The Meissner Corpuscle Revised: A Multiafferented Mechanoreceptor with Nociceptor Immunochemical Properties

Meissner corpuscles (MCs) in the glabrous skin of monkey digits have at least three types of innervation as revealed by immunofluorescence. The previously well known Aalphabeta-fiber terminals are closely intertwined with endings from peptidergic C-fibers. These intertwined endings are segregated in...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of neuroscience Vol. 21; no. 18; pp. 7236 - 7246
Main Authors: Pare, Michel, Elde, Robert, Mazurkiewicz, Joseph E, Smith, Allan M, Rice, Frank L
Format: Journal Article
Language:English
Published: United States Soc Neuroscience 15-09-2001
Society for Neuroscience
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Meissner corpuscles (MCs) in the glabrous skin of monkey digits have at least three types of innervation as revealed by immunofluorescence. The previously well known Aalphabeta-fiber terminals are closely intertwined with endings from peptidergic C-fibers. These intertwined endings are segregated into zones that alternate with zones containing a third type of ending supplied by nonpeptidergic C-fibers. Although MCs are widely regarded as low-threshold mechanoreceptors, all three types of innervation express immunochemical properties associated with nociception. The peptidergic C-fiber endings have readily detectable levels of immunoreactivity (IR) for calcitonin gene-related peptide (CGRP) and substance P (SP). The Aalphabeta endings have relatively lower levels of IR for CGRP and SP as well as the SP neurokinin 1 receptor and vanilloid-like receptor 1. Both the Aalphabeta and peptidergic C-fiber endings were also labeled with antibodies for different combinations of adrenergic, opioid, and purinergic receptors. The nonpeptidergic C-fiber endings express IR for vanilloid receptor 1, which has also been implicated in nociception. Thus, MCs are multiafferented receptor organs that may have nociceptive capabilities in addition to being low-threshold mechanoreceptors.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0270-6474
1529-2401
DOI:10.1523/JNEUROSCI.21-18-07236.2001