LOX-1-MT1-MMP axis is crucial for RhoA and Rac1 activation induced by oxidized low-density lipoprotein in endothelial cells
Aims RhoA and Rac1 activation plays a key role in endothelial dysfunction. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a major receptor for oxidized low-density lipoprotein (ox-LDL) in endothelial cells (ECs). Membrane type 1 matrix metalloproteinase (MT1-MMP) has been shown t...
Saved in:
Published in: | Cardiovascular research Vol. 84; no. 1; pp. 127 - 136 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford
Oxford University Press
01-10-2009
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Aims RhoA and Rac1 activation plays a key role in endothelial dysfunction. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a major receptor for oxidized low-density lipoprotein (ox-LDL) in endothelial cells (ECs). Membrane type 1 matrix metalloproteinase (MT1-MMP) has been shown to be involved in atherogenesis. This study was conducted to investigate the role of the LOX-1-MT1-MMP axis in RhoA and Rac1 activation in response to ox-LDL in ECs. Methods and results Ox-LDL induced rapid RhoA and Rac1 activation as well as MT1-MMP activity in cultured human aortic ECs. Inhibition of LOX-1 prevented ox-LDL-dependent RhoA and Rac1 activation. Knockdown of MT1-MMP by small interfering RNA prevented ox-LDL-induced RhoA and Rac1 activation, indicating that MT1-MMP is upstream of RhoA and Rac1. Fluorescent immunostaining revealed the colocalization of LOX-1 and MT1-MMP, and the formation of a complex of LOX-1 with MT1-MMP was detected by immunoprecipitation. Blockade of LOX-1 or MT1-MMP prevented RhoA-dependent endothelial NO synthase protein downregulation and cell invasion, Rac1-mediated NADPH oxidase activity, and reactive oxygen species generation. Conclusion The present study provides evidence that the LOX-1-MT1-MMP axis plays a crucial role in RhoA and Rac1 activation signalling pathways in ox-LDL stimulation, suggesting that this axis may be a promising target for treating endothelial dysfunction. |
---|---|
Bibliography: | istex:89F25D0F9935468C956588E0E825F30021FC1F2F ark:/67375/HXZ-2SMR2Q8F-T ArticleID:cvp177 |
ISSN: | 0008-6363 1755-3245 |
DOI: | 10.1093/cvr/cvp177 |