Practical high-dimensional quantum key distribution protocol over deployed multicore fiber
Quantum key distribution (QKD) is a secure communication scheme for sharing symmetric cryptographic keys based on the laws of quantum physics, and is considered a key player in the realm of cyber-security. A critical challenge for QKD systems comes from the fact that the ever-increasing rates at whi...
Saved in:
Published in: | Nature communications Vol. 15; no. 1; p. 1651 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
23-02-2024
Nature Publishing Group Nature Portfolio |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Quantum key distribution (QKD) is a secure communication scheme for sharing symmetric cryptographic keys based on the laws of quantum physics, and is considered a key player in the realm of cyber-security. A critical challenge for QKD systems comes from the fact that the ever-increasing rates at which digital data are transmitted require more and more performing sources of quantum keys, primarily in terms of secret key generation rate. High-dimensional QKD based on path encoding has been proposed as a candidate approach to address this challenge. However, while proof-of-principle demonstrations based on lab experiments have been reported in the literature, demonstrations in realistic environments are still missing. Here we report the generation of secret keys in a 4-dimensional hybrid time-path-encoded QKD system over a 52-km deployed multicore fiber link forming by looping back two cores of a 26-km 4-core optical fiber. Our results indicate that robust high-dimensional QKD can be implemented in a realistic environment by combining standard telecom equipment with emerging multicore fiber technology.
High-dimensional QKD would in principle allow for several advantages over its bidimensional counterpart, but in-the-field demonstrations are missing. Here, the authors realise 4- dimensional hybrid time-path-encoded QKD using a 52-km deployed multicore fiber link. |
---|---|
AbstractList | Quantum key distribution (QKD) is a secure communication scheme for sharing symmetric cryptographic keys based on the laws of quantum physics, and is considered a key player in the realm of cyber-security. A critical challenge for QKD systems comes from the fact that the ever-increasing rates at which digital data are transmitted require more and more performing sources of quantum keys, primarily in terms of secret key generation rate. High-dimensional QKD based on path encoding has been proposed as a candidate approach to address this challenge. However, while proof-of-principle demonstrations based on lab experiments have been reported in the literature, demonstrations in realistic environments are still missing. Here we report the generation of secret keys in a 4-dimensional hybrid time-path-encoded QKD system over a 52-km deployed multicore fiber link forming by looping back two cores of a 26-km 4-core optical fiber. Our results indicate that robust high-dimensional QKD can be implemented in a realistic environment by combining standard telecom equipment with emerging multicore fiber technology. Quantum key distribution (QKD) is a secure communication scheme for sharing symmetric cryptographic keys based on the laws of quantum physics, and is considered a key player in the realm of cyber-security. A critical challenge for QKD systems comes from the fact that the ever-increasing rates at which digital data are transmitted require more and more performing sources of quantum keys, primarily in terms of secret key generation rate. High-dimensional QKD based on path encoding has been proposed as a candidate approach to address this challenge. However, while proof-of-principle demonstrations based on lab experiments have been reported in the literature, demonstrations in realistic environments are still missing. Here we report the generation of secret keys in a 4-dimensional hybrid time-path-encoded QKD system over a 52-km deployed multicore fiber link forming by looping back two cores of a 26-km 4-core optical fiber. Our results indicate that robust high-dimensional QKD can be implemented in a realistic environment by combining standard telecom equipment with emerging multicore fiber technology.High-dimensional QKD would in principle allow for several advantages over its bidimensional counterpart, but in-the-field demonstrations are missing. Here, the authors realise 4- dimensional hybrid time-path-encoded QKD using a 52-km deployed multicore fiber link. Quantum key distribution (QKD) is a secure communication scheme for sharing symmetric cryptographic keys based on the laws of quantum physics, and is considered a key player in the realm of cyber-security. A critical challenge for QKD systems comes from the fact that the ever-increasing rates at which digital data are transmitted require more and more performing sources of quantum keys, primarily in terms of secret key generation rate. High-dimensional QKD based on path encoding has been proposed as a candidate approach to address this challenge. However, while proof-of-principle demonstrations based on lab experiments have been reported in the literature, demonstrations in realistic environments are still missing. Here we report the generation of secret keys in a 4-dimensional hybrid time-path-encoded QKD system over a 52-km deployed multicore fiber link forming by looping back two cores of a 26-km 4-core optical fiber. Our results indicate that robust high-dimensional QKD can be implemented in a realistic environment by combining standard telecom equipment with emerging multicore fiber technology. High-dimensional QKD would in principle allow for several advantages over its bidimensional counterpart, but in-the-field demonstrations are missing. Here, the authors realise 4- dimensional hybrid time-path-encoded QKD using a 52-km deployed multicore fiber link. Abstract Quantum key distribution (QKD) is a secure communication scheme for sharing symmetric cryptographic keys based on the laws of quantum physics, and is considered a key player in the realm of cyber-security. A critical challenge for QKD systems comes from the fact that the ever-increasing rates at which digital data are transmitted require more and more performing sources of quantum keys, primarily in terms of secret key generation rate. High-dimensional QKD based on path encoding has been proposed as a candidate approach to address this challenge. However, while proof-of-principle demonstrations based on lab experiments have been reported in the literature, demonstrations in realistic environments are still missing. Here we report the generation of secret keys in a 4-dimensional hybrid time-path-encoded QKD system over a 52-km deployed multicore fiber link forming by looping back two cores of a 26-km 4-core optical fiber. Our results indicate that robust high-dimensional QKD can be implemented in a realistic environment by combining standard telecom equipment with emerging multicore fiber technology. |
ArticleNumber | 1651 |
Author | Ribezzo, Domenico Zavatta, Alessandro Galili, Michael Müller, Ronny Mecozzi, Antonio Occhipinti, Tommaso Antonelli, Cristian De Lazzari, Claudia Oxenløwe, Leif K. Cassioli, Dajana Zahidy, Mujtaba Biagi, Nicola Hayashi, Tetsuya Bacco, Davide Vagniluca, Ilaria |
Author_xml | – sequence: 1 givenname: Mujtaba surname: Zahidy fullname: Zahidy, Mujtaba organization: Department of Electrical and Photonics Engineering, Technical University of Denmark – sequence: 2 givenname: Domenico surname: Ribezzo fullname: Ribezzo, Domenico organization: Department of Physical and Chemical Sciences, University of L’Aquila, Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche (CNR-INO), University of Naples Federico II – sequence: 3 givenname: Claudia surname: De Lazzari fullname: De Lazzari, Claudia organization: QTI S.r.l – sequence: 4 givenname: Ilaria surname: Vagniluca fullname: Vagniluca, Ilaria organization: QTI S.r.l – sequence: 5 givenname: Nicola surname: Biagi fullname: Biagi, Nicola organization: QTI S.r.l – sequence: 6 givenname: Ronny surname: Müller fullname: Müller, Ronny organization: Department of Electrical and Photonics Engineering, Technical University of Denmark – sequence: 7 givenname: Tommaso surname: Occhipinti fullname: Occhipinti, Tommaso organization: QTI S.r.l – sequence: 8 givenname: Leif K. orcidid: 0000-0001-6013-3639 surname: Oxenløwe fullname: Oxenløwe, Leif K. organization: Department of Electrical and Photonics Engineering, Technical University of Denmark – sequence: 9 givenname: Michael surname: Galili fullname: Galili, Michael organization: Department of Electrical and Photonics Engineering, Technical University of Denmark – sequence: 10 givenname: Tetsuya orcidid: 0000-0003-0321-3581 surname: Hayashi fullname: Hayashi, Tetsuya organization: Optical Communications Laboratory, Sumitomo Electric Industries, Ltd – sequence: 11 givenname: Dajana orcidid: 0000-0001-7574-5099 surname: Cassioli fullname: Cassioli, Dajana organization: Department of Information Engineering, Computer Science and Mathematics, University of L’Aquila, National Laboratory of Advanced Optical Fibers for Photonics (FIBERS), CNIT – sequence: 12 givenname: Antonio orcidid: 0000-0001-8730-5699 surname: Mecozzi fullname: Mecozzi, Antonio organization: Department of Physical and Chemical Sciences, University of L’Aquila, National Laboratory of Advanced Optical Fibers for Photonics (FIBERS), CNIT – sequence: 13 givenname: Cristian surname: Antonelli fullname: Antonelli, Cristian organization: Department of Physical and Chemical Sciences, University of L’Aquila, National Laboratory of Advanced Optical Fibers for Photonics (FIBERS), CNIT – sequence: 14 givenname: Alessandro surname: Zavatta fullname: Zavatta, Alessandro organization: Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche (CNR-INO), QTI S.r.l – sequence: 15 givenname: Davide orcidid: 0000-0002-7757-4331 surname: Bacco fullname: Bacco, Davide email: davide.bacco@unifi.it organization: QTI S.r.l., Department of Physics and Astronomy, University of Florence |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38395964$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1v1DAQhi3UipbSP8ABReLSS6i_P46oolCpEhzgwsVy7MnWSxJv7QR1_z1mUwrigC-2Zp55Z8bvC3Q0pQkQekXwW4KZviyccKlaTHnLhVayfXiGTinmpCWKsqO_3ifovJQtrocZojl_jk6YZkYYyU_Rt8_Z-Tl6NzR3cXPXhjjCVGKaauB-cdO8jM132DchljnHbplrqtnlNCefhib9gNwE2A1pD6EZl6EqpQxNHzvIL9Fx74YC54_3Gfp6_f7L1cf29tOHm6t3t63nWsytFFx4cFgaR43muBeO-9DLnmGCRWDMg5KUQ_AgmMJGOkVpp6igNGAaODtDN6tuSG5rdzmOLu9tctEeAilvrMt1sAEs67qgtOI4BMIx7R3WnSK1e3AYjGRV62LVqiveL1BmO8biYRjcBGkplhpGOaNa6Yq--QfdpiXXfztQBFMlDK0UXSmfUykZ-qcBCba_jLSrkbYaaQ9G2oda9PpReulGCE8lv22rAFuBUlPTBvKf3v-R_QnqcasE |
CitedBy_id | crossref_primary_10_1088_1367_2630_ad49c3 crossref_primary_10_1109_JPHOT_2024_3383780 |
Cites_doi | 10.1038/ncomms15043 10.3390/e24020260 10.1038/nature23461 10.1103/PhysRevLett.118.110501 10.23919/PS.2019.8818058 10.1103/PhysRevLett.85.441 10.1109/JSTQE.2019.2960937 10.1038/ncomms15971 10.1103/PhysRevLett.88.127902 10.1103/PhysRevApplied.11.064058 10.1038/s41534-021-00398-y 10.1126/science.aar7053 10.1038/s41534-022-00613-4 10.1103/PhysRevApplied.11.024070 10.1364/CLEO_SI.2021.STh1D.3 10.3390/e21010080 10.1103/PhysRevApplied.14.014051 10.1103/PhysRevLett.91.057901 10.1364/PRJ.425890 10.1002/qute.202200061 10.1049/icp.2023.3261 10.1364/OFC.2020.T4J.4 10.1117/1.AP.1.4.046005 10.1145/359340.359342 10.1103/PhysRevA.82.030301 10.1103/PhysRevA.61.062308 10.1126/sciadv.1701491 10.1103/PhysRevLett.94.230504 10.1038/s41534-017-0026-2 10.1103/PhysRevA.97.042347 10.1103/PhysRevA.96.022317 10.1126/science.add9771 10.1038/s41598-017-12309-3 10.1088/1367-2630/17/3/033033 10.1103/PhysRevA.88.022308 10.1038/nature22986 10.1038/s41566-022-01082-z |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C NPM AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PIMPY PQEST PQQKQ PQUKI RC3 SOI 7X8 DOA |
DOI | 10.1038/s41467-024-45876-x |
DatabaseName | Springer Open Access PubMed CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Biological Science Database ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management Health Research Premium Collection Natural Science Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Technology Collection Technology Research Database ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 1651 |
ExternalDocumentID | oai_doaj_org_article_3bbd78740dd1402fa08b71ceada0e963 10_1038_s41467_024_45876_x 38395964 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Innovationsfonden (Innovation Fund Denmark) grantid: 9090-00031B funderid: 100012774 – fundername: Consiglio Nazionale delle Ricerche (National Research Council) grantid: 2014-2020 funderid: 501100004462 – fundername: Consiglio Nazionale delle Ricerche (National Research Council) grantid: 2014-2020 – fundername: Innovationsfonden (Innovation Fund Denmark) grantid: 9090-00031B |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADRAZ AENEX AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP NPM AAYXX CITATION 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M48 P64 PQEST PQUKI RC3 SOI 7X8 |
ID | FETCH-LOGICAL-c485t-6545cea069a29840f5a4cdf6f30105d33ce7624edce537096a722b72522d02d43 |
IEDL.DBID | DOA |
ISSN | 2041-1723 |
IngestDate | Tue Oct 22 15:12:55 EDT 2024 Fri Oct 25 02:15:28 EDT 2024 Fri Nov 08 20:55:10 EST 2024 Thu Nov 21 23:30:10 EST 2024 Sat Nov 02 12:02:34 EDT 2024 Fri Oct 11 20:46:14 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2024. The Author(s). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c485t-6545cea069a29840f5a4cdf6f30105d33ce7624edce537096a722b72522d02d43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-8730-5699 0000-0001-6013-3639 0000-0003-0321-3581 0000-0002-7757-4331 0000-0001-7574-5099 |
OpenAccessLink | https://doaj.org/article/3bbd78740dd1402fa08b71ceada0e963 |
PMID | 38395964 |
PQID | 2931027592 |
PQPubID | 546298 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3bbd78740dd1402fa08b71ceada0e963 proquest_miscellaneous_2932432878 proquest_journals_2931027592 crossref_primary_10_1038_s41467_024_45876_x pubmed_primary_38395964 springer_journals_10_1038_s41467_024_45876_x |
PublicationCentury | 2000 |
PublicationDate | 2024-02-23 |
PublicationDateYYYYMMDD | 2024-02-23 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Cisco: Cisco Annual Internet Report - white paper. https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf (2018). Cheng, X. et al. Secure high dimensional quantum key distribution based on wavelength-multiplexed time-bin encoding. In: Conference on Lasers and Electro-Optics, pp. 1–3. Optica Publishing Group, STh1D.3. https://doi.org/10.1364/CLEO_SI.2021.STh1D.3 (2021). Mueller, R. et al. Efficient Information Reconciliation for High-Dimensional Quantum Key Distribution. arXiv 2307.02225 (2023). SteinlechnerFDistribution of high-dimensional entanglement via an intra-city free-space linkNat. Commun.201782017NatCo...815971S1:CAS:528:DC%2BC2sXht1WltrbL10.1038/ncomms15971287371685527279 DingYHigh-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuitsnpj Quantum Inf.201732017npjQI...3...25D10.1038/s41534-017-0026-2 MartinAQuantifying photonic high-dimensional entanglementPhys. Rev. Lett.20171181105012017PhRvL.118k0501M10.1103/PhysRevLett.118.11050128368623 WangJMultidimensional quantum entanglement with large-scale integrated opticsScience20183602852912018Sci...360..285W37917311:CAS:528:DC%2BC1cXns12gt78%3D10.1126/science.aar705329519918 Da LioBPath-encoded high-dimensional quantum communication over a 2-km multicore fibernpj Quantum Inf.202172021npjQI...7...66L10.1038/s41534-021-00398-y LoH-KMaXChenKDecoy state quantum key distributionPhys. Rev. Lett.2005942305042005PhRvL..94w0504L10.1103/PhysRevLett.94.23050416090452 BaccoDDingYDalgaardKRottwittKOxenløweLKSpace division multiplexing chip-to-chip quantum key distributionSci. Rep.201772017NatSR...712459B10.1038/s41598-017-12309-3289634805622211 MirhosseiniMHigh-dimensional quantum cryptography with twisted lightN. J. Phys.201517033033333533910.1088/1367-2630/17/3/033033 KuesMOn-chip generation of high-dimensional entangled quantum states and their coherent controlNature20175466226262017Natur.546..622K1:CAS:528:DC%2BC2sXhtVymsLvL10.1038/nature2298628658228 JoYParkHSLeeS-WSonWEfficient high-dimensional quantum key distribution with hybrid encodingEntropy201921802019Entrp..21...80J10.3390/e21010080332667967514190 IslamNTLimCCWCahallCKimJGauthierDJSecuring quantum key distribution systems using fewer statesPhys. Rev. A2018970423472018PhRvA..97d2347I1:CAS:528:DC%2BC1MXlsVartr4%3D10.1103/PhysRevA.97.042347 StasP-JRobust multi-qubit quantum network node with integrated error detectionScience20223785575602022Sci...378..557S1:CAS:528:DC%2BB38Xisl2nt7nK10.1126/science.add977136378964 PirandolaSLaurenzaROttavianiCBanchiLFundamental limits of repeaterless quantum communicationsNat. Commun.201782017NatCo...815043P10.1038/ncomms15043284436245414096 HuttnerBLong-range qkd without trusted nodes is not possible with current technologynpj Quantum Inf.202282022npjQI...8..108H10.1038/s41534-022-00613-4 BaccoDCharacterization and stability measurement of deployed multicore fibers for quantum applicationsPhoton. Res.202191992199710.1364/PRJ.425890 OpenStreetMap. https://www.openstreetmap.org/copyright Accessed 2023-09-30. HwangW-YQuantum key distribution with high loss: toward global secure communicationPhys. Rev. Lett.2003910579012003PhRvL..91e7901H10.1103/PhysRevLett.91.05790112906634 TangY-LSource attack of decoy-state quantum key distribution using phase informationPhys. Rev. A2013880223082013PhRvA..88b2308T10.1103/PhysRevA.88.022308 IslamNTLimCCWCahallCKimJGauthierDJProvably secure and high-rate quantum key distribution with time-bin quditsSci. Adv.2017317014912017SciA....3E1491I10.1126/sciadv.1701491 RivestRLShamirAAdlemanLA method for obtaining digital signatures and public-key cryptosystemsCommun. ACM19782112012670010310.1145/359340.359342 CozzolinoDOrbital angular momentum states enabling fiber-based high-dimensional quantum communicationPhys. Rev. Appl.2019110640582019PhRvP..11f4058C1:CAS:528:DC%2BC1MXhslWltb%2FI10.1103/PhysRevApplied.11.064058 Da LioBStable transmission of high-dimensional quantum states over a 2-km multicore fiberIEEE J. Sel. Top. Quantum Electron.2020261810.1109/JSTQE.2019.2960937 WangF-XCharacterizing high-quality high-dimensional quantum key distribution by state mapping between different degrees of freedomPhys. Rev. Appl.2019110240702019PhRvP..11b4070W1:CAS:528:DC%2BC1MXnslWqurY%3D10.1103/PhysRevApplied.11.024070 BernsteinDJLangeTPost-quantum cryptographyNature20175491881942017Natur.549..188B1:CAS:528:DC%2BC2sXhsV2isLvP10.1038/nature2346128905891 Hayashi, T. et al. Field-deployed multi-core fiber Testbed https://doi.org/10.23919/PS.2019.8818058 (2019). SheridanLScaraniVSecurity proof for quantum key distribution using qudit systemsPhys. Rev. A2010820303012010PhRvA..82c0301S10.1103/PhysRevA.82.030301 Bechmann-PasquinucciHTittelWQuantum cryptography using larger alphabetsPhys. Rev. A2000610623082000PhRvA..61f2308B176746910.1103/PhysRevA.61.062308 SunSHuangAA review of security evaluation of practical quantum key distribution systemEntropy2022242602022Entrp..24..260S438674810.3390/e24020260352055548870823 CañasGHigh-dimensional decoy-state quantum key distribution over multicore telecommunication fibersPhys. Rev. A2017960223172017PhRvA..96b2317C10.1103/PhysRevA.96.022317 CozzolinoDAir-core fiber distribution of hybrid vector vortex-polarization entangled statesAdv. Photonics201910460052019AdPho...1d6005C10.1117/1.AP.1.4.046005 JørgensenAAPetabit-per-second data transmission using a chip-scale microcomb ring resonator sourceNat. Photon.2022167988022022NaPho..16..798J10.1038/s41566-022-01082-z CerfNJBourennaneMKarlssonAGisinNSecurity of quantum key distribution using d-level systemsPhys. Rev. Lett.2002881279022002PhRvL..88l7902C10.1103/PhysRevLett.88.12790211909502 ShorPWPreskillJSimple proof of security of the bb84 quantum key distribution protocolPhys. Rev. Lett.2000854414442000PhRvL..85..441S1:CAS:528:DC%2BD3cXks1ers7s%3D10.1103/PhysRevLett.85.44110991303 Gottesman, D., Lo, H.-K., Lutkenhaus, N. & Preskill, J. Security of quantum key distribution with imperfect devices. In: International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings 136 (2004). RibezzoDDeploying an inter-european quantum networkAdv. Quantum Technol.20236220006110.1002/qute.202200061 Luis, R.S. et al. Evaluation of dynamic skew on spooled and deployed multicore fibers using o-band signals. In: 2020 Optical Fiber Communications Conference and Exhibition (OFC) 1–3 (2020). https://ieeexplore.ieee.org/document/9083203. VagnilucaIEfficient time-bin encoding for practical high-dimensional quantum key distributionPhys. Rev. Appl.2020140140512020PhRvP..14a4051V1:CAS:528:DC%2BB3cXhs1Cgu7%2FJ10.1103/PhysRevApplied.14.014051 B Huttner (45876_CR4) 2022; 8 J Wang (45876_CR32) 2018; 360 P-J Stas (45876_CR5) 2022; 378 D Bacco (45876_CR36) 2021; 9 M Kues (45876_CR11) 2017; 546 G Cañas (45876_CR15) 2017; 96 D Cozzolino (45876_CR13) 2019; 11 DJ Bernstein (45876_CR3) 2017; 549 AA Jørgensen (45876_CR23) 2022; 16 45876_CR26 F Steinlechner (45876_CR20) 2017; 8 45876_CR22 D Ribezzo (45876_CR30) 2023; 6 A Martin (45876_CR21) 2017; 118 I Vagniluca (45876_CR38) 2020; 14 S Sun (45876_CR35) 2022; 24 45876_CR40 M Mirhosseini (45876_CR12) 2015; 17 Y Ding (45876_CR24) 2017; 3 B Da Lio (45876_CR16) 2020; 26 D Bacco (45876_CR31) 2017; 7 D Cozzolino (45876_CR14) 2019; 1 S Pirandola (45876_CR6) 2017; 8 L Sheridan (45876_CR7) 2010; 82 H-K Lo (45876_CR28) 2005; 94 B Da Lio (45876_CR25) 2021; 7 RL Rivest (45876_CR2) 1978; 21 45876_CR39 NJ Cerf (45876_CR8) 2002; 88 Y Jo (45876_CR17) 2019; 21 NT Islam (45876_CR19) 2017; 3 NT Islam (45876_CR29) 2018; 97 45876_CR37 H Bechmann-Pasquinucci (45876_CR9) 2000; 61 W-Y Hwang (45876_CR27) 2003; 91 45876_CR33 45876_CR1 F-X Wang (45876_CR18) 2019; 11 PW Shor (45876_CR10) 2000; 85 Y-L Tang (45876_CR34) 2013; 88 |
References_xml | – volume: 8 year: 2017 ident: 45876_CR6 publication-title: Nat. Commun. doi: 10.1038/ncomms15043 contributor: fullname: S Pirandola – volume: 24 start-page: 260 year: 2022 ident: 45876_CR35 publication-title: Entropy doi: 10.3390/e24020260 contributor: fullname: S Sun – volume: 549 start-page: 188 year: 2017 ident: 45876_CR3 publication-title: Nature doi: 10.1038/nature23461 contributor: fullname: DJ Bernstein – volume: 118 start-page: 110501 year: 2017 ident: 45876_CR21 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.110501 contributor: fullname: A Martin – ident: 45876_CR26 doi: 10.23919/PS.2019.8818058 – volume: 85 start-page: 441 year: 2000 ident: 45876_CR10 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.441 contributor: fullname: PW Shor – volume: 26 start-page: 1 year: 2020 ident: 45876_CR16 publication-title: IEEE J. Sel. Top. Quantum Electron. doi: 10.1109/JSTQE.2019.2960937 contributor: fullname: B Da Lio – volume: 8 year: 2017 ident: 45876_CR20 publication-title: Nat. Commun. doi: 10.1038/ncomms15971 contributor: fullname: F Steinlechner – volume: 88 start-page: 127902 year: 2002 ident: 45876_CR8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.127902 contributor: fullname: NJ Cerf – volume: 11 start-page: 064058 year: 2019 ident: 45876_CR13 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.11.064058 contributor: fullname: D Cozzolino – volume: 7 year: 2021 ident: 45876_CR25 publication-title: npj Quantum Inf. doi: 10.1038/s41534-021-00398-y contributor: fullname: B Da Lio – volume: 360 start-page: 285 year: 2018 ident: 45876_CR32 publication-title: Science doi: 10.1126/science.aar7053 contributor: fullname: J Wang – volume: 8 year: 2022 ident: 45876_CR4 publication-title: npj Quantum Inf. doi: 10.1038/s41534-022-00613-4 contributor: fullname: B Huttner – volume: 11 start-page: 024070 year: 2019 ident: 45876_CR18 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.11.024070 contributor: fullname: F-X Wang – ident: 45876_CR22 doi: 10.1364/CLEO_SI.2021.STh1D.3 – volume: 21 start-page: 80 year: 2019 ident: 45876_CR17 publication-title: Entropy doi: 10.3390/e21010080 contributor: fullname: Y Jo – ident: 45876_CR33 – volume: 14 start-page: 014051 year: 2020 ident: 45876_CR38 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.14.014051 contributor: fullname: I Vagniluca – volume: 91 start-page: 057901 year: 2003 ident: 45876_CR27 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.91.057901 contributor: fullname: W-Y Hwang – volume: 9 start-page: 1992 year: 2021 ident: 45876_CR36 publication-title: Photon. Res. doi: 10.1364/PRJ.425890 contributor: fullname: D Bacco – volume: 6 start-page: 2200061 year: 2023 ident: 45876_CR30 publication-title: Adv. Quantum Technol. doi: 10.1002/qute.202200061 contributor: fullname: D Ribezzo – ident: 45876_CR39 doi: 10.1049/icp.2023.3261 – ident: 45876_CR37 doi: 10.1364/OFC.2020.T4J.4 – volume: 1 start-page: 046005 year: 2019 ident: 45876_CR14 publication-title: Adv. Photonics doi: 10.1117/1.AP.1.4.046005 contributor: fullname: D Cozzolino – volume: 21 start-page: 120 year: 1978 ident: 45876_CR2 publication-title: Commun. ACM doi: 10.1145/359340.359342 contributor: fullname: RL Rivest – volume: 82 start-page: 030301 year: 2010 ident: 45876_CR7 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.82.030301 contributor: fullname: L Sheridan – volume: 61 start-page: 062308 year: 2000 ident: 45876_CR9 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.61.062308 contributor: fullname: H Bechmann-Pasquinucci – volume: 3 start-page: 1701491 year: 2017 ident: 45876_CR19 publication-title: Sci. Adv. doi: 10.1126/sciadv.1701491 contributor: fullname: NT Islam – volume: 94 start-page: 230504 year: 2005 ident: 45876_CR28 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.230504 contributor: fullname: H-K Lo – volume: 3 year: 2017 ident: 45876_CR24 publication-title: npj Quantum Inf. doi: 10.1038/s41534-017-0026-2 contributor: fullname: Y Ding – volume: 97 start-page: 042347 year: 2018 ident: 45876_CR29 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.97.042347 contributor: fullname: NT Islam – ident: 45876_CR40 – ident: 45876_CR1 – volume: 96 start-page: 022317 year: 2017 ident: 45876_CR15 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.96.022317 contributor: fullname: G Cañas – volume: 378 start-page: 557 year: 2022 ident: 45876_CR5 publication-title: Science doi: 10.1126/science.add9771 contributor: fullname: P-J Stas – volume: 7 year: 2017 ident: 45876_CR31 publication-title: Sci. Rep. doi: 10.1038/s41598-017-12309-3 contributor: fullname: D Bacco – volume: 17 start-page: 033033 year: 2015 ident: 45876_CR12 publication-title: N. J. Phys. doi: 10.1088/1367-2630/17/3/033033 contributor: fullname: M Mirhosseini – volume: 88 start-page: 022308 year: 2013 ident: 45876_CR34 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.88.022308 contributor: fullname: Y-L Tang – volume: 546 start-page: 622 year: 2017 ident: 45876_CR11 publication-title: Nature doi: 10.1038/nature22986 contributor: fullname: M Kues – volume: 16 start-page: 798 year: 2022 ident: 45876_CR23 publication-title: Nat. Photon. doi: 10.1038/s41566-022-01082-z contributor: fullname: AA Jørgensen |
SSID | ssj0000391844 |
Score | 2.5047183 |
Snippet | Quantum key distribution (QKD) is a secure communication scheme for sharing symmetric cryptographic keys based on the laws of quantum physics, and is... Abstract Quantum key distribution (QKD) is a secure communication scheme for sharing symmetric cryptographic keys based on the laws of quantum physics, and is... |
SourceID | doaj proquest crossref pubmed springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 1651 |
SubjectTerms | 639/766/483 639/766/483/481 Coding Communication Cybersecurity Data encryption Digital data Electric industries Fiber technology Humanities and Social Sciences Hybrid systems multidisciplinary Optical fibers Photonics Principles Protocol Quantum cryptography Quantum theory Science Science (multidisciplinary) |
Title | Practical high-dimensional quantum key distribution protocol over deployed multicore fiber |
URI | https://link.springer.com/article/10.1038/s41467-024-45876-x https://www.ncbi.nlm.nih.gov/pubmed/38395964 https://www.proquest.com/docview/2931027592 https://search.proquest.com/docview/2932432878 https://doaj.org/article/3bbd78740dd1402fa08b71ceada0e963 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB5UELyIb-uLCN60mM2jj6OvZU9eVBAvoWnSm7vqbkH_vTNJd1VUvHhtQ0m-SSbzNZNvAI50gxyhbCjnKa9T0s5JrdLIWrn2QmqrPae7w4Ob_Pq-uLwimZxZqS_KCYvywBG4U2mty6lunHPIBURT8cLmvRoBqLjH2RO8L88-kangg2WJ1EV1t2S4LE7HKvgE3JJSpdEFpK9fdqIg2P9TlPnthDRsPP0VWO4iRnYWe7oKc364BouxhuTbOjxExSGEmpH0cOpIrj9KbbDnFnFrHxkuVOZIIbcrbsVInWGEU4BRAidzPlT9dSxkF5KuJWsokWQD7vpXtxeDtCuYkNaq0JM0w3AIkeFZWYkSmVujK1W7Jmsk1cF0UtYefZ-ixE8tcyQvVS6EzQXGYI4Lp-QmLAxHQ78NTCrtrM2k8KVTorIYVVhbFJp73ei86iVwPAXPPEVdDBPOs2VhItQGoTYBavOawDnhO2tJmtbhAVradJY2f1k6gb2pdUy30MYGo5UenbyWIoHD2WtcInTuUQ39qA1thJJIDYsEtqJVZz1Bgl7qMlMJnEzN_PHx3we08x8D2oUlQfORLsjLPViYvLR-H-bHrj0Is_kg_Ht6B0ke95k |
link.rule.ids | 315,782,786,866,2106,27933,27934 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Practical+high-dimensional+quantum+key+distribution+protocol+over+deployed+multicore+fiber&rft.jtitle=Nature+communications&rft.au=Zahidy%2C+Mujtaba&rft.au=Ribezzo%2C+Domenico&rft.au=De+Lazzari%2C+Claudia&rft.au=Vagniluca%2C+Ilaria&rft.date=2024-02-23&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-024-45876-x&rft.externalDocID=10_1038_s41467_024_45876_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |