The conserved regulatory RNA RsaE down-regulates the arginine degradation pathway in Staphylococcus aureus
Abstract RsaE is a regulatory RNA highly conserved amongst Firmicutes that lowers the amount of mRNAs associated with the TCA cycle and folate metabolism. A search for new RsaE targets in Staphylococcus aureus revealed that in addition to previously described substrates, RsaE down-regulates several...
Saved in:
Published in: | Nucleic acids research Vol. 46; no. 17; pp. 8803 - 8816 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Oxford University Press
28-09-2018
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
RsaE is a regulatory RNA highly conserved amongst Firmicutes that lowers the amount of mRNAs associated with the TCA cycle and folate metabolism. A search for new RsaE targets in Staphylococcus aureus revealed that in addition to previously described substrates, RsaE down-regulates several genes associated with arginine catabolism. In particular, RsaE targets the arginase rocF mRNA via direct interactions involving G-rich motifs. Two duplicated C-rich motifs of RsaE can independently downregulate rocF expression. The faster growth rate of ΔrsaE compared to its parental strain in media containing amino acids as sole carbon source points to an underlying role for RsaE in amino acid catabolism. Collectively, the data support a model in which RsaE acts as a global regulator of functions associated with metabolic adaptation. |
---|---|
Bibliography: | Present address: Adrien Pain, Bioinformatics and Biostatistics Hub (C3BI), USR 3756 IP CNRS, Institut Pasteur, Paris, France. |
ISSN: | 0305-1048 1362-4962 |
DOI: | 10.1093/nar/gky584 |