Fast Robust Model Selection in Large Datasets

Large datasets are increasingly common in many research fields. In particular, in the linear regression context, it is often the case that a huge number of potential covariates are available to explain a response variable, and the first step of a reasonable statistical analysis is to reduce the numb...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Statistical Association Vol. 106; no. 493; pp. 203 - 212
Main Authors: Dupuis, Debbie J., Victoria-Feser, Maria-Pia
Format: Journal Article
Language:English
Published: Alexandria, VA Taylor & Francis 01-03-2011
American Statistical Association
Taylor & Francis Ltd
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Large datasets are increasingly common in many research fields. In particular, in the linear regression context, it is often the case that a huge number of potential covariates are available to explain a response variable, and the first step of a reasonable statistical analysis is to reduce the number of covariates. This can be done in a forward selection procedure that includes selecting the variable to enter, deciding to retain it or stop the selection, and estimating the augmented model. Least squares plus t tests can be fast, but the outcome of a forward selection might be suboptimal when there are outliers. In this article we propose a complete algorithm for fast robust model selection, including considerations for huge sample sizes. Because simply replacing the classical statistical criteria with robust ones is not computationally possible, we develop simplified robust estimators, selection criteria, and testing procedures for linear regression. The robust estimator is a one-step weighted M-estimator that can be biased if the covariates are not orthogonal. We show that the bias can be made smaller by iterating the M-estimator one or more steps further. In the variable selection process, we propose a simplified robust criterion based on a robust t statistic that we compare with a false discovery rate-adjusted level. We carry out a simulation study to show the good performance of our approach. We also analyze two datasets and show that the results obtained by our method outperform those from robust least angle regression and random forests. Supplemental materials are available online.
AbstractList Large datasets are increasingly common in many research fields. In particular, in the linear regression context, it is often the case that a huge number of potential covariates are available to explain a response variable, and the first step of a reasonable statistical analysis is to reduce the number of covariates. This can be done in a forward selection procedure that includes selecting the variable to enter, deciding to retain it or stop the selection, and estimating the augmented model. Least squares plus t tests can be fast, but the outcome of a forward selection might be suboptimal when there are outliers. In this article we propose a complete algorithm for fast robust model selection, including considerations for huge sample sizes. Because simply replacing the classical statistical criteria with robust ones is not computationally possible, we develop simplified robust estimators, selection criteria, and testing procedures for linear regression. The robust estimator is a one-step weighted M-estimator that can be biased if the covariates are not orthogonal. We show that the bias can be made smaller by iterating the M-estimator one or more steps further. In the variable selection process, we propose a simplified robust criterion based on a robust t statistic that we compare with a false discovery rate-adjusted level. We carry out a simulation study to show the good performance of our approach. We also analyze two datasets and show that the results obtained by our method outperform those from robust least angle regression and random forests. Supplemental materials are available online. [PUBLICATION ABSTRACT]
Large dataseis are increasingly common in many research fields. In particular, in the linear regression context, it is often the case that a huge number of potential covariates are available to explain a response variable, and the first step of a reasonable statistical analysis is to reduce the number of covariates. This can be done in a forward selection procedure that includes selecting the variable to enter, deciding to retain it or stop the selection, and estimating the augmented model. Least squares plus t tests can be fast, but the outcome of a forward selection might be suboptimal when there are outliers. In this article we propose a complete algorithm for fast robust model selection, including considerations for huge sample sizes. Because simply replacing the classical statistical criteria with robust ones is not computationally possible, we develop simplified robust estimators, selection criteria, and testing procedures for linear regression. The robust estimator is a one-step weighted M-estimator that can be biased if the covariates are not orthogonal. We show that the bias can be made smaller by iterating the M-estimator one or more steps further. In the variable selection process, we propose a simplified robust criterion based on a robust t statistic that we compare with a false discovery rate-adjusted level. We carry out a simulation study to show the good performance of our approach. We also analyze two datasets and show that the results obtained by our method outperform those from robust least angle regression and random forests. Supplemental materials are available online.
Large datasets are increasingly common in many research fields. In particular, in the linear regression context, it is often the case that a huge number of potential covariates are available to explain a response variable, and the first step of a reasonable statistical analysis is to reduce the number of covariates. This can be done in a forward selection procedure that includes selecting the variable to enter, deciding to retain it or stop the selection, and estimating the augmented model. Least squares plus t tests can be fast, but the outcome of a forward selection might be suboptimal when there are outliers. In this article we propose a complete algorithm for fast robust model selection, including considerations for huge sample sizes. Because simply replacing the classical statistical criteria with robust ones is not computationally possible, we develop simplified robust estimators, selection criteria, and testing procedures for linear regression. The robust estimator is a one-step weighted M-estimator that can be biased if the covariates are not orthogonal. We show that the bias can be made smaller by iterating the M-estimator one or more steps further. In the variable selection process, we propose a simplified robust criterion based on a robust t statistic that we compare with a false discovery rate-adjusted level. We carry out a simulation study to show the good performance of our approach. We also analyze two datasets and show that the results obtained by our method outperform those from robust least angle regression and random forests. Supplemental materials are available online.
Author Victoria-Feser, Maria-Pia
Dupuis, Debbie J.
Author_xml – sequence: 1
  givenname: Debbie J.
  surname: Dupuis
  fullname: Dupuis, Debbie J.
– sequence: 2
  givenname: Maria-Pia
  surname: Victoria-Feser
  fullname: Victoria-Feser, Maria-Pia
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24108007$$DView record in Pascal Francis
BookMark eNp1kM1KAzEURoNUsK0-gAthEMTV1GSSTBJwI9WqUBH8AXchk0lkhumkJinStzeltQvBbC7kO_fjckZg0LveAHCK4AQhwa9aFdSkgAhN4gKKksIDMEQUs7xg5GMAhhCVRY4IFUdgFEIL02OcD0E-UyFmL65apfHkatNlr6YzOjauz5o-myv_abJbFVUwMRyDQ6u6YE52cwzeZ3dv04d8_nz_OL2Z55pwEnOrq8oaSC0UVaGILQQVJceWWayESN-cY12IGkPGGIGwqgpeIVZjDSnUCOExuNz2Lr37WpkQ5aIJ2nSd6o1bBckZ5oQRwRJ5_ods3cr36TjJy9RdEi4ShLaQ9i4Eb6xc-mah_FoiKDf65Eaf3OiTO31p52JXrIJWnfWq103YLxYEQZ4cJu5sy7UhOr_PCSKIUkJTfr3Nm946v1Dfzne1jGrdOf9biv8_4wduD46c
CODEN JSTNAL
CitedBy_id crossref_primary_10_1002_sam_11254
crossref_primary_10_1007_s10994_023_06349_2
crossref_primary_10_1016_j_rse_2016_07_035
crossref_primary_10_1007_s10260_017_0412_0
crossref_primary_10_29220_CSAM_2019_26_6_575
crossref_primary_10_1080_03610918_2019_1588304
crossref_primary_10_1214_12_AOAS584
crossref_primary_10_1002_wics_1439
Cites_doi 10.1214/07-AOS588
10.1214/009053604000000067
10.1214/009053606000000074
10.1016/j.csda.2007.11.006
10.2307/2290858
10.1021/pr900610q
10.1017/S0266466600007775
10.1214/08-AOAS194
10.1198/016214504000000287
10.1198/016214506000000843
10.1198/016214507000000950
10.1214/aos/1176344136
10.1198/016214505000000529
10.1021/pr0603710
10.2307/2965566
10.2307/2285666
10.1214/aoms/1177703732
10.2307/2290914
10.2307/1267380
10.1093/biomet/93.3.491
10.1214/07-AOS586
10.1016/j.csda.2007.01.007
10.1023/A:1010933404324
ContentType Journal Article
Copyright 2011 American Statistical Association 2011
2011 American Statistical Association
2015 INIST-CNRS
Copyright American Statistical Association Mar 2011
Copyright_xml – notice: 2011 American Statistical Association 2011
– notice: 2011 American Statistical Association
– notice: 2015 INIST-CNRS
– notice: Copyright American Statistical Association Mar 2011
DBID IQODW
AAYXX
CITATION
8BJ
FQK
JBE
K9.
DOI 10.1198/jasa.2011.tm09650
DatabaseName Pascal-Francis
CrossRef
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
ProQuest Health & Medical Complete (Alumni)
DatabaseTitleList International Bibliography of the Social Sciences (IBSS)


International Bibliography of the Social Sciences (IBSS)
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1537-274X
EndPage 212
ExternalDocumentID 2350834901
10_1198_jasa_2011_tm09650
24108007
41415545
10710904
Genre Theory and Methods
Feature
GroupedDBID -DZ
-~X
..I
.7F
.QJ
0BK
0R~
29L
2AX
30N
4.4
5GY
5RE
692
7WY
85S
8FL
AAAVI
AAAVZ
AABCJ
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABBHK
ABBKH
ABCCY
ABEHJ
ABFAN
ABFIM
ABJVF
ABLIJ
ABLJU
ABPEM
ABPFR
ABPPZ
ABQHQ
ABTAI
ABXUL
ABYAD
ABYWD
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ACTWD
ADCVX
ADGTB
ADLSF
ADODI
ADULT
AEGYZ
AEISY
AELPN
AENEX
AEOZL
AEPSL
AEUPB
AEYOC
AFFNX
AFOLD
AFSUE
AFVYC
AFWLO
AFXHP
AFXKK
AGDLA
AGMYJ
AHDLD
AIHXQ
AIJEM
AIRXU
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
BLEHA
CCCUG
CJ0
CS3
D0L
DGEBU
DKSSO
DQDLB
DSRWC
DU5
EBS
ECEWR
EFSUC
EJD
E~A
E~B
F5P
FJW
FUNRP
FVPDL
GROUPED_ABI_INFORM_COMPLETE
GTTXZ
H13
HF~
HQ6
HZ~
H~9
H~P
IAO
IEA
IGG
IOF
IPNFZ
IPO
J.P
JAAYA
JAS
JBMMH
JBZCM
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K60
K6~
KYCEM
LU7
M4Z
MS~
MW2
N95
NA5
NY~
O9-
OFU
OK1
P2P
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SA0
SNACF
TAE
TEJ
TFL
TFT
TFW
TN5
TTHFI
U5U
UPT
UQL
UT5
UU3
V1K
WH7
WZA
XFK
YQT
YYM
ZGOLN
ZUP
~S~
AAHBH
ABJNI
ABPAQ
ABRLO
ABXSQ
ABXYU
ACUBG
ADACV
AGCQS
AHDZW
ALIPV
AWYRJ
IPSME
JENOY
TBQAZ
TDBHL
TUROJ
.-4
.GJ
07G
08R
1OL
3R3
3V.
7X7
88E
88I
8AF
8C1
8FE
8FG
8FI
8FJ
8G5
8R4
8R5
AAFWJ
AAIKQ
AAKBW
ABEFU
ABJCF
ABUWG
ACAGQ
ADBBV
AEUMN
AFKRA
AGLEN
AGROQ
AHMOU
AI.
ALCKM
AMATQ
AMXXU
AQUVI
AZQEC
BCCOT
BENPR
BEZIV
BGLVJ
BKNYI
BKOMP
BPHCQ
BPLKW
BVXVI
C06
CCPQU
CRFIH
DMQIW
DWIFK
DWQXO
E.L
F20
FEDTE
FRNLG
FVMVE
FYUFA
GNUQQ
GROUPED_ABI_INFORM_RESEARCH
GUQSH
HCIFZ
HGD
IQODW
IVXBP
K9-
KQ8
L6V
LJTGL
M0C
M0R
M0T
M1P
M2O
M2P
M7S
MVM
NHB
NUSFT
P-O
PADUT
PQBIZ
PQQKQ
PRG
PROAC
PSQYO
PTHSS
Q2X
QCRFL
RNS
S0X
SJN
TAQ
TFMCV
TOXWX
UB9
UKHRP
VH1
VOH
WHG
YXB
YYP
ZCG
ZGI
ZXP
AAYXX
ABPQH
ACGEE
ADMHG
CITATION
HMCUK
HVGLF
PQBZA
8BJ
FQK
JBE
K9.
ID FETCH-LOGICAL-c484t-fcbbfe05f09b2a4f2959683f7f3a995f0883c29d30777400bb28b17d3c050c113
IEDL.DBID TFW
ISSN 0162-1459
IngestDate Fri Oct 25 23:53:15 EDT 2024
Tue Nov 19 07:09:37 EST 2024
Thu Nov 21 21:52:31 EST 2024
Sun Oct 22 16:08:44 EDT 2023
Tue Aug 20 02:53:00 EDT 2024
Tue Jul 04 18:15:43 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 493
Keywords Rank statistic
Correlation
Forests
Statistical distribution
Sample size
Bias
Estimator robustness
M-estimator
Multivariate analysis
Covariate
Statistical simulation
Parametric method
Outlier
Statistical test
Least squares method
Least angle regression
Selection method
Approximation theory
Fast algorithm
Sample survey
Variable selection
Discriminant analysis
Statistical analysis
Linear regression
Model selection
Statistical association
Statistical estimation
Random forests
T statistic
Statistical method
Statistical regression
Selection problem
Sampling theory
Correlation analysis
Multicollinearity
False discovery rate
Robust t test
M estimation
Biased estimation
Partial correlation
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c484t-fcbbfe05f09b2a4f2959683f7f3a995f0883c29d30777400bb28b17d3c050c113
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://access.archive-ouverte.unige.ch/access/metadata/14cd9aa6-ac40-4eb6-b348-50222672a4dd/download
PQID 867406489
PQPubID 41715
PageCount 10
ParticipantIDs proquest_journals_867406489
jstor_primary_41415545
pascalfrancis_primary_24108007
informaworld_taylorfrancis_310_1198_jasa_2011_tm09650
proquest_miscellaneous_873847497
crossref_primary_10_1198_jasa_2011_tm09650
PublicationCentury 2000
PublicationDate 2011-03-01
PublicationDateYYYYMMDD 2011-03-01
PublicationDate_xml – month: 03
  year: 2011
  text: 2011-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Alexandria, VA
PublicationPlace_xml – name: Alexandria, VA
– name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationYear 2011
Publisher Taylor & Francis
American Statistical Association
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: American Statistical Association
– name: Taylor & Francis Ltd
References p_27
p_28
p_24
p_25
Tibshirani R. (p_31) 1996; 58
p_20
p_21
p_22
Akaike H. (p_2) 1973
p_16
p_18
p_1
p_19
p_4
p_3
p_13
p_6
p_14
p_8
p_7
p_9
Benjamini Y. (p_5) 1995; 57
Rousseeuw P. J. (p_29) 1984
p_30
p_10
p_32
p_11
References_xml – ident: p_3
  doi: 10.1214/07-AOS588
– ident: p_9
  doi: 10.1214/009053604000000067
– ident: p_1
  doi: 10.1214/009053606000000074
– ident: p_20
  doi: 10.1016/j.csda.2007.11.006
– ident: p_27
  doi: 10.2307/2290858
– ident: p_8
  doi: 10.1021/pr900610q
– ident: p_21
  doi: 10.1017/S0266466600007775
– volume: 57
  start-page: 289
  year: 1995
  ident: p_5
  publication-title: Journal of the Royal Statistical Society, Ser. B
  contributor:
    fullname: Benjamini Y.
– volume: 58
  start-page: 267
  year: 1996
  ident: p_31
  publication-title: Journal of the Royal Statistical Society, Ser. B
  contributor:
    fullname: Tibshirani R.
– ident: p_4
  doi: 10.1214/08-AOAS194
– ident: p_10
  doi: 10.1198/016214504000000287
– ident: p_32
  doi: 10.1198/016214506000000843
– ident: p_19
  doi: 10.1198/016214507000000950
– ident: p_30
  doi: 10.1214/aos/1176344136
– ident: p_24
  doi: 10.1198/016214505000000529
– ident: p_25
  doi: 10.1021/pr0603710
– ident: p_28
  doi: 10.2307/2965566
– ident: p_13
  doi: 10.2307/2285666
– ident: p_16
  doi: 10.1214/aoms/1177703732
– start-page: 267
  year: 1973
  ident: p_2
  publication-title: B. N. Petrov and F. Csaki, Budapest: Akademiai Kiado, pp.
  contributor:
    fullname: Akaike H.
– ident: p_14
  doi: 10.2307/2290914
– ident: p_22
  doi: 10.2307/1267380
– start-page: 256
  year: 1984
  ident: p_29
  publication-title: J. Franke, W. Härdle, and R. D. Martin, New York: Springer-Verlag, pp.
  contributor:
    fullname: Rousseeuw P. J.
– ident: p_6
  doi: 10.1093/biomet/93.3.491
– ident: p_11
  doi: 10.1214/07-AOS586
– ident: p_18
  doi: 10.1016/j.csda.2007.01.007
– ident: p_7
  doi: 10.1023/A:1010933404324
SSID ssj0000788
Score 2.0892217
Snippet Large datasets are increasingly common in many research fields. In particular, in the linear regression context, it is often the case that a huge number of...
Large dataseis are increasingly common in many research fields. In particular, in the linear regression context, it is often the case that a huge number of...
SourceID proquest
crossref
pascalfrancis
jstor
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 203
SubjectTerms Applications
Applied statistics
Computational methods
Correlations
Criteria
Data analysis
Data processing
Datasets
Estimation bias
Estimators
Exact sciences and technology
False discovery rate
General topics
Least angle regression
Linear inference, regression
Linear regression
M-estimator
Mathematics
Modeling
Multicollinearity
Outliers
Parameter estimation
Parametric inference
Partial correlation
Probability and statistics
Random forests
Random variables
Regression analysis
Robust t test
Sciences and techniques of general use
Statistical analysis
Statistics
Theory and Methods
SummonAdditionalLinks – databaseName: JSTOR Arts and Sciences I Collection
  dbid: JAS
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB11OXEp0IJIgVUO7QXJwomdZHxEwGoPqIfSStwsO7GlVpBFJPv_O3aSLStUxClS4ny9sT3P9vgNwFeUDnnuG-Z94ZlEUzL0pWeobFahkplzYaPw8q76fo_XN0Em59u0FyaEVca4wLiKTwTJPrgLmUW3V8xghtmogvuvu61ickmiLjnLZKHGpUsaTF_8MZ0ZVDr7x6Bywrecz5Y06RSOGGIjTUfw-CGvxasuOvqdxd47v3gfPo7EMr0casIBfHDtJ9gNXHKQYv4MbGG6Pv2xsms6hBxoD-ldzIJDpkl_t-ltCApPr01Pjq3vDuHX4ubn1ZKN2RJYLVH2zNfWescLz5XNjfS5KlSJwldeGKXoNKKoc9VQoybKx7m1OZI9GlHzgtdZJo5gp1217hhSKiw8BilCIliGHsitUEbaouaON7ZM4HyCUT8Nohg6DiYU6oC5DpjrEfMEipdA6z7ORIzwavHGfUcR1s0bJkwTmG-ZaFOAyEjgv1UCJ5PN9NgiO40l_XQpUSWQbq5SUwrrI6Z1qzUVqQT5aqmqL_979QnsDnPKIQbtFHb657U7g1nXrOexUv4FLdrcMg
  priority: 102
  providerName: JSTOR
Title Fast Robust Model Selection in Large Datasets
URI https://www.tandfonline.com/doi/abs/10.1198/jasa.2011.tm09650
https://www.jstor.org/stable/41415545
https://www.proquest.com/docview/867406489
https://search.proquest.com/docview/873847497
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VnnqB8lERWlY5cEKycGInGR96qNquekAcaKtys-zElkCQrUj2_3fGyW5ZgTjAKVLiOPGMPfNsj98AvEMdUJaxEzFWUWh0tcBYR4HGFw0aXYTAB4WvrptPX_DikmlyTjdnYTiskufQcSKKSLaaB7fzcwYSgx--ucFN5JvjDyYv4Rk7821Tb75Z3j3a4SZlnSRMUwp6bOY9zT_WsOOVdjhLN3GKHDTpBpJbnBJe_Ga7k0NaPvvPphzC0xmJ5mdT13kOe6F_AQcMPifu5pcglm4Y888rv6YLJ037nl-ntDmky_xrn3_kKPL8wo3kCcfhFdwuL2_Or8ScXkG0GvUoYut9DLKK0vjS6ViaytSoYhOVM4ZuI6q2NB1ZAcKIUnpfIimwU62sZFsU6gj2-1UfXkNOhVVE5i4kROaoQumVcdpXrQyy83UG7zfitfcTi4ZNsw-DlkVgWQR2FkEG1a8KsGNaupjFbtVf3jtKmtp-QRcJLVUZLHZUty1A6IUBc5PB8UaXdh7Cg8WaGl1rNBnk26c09nhDxfVhtaYijSLnrk3z5h9_-RgOpjVqjmk7gf3x5zq8hSdDt14kqudF6tEPElT27Q
link.rule.ids 315,782,786,817,1455,1509,27933,27934,58021,58023,58256,59734,60523
linkProvider Taylor & Francis
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BbtQwEB3RcmgvtEArQmnJoSckq07sJPYFqaJdLWLpoV1Eb5ad2FIRZKsm-__MONmFFagHOEVKHCee8Yyf7fEbgFMlveJ5aFgIRWBS2ZKpUAamtMsqpWXmPR0Unt5UV7fq4pJoct6vzsJQWCXNocNAFBF9NRk3LUYPFq7V2Tfb2YF9s_9B7CU4ZX-KwFgQd_588vWXJ65i3klENTnLZKHHXc2_VrExLm2wlq4iFSls0nYouTCkvPjDe8chabL3v43Zh2cjGE3Ph97zHJ749gXsEv4c6JtfApvYrk-vF26JF8qb9j29iZlzUJ3pXZvOKJA8vbA9DoZ9dwBfJpfzD1M2ZlhgtVSyZ6F2LnheBK5dbmXIdaFLJUIVhNUabysl6lw36AgQJnLuXK5Qh42oecHrLBOHsN0uWv8KUiwsgiL6QgRlFivkTmgrXVFzzxtXJvBuJV9zPxBpmDgB0cqQCAyJwIwiSKD4XQOmj6sXo9yNeOS9w6iq9RdkFgFTkcDJhu7WBRDAEGauEjhaKdOMVtwZVWKjS6l0Aun6KZof7anY1i-WWKQSOL5LXb3-x19-CzvT-eeZmX28-nQEu8OSNYW4vYHt_mHpj2Gra5YnsWP_BMOh-hI
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9UwDLdgSGiXMT4mytjogRNSRNqkrXPggHirhpgmxIbgFiVtIoG2von2_f9zkr4HTyAOcKrUpmljx_bPiWMDvETpkJe-Z95Xnkk0NUNfe4bKFg0qWTgXDgqfXjTnX3FxEtLkvFmfhQlhlcGH9ilRRNTVQbhvep8EXOHr72Y0KfnmdB2Sl5DHfq_myaO6bL_8VMRNLDtJoKZkhazUvKn5xy62zNJW0tJ1oGKImjQjEc6nihe_Ke9okdoH_zmWfdiboWj-Ns2dh3DHDY9gN6DPlLz5MbDWjFP-aWlXdAlV067yi1g3h5iZfxvysxBGni_MRKZwGp_A5_bk8t0pm-srsE6inJjvrPWOV54rWxrpS1WpGoVvvDBK0W1E0ZWqJzVAIJFza0skDvai4xXvikIcwM6wHNxTyKmx8BiSFxIkM9Qht0IZaauOO97bOoNXa_Lqm5RGQ0f3Q6EOJNCBBHomQQbVrwzQU1y7mMmuxV_eO4ic2nxBFhEuVRkcb7Fu04DgS0DMTQaHa17qWYZHjTUNupaoMsg3T0n4wo6KGdxyRU0aQdZdqubZP_7yC7j_cdHqs_fnHw5hN61Xh_i257Az_Vi5I7g79qvjOK1vAbvi-LY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+Robust+Model+Selection+in+Large+Datasets&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Dupuis%2C+Debbie+J.&rft.au=Victoria-Feser%2C+Maria-Pia&rft.date=2011-03-01&rft.pub=Taylor+%26+Francis&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=106&rft.issue=493&rft.spage=203&rft.epage=212&rft_id=info:doi/10.1198%2Fjasa.2011.tm09650&rft.externalDocID=10710904
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon