An approach for feature semantics recognition in geometric models
This paper describes a method for the recognition of the semantics of parts (features) of a component from a pure geometric representation. It is suitable for verifying product life-cycle requirements from the early stages of the design process. The proposed method is appropriate to analyse B-rep ge...
Saved in:
Published in: | Computer aided design Vol. 36; no. 10; pp. 993 - 1009 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier Ltd
01-09-2004
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper describes a method for the recognition of the semantics of parts (features) of a component from a pure geometric representation. It is suitable for verifying product life-cycle requirements from the early stages of the design process. The proposed method is appropriate to analyse B-rep geometric models, and it is not limited to models described by planar and cylindrical surfaces, but it can handle several types of face shapes. In this work the concept of
semanteme is introduced. A semanteme represents the minimal element of engineering meaning that can be recognised in a geometric model. The semantemes recognised in a part of the model, which are potentially of engineering significance, are used to associate an engineering meaning to the part. This approach gives a wide flexibility to the proposed system, which is suitable to be used in different contexts of application, since it is possible to describe the reference context using the semanteme that the system can manage.
In the paper the implemented prototype system is briefly described. The prototype system takes advantage of neutral interfaces that allow geometrical and topological information to be retrieved from a commercial CAD system. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0010-4485 1879-2685 |
DOI: | 10.1016/j.cad.2003.10.004 |