c485t-e07ef197632c02bbf1f8bb70f6907f97d74f1fbc04fc01d4d61b1617237732bf3
IEDL.DBID DOA
ISSN 2279-7254
IngestDate Tue Oct 22 15:12:42 EDT 2024
Tue Oct 29 06:32:08 EDT 2024
Thu Oct 10 19:48:32 EDT 2024
Thu Sep 26 21:40:58 EDT 2024
Tue Jul 04 18:19:58 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords LOREY'S HEIGHT
OPTICAL IMAGES
ARTIFICIAL NEURAL NETWORK (ANN)
IRAN
RANDOM FOREST (RF)
ICESAT/GLAS
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c485t-e07ef197632c02bbf1f8bb70f6907f97d74f1fbc04fc01d4d61b1617237732bf3
ORCID 0000-0002-9461-4120
0000-0002-0080-3140
0000-0003-4163-5275
OpenAccessLink https://doaj.org/article/64b8e4bbf1144bbd9639a5d723a7ad8a
PQID 2195306975
PQPubID 3933194
PageCount 16
ParticipantIDs informaworld_taylorfrancis_310_1080_22797254_2017_1405717
hal_primary_oai_HAL_hal_01678027v1
doaj_primary_oai_doaj_org_article_64b8e4bbf1144bbd9639a5d723a7ad8a
crossref_primary_10_1080_22797254_2017_1405717
proquest_journals_2195306975
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Cagiari
PublicationPlace_xml – name: Cagiari
PublicationTitle European journal of remote sensing
PublicationYear 2018
Publisher Taylor & Francis
Taylor & Francis Ltd
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
– name: Taylor & Francis Group
References CIT0030
CIT0032
Horning N. (CIT0025) 2010
CIT0031
Drew C.A. (CIT0011) 2011
CIT0034
Fernández-Delgado M. (CIT0017) 2014; 15
CIT0033
CIT0036
CIT0038
CIT0037
Sun G. (CIT0055) 2007
CIT0041
Pang Y. (CIT0045) 2008
Khorrami R.A. (CIT0029) 2014; 6
CIT0043
CIT0042
CIT0001
CIT0044
CIT0003
CIT0047
CIT0002
Maillard P. (CIT0039) 2006
CIT0046
CIT0005
CIT0049
CIT0048
CIT0006
CIT0009
CIT0008
CIT0050
CIT0052
CIT0051
CIT0010
CIT0054
CIT0053
CIT0012
CIT0056
Bailey D.L. (CIT0004) 1990
CIT0014
CIT0058
CIT0013
CIT0057
CIT0016
CIT0015
CIT0059
CIT0018
CIT0019
CIT0061
CIT0060
Liaw A. (CIT0035) 2002; 2
CIT0063
CIT0062
Namiranian M. (CIT0040) 2006
CIT0020
CIT0023
CIT0022
Cairns M. (CIT0007) 1995; 20
Goovaerts P. (CIT0021) 1997
Katz J.O. (CIT0027) 1992; 10
CIT0024
CIT0026
CIT0028
References_xml – ident: CIT0006
  doi: 10.1023/A:1010933404324
– ident: CIT0058
  doi: 10.5194/isprsannals-II-5-W2-301-2013
– ident: CIT0043
  doi: 10.1109/TGRS.2010.2068574
– ident: CIT0062
  doi: 10.1016/S0169-2070(97)00044-7
– volume-title: Geostatistics for natural resources evaluation
  year: 1997
  ident: CIT0021
  doi: 10.1093/oso/9780195115383.001.0001
  contributor:
    fullname: Goovaerts P.
– ident: CIT0024
  doi: 10.3390/rs4082210
– ident: CIT0061
  doi: 10.1093/bioinformatics/17.9.763
– ident: CIT0054
  doi: 10.1007/s11707-014-0473-4
– volume: 6
  start-page: 127
  issue: 2
  year: 2014
  ident: CIT0029
  publication-title: Iranian Journal of Forest
  contributor:
    fullname: Khorrami R.A.
– ident: CIT0033
  doi: 10.1029/2005GL023971
– ident: CIT0022
  doi: 10.1198/tast.2009.08199
– ident: CIT0012
  doi: 10.1016/j.rse.2009.08.018
– ident: CIT0003
  doi: 10.1109/JSTARS.2013.2261978
– ident: CIT0031
  doi: 10.1093/forestry/cpq022
– ident: CIT0018
  doi: 10.1016/j.foreco.2005.08.036
– ident: CIT0030
  doi: 10.5815/ijitcs.2012.06.08
– ident: CIT0059
  doi: 10.1080/01431161.2010.547533
– volume: 15
  start-page: 3133
  issue: 1
  year: 2014
  ident: CIT0017
  publication-title: The Journal of Machine Learning Research
  contributor:
    fullname: Fernández-Delgado M.
– ident: CIT0009
  doi: 10.1016/j.rse.2010.02.016
– volume: 2
  start-page: 18
  issue: 3
  year: 2002
  ident: CIT0035
  publication-title: R News
  contributor:
    fullname: Liaw A.
– ident: CIT0063
  doi: 10.1109/5326.897072
– ident: CIT0002
  doi: 10.3390/rs6053693
– ident: CIT0005
– ident: CIT0044
  doi: 10.1051/kmae/2013052
– volume-title: Proceedings of the ISPRS Commission VII Symposium ‘Remote Sensing: From Pixels to Processes’, Enschede
  year: 2006
  ident: CIT0039
  contributor:
    fullname: Maillard P.
– ident: CIT0013
  doi: 10.3390/rs9030213
– ident: CIT0036
– ident: CIT0047
  doi: 10.1080/01431160903380656
– ident: CIT0050
  doi: 10.2989/SHFJ.2007.69.3.8.358
– ident: CIT0052
  doi: 10.1080/01431160701736380
– ident: CIT0014
  doi: 10.1061/(ASCE)IR.1943-4774.0000208
– ident: CIT0041
  doi: 10.1080/01431160903380557
– start-page: 3
  year: 1990
  ident: CIT0004
  publication-title: AI Expert
  contributor:
    fullname: Bailey D.L.
– ident: CIT0037
  doi: 10.3390/rs4041004
– ident: CIT0051
  doi: 10.2307/1938482
– volume-title: International symposium on physical measurements and signatures in remote sensing
  year: 2007
  ident: CIT0055
  contributor:
    fullname: Sun G.
– ident: CIT0046
– ident: CIT0060
  doi: 10.1016/j.ecolind.2014.12.028
– ident: CIT0020
  doi: 10.1007/s11707-011-0174-1
– ident: CIT0026
  doi: 10.1016/0925-2312(95)00039-9
– ident: CIT0019
  doi: 10.1117/12.833596
– start-page: 777
  issue: 7
  year: 2008
  ident: CIT0045
  publication-title: Iaprs
  contributor:
    fullname: Pang Y.
– ident: CIT0008
  doi: 10.14358/PERS.77.7.733
– volume-title: International Conference on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences
  year: 2010
  ident: CIT0025
  contributor:
    fullname: Horning N.
– ident: CIT0034
  doi: 10.1117/1.2795724
– volume: 20
  start-page: 401
  issue: 6
  year: 1995
  ident: CIT0007
  publication-title: Interciencia
  contributor:
    fullname: Cairns M.
– ident: CIT0028
  doi: 10.1016/j.rse.2006.02.022
– volume-title: Predictive species and habitat modeling in landscape ecology: Concepts and applications
  year: 2011
  ident: CIT0011
  doi: 10.1007/978-1-4419-7390-0
  contributor:
    fullname: Drew C.A.
– volume-title: Measurement of tree and forest biometry
  year: 2006
  ident: CIT0040
  contributor:
    fullname: Namiranian M.
– ident: CIT0049
  doi: 10.1109/JSTARS.2015.2478478
– ident: CIT0023
  doi: 10.3390/f5020363
– ident: CIT0010
  doi: 10.1016/S0034-4257(01)00281-4
– ident: CIT0048
  doi: 10.3390/rs61212409
– volume: 10
  start-page: 160
  issue: 4
  year: 1992
  ident: CIT0027
  publication-title: Technical Analysis for Stocks and Commodities
  contributor:
    fullname: Katz J.O.
– ident: CIT0032
  doi: 10.1029/2010GL043622
– ident: CIT0001
  doi: 10.5589/m06-030
– ident: CIT0053
  doi: 10.1029/2011JG001708
– ident: CIT0056
  doi: 10.1080/01431160903380623
– ident: CIT0015
  doi: 10.3390/rs61211883
– ident: CIT0016
  doi: 10.3390/rs8030240
– ident: CIT0042
  doi: 10.1016/j.rse.2008.11.010
– ident: CIT0038
  doi: 10.1016/j.snb.2012.11.071
– ident: CIT0057
  doi: 10.1007/s11430-014-4905-5
SSID ssj0000800789
Score 2.1913092
Snippet Lorey's height, representative of mean height in uneven-aged forest stands, is a valuable parameter for forest ecosystem management. While in situ measures...
Lorey’s height, representative of mean height in uneven-aged forest stands, is a valuable parameter for forest ecosystem management. While in situ measures...
SourceID doaj
hal
proquest
crossref
informaworld
SourceType Open Website
Open Access Repository
Aggregation Database
Publisher
StartPage 100
SubjectTerms Applications
artificial neural network (ANN)
Artificial neural networks
Computer Science
Data mining
Digital Elevation Models
Ecosystem management
Elevation
Engineering Sciences
Environmental Engineering
Environmental Sciences
Forest ecosystems
Forest management
Forests
Global Changes
ICESat/GLAS
Image Processing
In situ measurement
Iran
Laser altimeters
Lorey's height
Machine Learning
Mapping
Mountainous areas
Neural networks
optical images
Optics
Photonic
Principal components analysis
random forest (RF)
Regression analysis
Regression models
Remote sensing
Satellites
Sensing techniques
Statistics
Waveforms
Title Mapping Lorey's height over Hyrcanian forests of Iran using synergy of ICESat/GLAS and optical images
URI https://www.tandfonline.com/doi/abs/10.1080/22797254.2017.1405717
https://www.proquest.com/docview/2195306975
https://hal.science/hal-01678027
https://doaj.org/article/64b8e4bbf1144bbd9639a5d723a7ad8a
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELaABRbEU5SXLMQaajsPO2OBQpEKS0Fis_yIW5BoK1KQuvE3-Hv8Es5OCkUMLEyRTpGdfOec7y7n7xA6zrV1NtUqEgVTUZJnNNKZyCOwx8Y4wiFCCKmLHr-5F-dtT5Pz1erL14RV9MAVcM0s0aJItHbguMPFwoLJVWo5ixVXVlSuEcnmgqnH2g_iIp8d2RGk6ZnyOAtpFMrBPoCfEpqUfW9GgbMftphBqIic5y39ZafD5nOxhlZrrxG3qqddRwvFcAMt1w3MB9NN1L9Wnmihj7sj0M3H23uJByHpiX2JJu5MnwFCWAkYpoPxSzxy-Aq2Kezr3vu4nIYjgEF61u6pSfOy2-phNbR4NA7ZbvzwBJan3EJ3F-3bs05U91CITCLSSVQQXjgKPkfMDGEeRie05sT5qNjl3PIERNqQxBlCbWIzqn3Iw2LOY6ZdvI2WhqNhsYMwMSa1VFvLjE6EA0cjzRQn2oJ-VEaLBjqZgSnHFVWGpDUD6Qx96dGXNfoNdOoh_7rZM10HAehf1vqXf-m_gY5AYT_G6LS60sv8CQsBYfcrbaB8Xp9yErIhrmpdIuM_nnJ_pnxZf9-lZP7vI8lynu7-x0vsoRWYUlSpnX20NHl-KQ7QYmlfDsO6_gSFxPlt
link.rule.ids 230,315,782,786,866,887,2106,27933,27934
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+Lorey%27s+height+over+Hyrcanian+forests+of+Iran+using+synergy+of+ICESat%2FGLAS+and+optical+images&rft.jtitle=European+journal+of+remote+sensing&rft.au=Rajab+Pourrahmati%2C+Manizheh&rft.au=Baghdadi%2C+Nicolas&rft.au=Darvishsefat%2C+Ali+A&rft.au=Namiranian%2C+Manouchehr&rft.date=2018-01-01&rft.pub=Taylor+%26+Francis&rft.eissn=2279-7254&rft.volume=51&rft.issue=1&rft.spage=100&rft.epage=115&rft_id=info:doi/10.1080%2F22797254.2017.1405717&rft.externalDBID=0YH&rft.externalDocID=1405717
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2279-7254&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2279-7254&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2279-7254&client=summon