DNA damage alters nuclear mechanics through chromatin reorganization
Abstract DNA double-strand breaks drive genomic instability. However, it remains unknown how these processes may affect the biomechanical properties of the nucleus and what role nuclear mechanics play in DNA damage and repair efficiency. Here, we have used Atomic Force Microscopy to investigate nucl...
Saved in:
Published in: | Nucleic acids research Vol. 49; no. 1; pp. 340 - 353 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Oxford University Press
11-01-2021
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Abstract
DNA double-strand breaks drive genomic instability. However, it remains unknown how these processes may affect the biomechanical properties of the nucleus and what role nuclear mechanics play in DNA damage and repair efficiency. Here, we have used Atomic Force Microscopy to investigate nuclear mechanical changes, arising from externally induced DNA damage. We found that nuclear stiffness is significantly reduced after cisplatin treatment, as a consequence of DNA damage signalling. This softening was linked to global chromatin decondensation, which improves molecular diffusion within the organelle. We propose that this can increase recruitment for repair factors. Interestingly, we also found that reduction of nuclear tension, through cytoskeletal relaxation, has a protective role to the cell and reduces accumulation of DNA damage. Overall, these changes protect against further genomic instability and promote DNA repair. We propose that these processes may underpin the development of drug resistance. |
---|---|
AbstractList | Abstract
DNA double-strand breaks drive genomic instability. However, it remains unknown how these processes may affect the biomechanical properties of the nucleus and what role nuclear mechanics play in DNA damage and repair efficiency. Here, we have used Atomic Force Microscopy to investigate nuclear mechanical changes, arising from externally induced DNA damage. We found that nuclear stiffness is significantly reduced after cisplatin treatment, as a consequence of DNA damage signalling. This softening was linked to global chromatin decondensation, which improves molecular diffusion within the organelle. We propose that this can increase recruitment for repair factors. Interestingly, we also found that reduction of nuclear tension, through cytoskeletal relaxation, has a protective role to the cell and reduces accumulation of DNA damage. Overall, these changes protect against further genomic instability and promote DNA repair. We propose that these processes may underpin the development of drug resistance. DNA double-strand breaks drive genomic instability. However, it remains unknown how these processes may affect the biomechanical properties of the nucleus and what role nuclear mechanics play in DNA damage and repair efficiency. Here, we have used Atomic Force Microscopy to investigate nuclear mechanical changes, arising from externally induced DNA damage. We found that nuclear stiffness is significantly reduced after cisplatin treatment, as a consequence of DNA damage signalling. This softening was linked to global chromatin decondensation, which improves molecular diffusion within the organelle. We propose that this can increase recruitment for repair factors. Interestingly, we also found that reduction of nuclear tension, through cytoskeletal relaxation, has a protective role to the cell and reduces accumulation of DNA damage. Overall, these changes protect against further genomic instability and promote DNA repair. We propose that these processes may underpin the development of drug resistance. |
Author | Schilling, Martin Rehfeldt, Florian Cook, Alexander W Aaron, Jesse dos Santos, Ália Martin-Fernandez, Marisa L Wang, Lin Gough, Rosemarie E Toseland, Christopher P Brown, Ian Olszok, Nora A |
Author_xml | – sequence: 1 givenname: Ália surname: dos Santos fullname: dos Santos, Ália – sequence: 2 givenname: Alexander W surname: Cook fullname: Cook, Alexander W – sequence: 3 givenname: Rosemarie E surname: Gough fullname: Gough, Rosemarie E – sequence: 4 givenname: Martin surname: Schilling fullname: Schilling, Martin – sequence: 5 givenname: Nora A surname: Olszok fullname: Olszok, Nora A – sequence: 6 givenname: Ian surname: Brown fullname: Brown, Ian – sequence: 7 givenname: Lin surname: Wang fullname: Wang, Lin – sequence: 8 givenname: Jesse surname: Aaron fullname: Aaron, Jesse – sequence: 9 givenname: Marisa L surname: Martin-Fernandez fullname: Martin-Fernandez, Marisa L – sequence: 10 givenname: Florian orcidid: 0000-0001-9086-3835 surname: Rehfeldt fullname: Rehfeldt, Florian email: florian.rehfeldt@uni-bayreuth.de – sequence: 11 givenname: Christopher P orcidid: 0000-0002-1641-7535 surname: Toseland fullname: Toseland, Christopher P email: c.toseland@sheffield.ac.uk |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33330932$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kE1LxDAQhoMouqvePEtverA6SZN2cxHEb1j0oueQptNutU3WpBX01xtZFb2YyxDmmXeGZ0rWrbNIyB6FYwoyO7HanzTPWlMGbI1MaJazlMucrZMJZCBSCny2RaYhPAFQTgXfJFtZfHGWTcjFxd1ZUuleN5jobkAfEjuaDrVPejQLbVsTkmHh3dgsEhNrr4fWJh6db2LzPf6c3SEbte4C7n7VbfJ4dflwfpPO769vz8_mqeEzNqQFCsFEnZdQgKhKU0sQ5UwWdZVXLNeSljynHKkUuQBZQQmcskowWZa0RqTZNjld5S7HssfKoB287tTSt732b8rpVv3t2HahGveqikIWUUMMOPwK8O5lxDCovg0Gu05bdGNQjBcggYlZEdGjFWq8C8Fj_bOGgvoUr6J49S0-4vu_T_uBv01H4GAFuHH5f9QHJoWPpw |
CitedBy_id | crossref_primary_10_1080_14686996_2023_2265434 crossref_primary_10_1016_j_bbagen_2022_130291 crossref_primary_10_3390_ijms23136986 crossref_primary_10_3390_pharmaceutics14091808 crossref_primary_10_1016_j_bpj_2020_12_024 crossref_primary_10_1063_5_0065302 crossref_primary_10_1038_s41598_023_44880_3 crossref_primary_10_1021_acs_nanolett_4c00732 crossref_primary_10_1016_j_pacs_2022_100385 crossref_primary_10_1063_5_0068126 crossref_primary_10_1111_jnc_16101 crossref_primary_10_1016_j_sbi_2024_102867 crossref_primary_10_1016_j_cca_2023_117742 crossref_primary_10_1126_sciadv_abn5626 crossref_primary_10_1093_nar_gkae379 crossref_primary_10_2485_jhtb_32_183 crossref_primary_10_1016_j_molcel_2023_09_023 crossref_primary_10_3390_ijms23105342 crossref_primary_10_3390_ijms22063178 crossref_primary_10_1016_j_celrep_2023_113555 crossref_primary_10_1039_D1SC04030H crossref_primary_10_1080_19491034_2024_2353249 crossref_primary_10_1091_mbc_E21_10_0506 crossref_primary_10_3390_ijms241512491 crossref_primary_10_3389_fmolb_2023_1197814 crossref_primary_10_3390_biom11020288 crossref_primary_10_1016_j_cobme_2024_100521 crossref_primary_10_1111_boc_202200023 crossref_primary_10_1039_D1DT02765D crossref_primary_10_1016_j_pacs_2023_100496 crossref_primary_10_1007_s00412_023_00807_5 crossref_primary_10_1016_j_bbagen_2024_130568 crossref_primary_10_3390_genes12071081 crossref_primary_10_1038_s41467_023_38572_9 crossref_primary_10_1007_s12195_022_00734_y |
Cites_doi | 10.1038/nmat4729 10.1073/pnas.1502111112 10.1242/jcs.209627 10.1083/jcb.200704140 10.1080/19491034.2020.1816053 10.1128/MCB.01830-08 10.15252/embr.201948084 10.1088/1478-3975/8/1/015007 10.1101/gad.307702.117 10.1016/j.tox.2005.04.015 10.1073/pnas.1911880116 10.1074/jbc.C100466200 10.1016/j.bpj.2013.12.056 10.1158/0008-5472.CAN-03-2384 10.3389/fonc.2018.00015 10.1016/j.nano.2011.09.015 10.1002/cbic.201100173 10.1073/pnas.1902035116 10.1126/science.1116995 10.2307/3577259 10.1038/s41580-019-0152-0 10.4161/cc.9.2.10475 10.1039/C3IB40246K 10.1016/j.cell.2014.05.046 10.1038/s41598-017-08517-6 10.1002/cpcb.88 10.1091/mbc.e16-09-0653 10.1242/jcs.114.5.1025 10.1016/j.addr.2007.08.007 10.1002/cm.970130302 10.1038/nature08467 10.1038/onc.2012.556 10.1038/s41598-018-34024-3 10.1182/blood-2006-08-043570 10.1038/nphys1613 10.3389/fgene.2015.00157 10.1091/mbc.E18-02-0079 10.1016/j.molcel.2004.10.029 10.1016/j.cell.2005.09.038 10.1126/science.1240104 10.1038/ncb1446 10.1093/jb/mvaa113 10.1242/jcs.053520 10.1038/nmeth.2277 10.15430/JCP.2018.23.2.87 10.1101/gad.1273105 10.1083/jcb.201711161 10.1038/s41598-018-38199-7 10.1016/j.jsb.2005.06.002 10.1016/j.cub.2009.07.069 10.1016/j.devcel.2019.04.020 10.1073/pnas.1814965116 10.1016/j.cell.2020.03.052 10.1093/nar/gkz694 10.1242/jcs.108886 10.1007/s12154-013-0094-5 10.1038/s41467-017-02050-w 10.1074/jbc.M405319200 10.1101/gad.2021311 10.1016/S0960-9822(00)00610-2 |
ContentType | Journal Article |
Copyright | The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research. 2021 The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research. |
Copyright_xml | – notice: The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research. 2021 – notice: The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research. |
DBID | TOX CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1093/nar/gkaa1202 |
DatabaseName | Oxford Academic Journals (Open Access) Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1362-4962 |
EndPage | 353 |
ExternalDocumentID | 10_1093_nar_gkaa1202 33330932 10.1093/nar/gkaa1202 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Medical Research Council grantid: MC_EX_MR/K015591/1 – fundername: Medical Research Council grantid: MR/M020606/2 – fundername: Medical Research Council grantid: MR/M020606/1 – fundername: ; – fundername: ; grantid: IE170270 – fundername: ; grantid: 19130001 – fundername: ; grantid: MR/M020606/1 |
GroupedDBID | --- -DZ -~X .55 .GJ .I3 0R~ 123 18M 1TH 29N 2WC 3O- 4.4 482 53G 5VS 5WA 6.Y 70E 85S A8Z AAFWJ AAHBH AAMVS AAOGV AAPPN AAPXW AAUQX AAVAP AAWDT AAYJJ ABPTD ABQLI ABQTQ ABSAR ABSMQ ABXVV ACFRR ACGFO ACGFS ACIPB ACIWK ACMRT ACNCT ACPQN ACPRK ACUTJ ACZBC ADBBV ADHZD AEGXH AEKPW AENEX AENZO AFFNX AFPKN AFRAH AFSHK AFULF AFYAG AGKRT AGMDO AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS ALUQC ANFBD AOIJS AQDSO ASAOO ASPBG ATDFG ATTQO AVWKF AZFZN BAWUL BAYMD BCNDV BEYMZ BTTYL C1A CAG CIDKT COF CS3 CXTWN CZ4 D0S DFGAJ DIK DU5 D~K E3Z EBD EBS EJD ELUNK EMOBN ESTFP F20 F5P FEDTE GROUPED_DOAJ GX1 H13 HH5 HVGLF HYE HZ~ H~9 IH2 KAQDR KC5 KQ8 KSI M49 MBTAY MVM M~E NTWIH NU- OAWHX OBC OBS OEB OES OJQWA OVD O~Y P2P PB- PEELM PQQKQ QBD R44 RD5 RNI RNS ROL ROX ROZ RPM RXO RZF RZO SJN SV3 TCN TEORI TN5 TOX TR2 UHB WG7 WOQ X7H X7M XSB XSW YSK ZKX ZXP ~91 ~D7 ~KM CGR CUY CVF ECM EIF NPM AAYXX ABEJV CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c482t-7e5525f6b0705dbcf905b897fd6d26a91b4614e1956509d0b0412d529bb1fee13 |
IEDL.DBID | RPM |
ISSN | 0305-1048 |
IngestDate | Tue Sep 17 21:26:55 EDT 2024 Fri Oct 25 01:30:16 EDT 2024 Fri Nov 22 00:39:39 EST 2024 Wed Oct 16 00:39:34 EDT 2024 Wed Aug 28 03:19:51 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c482t-7e5525f6b0705dbcf905b897fd6d26a91b4614e1956509d0b0412d529bb1fee13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9086-3835 0000-0002-1641-7535 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7797048/ |
PMID | 33330932 |
PQID | 2470902587 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7797048 proquest_miscellaneous_2470902587 crossref_primary_10_1093_nar_gkaa1202 pubmed_primary_33330932 oup_primary_10_1093_nar_gkaa1202 |
PublicationCentury | 2000 |
PublicationDate | 2021-01-11 |
PublicationDateYYYYMMDD | 2021-01-11 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nucleic acids research |
PublicationTitleAlternate | Nucleic Acids Res |
PublicationYear | 2021 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Sharma (2021011005250333500_B49) 2014; 6 Tajik (2021011005250333500_B59) 2016; 15 Rakshit (2021011005250333500_B16) 2020; 11 Fili (2021011005250333500_B18) 2017; 8 Toseland (2021011005250333500_B38) 2013; 6 Xia (2021011005250333500_B42) 2018; 217 Burma (2021011005250333500_B30) 2001; 276 Sharma (2021011005250333500_B2) 2012; 8 Hauer (2021011005250333500_B36) 2017; 31 Jackson (2021011005250333500_B4) 2009; 461 Alisafaei (2021011005250333500_B47) 2019; 116 Wakatsuki (2021011005250333500_B28) 2001; 114 Yasui (2021011005250333500_B12) 1987; 112 Liu (2021011005250333500_B61) 2018; 8 Rehfeldt (2021011005250333500_B44) 2007; 59 Stucki (2021011005250333500_B33) 2005; 123 Swift (2021011005250333500_B48) 2013; 341 Pfeifer (2021011005250333500_B39) 2018; 29 Turgeon (2021011005250333500_B25) 2018; 8 Ziv (2021011005250333500_B14) 2006; 8 Kumar (2021011005250333500_B57) 2014; 158 Lu (2021011005250333500_B35) 2019; 47 Scully (2021011005250333500_B26) 2019; 20 Fragkos (2021011005250333500_B31) 2009; 29 Wang (2021011005250333500_B46) 2018; 131 Zemel (2021011005250333500_B24) 2010; 6 Klein (2021011005250333500_B55) 2009; 19 Nava (2021011005250333500_B41) 2020; 181 Paull (2021011005250333500_B7) 2000; 10 Chai (2021011005250333500_B13) 2005; 19 Engler (2021011005250333500_B22) 2007 Kovács (2021011005250333500_B27) 2004; 279 Lam (2021011005250333500_B1) 2006; 109 Lou (2021011005250333500_B34) 2019; 116 Surova (2021011005250333500_B5) 2013; 32 Polo (2021011005250333500_B8) 2011; 25 Cook (2021011005250333500_B17) 2020 Nakamura (2021011005250333500_B32) 2010; 9 Sun (2021011005250333500_B37) 2011; 12 Aureille (2021011005250333500_B58) 2019; 20 Discher (2021011005250333500_B43) 2005; 310 Neelam (2021011005250333500_B45) 2015; 112 Raudenska (2021011005250333500_B50) 2019; 9 Park (2021011005250333500_B60) 2018; 23 Spector (2021011005250333500_B29) 1989; 13 Cho (2021011005250333500_B40) 2019; 49 Stephens (2021011005250333500_B9) 2017; 28 Sbalzarini (2021011005250333500_B20) 2005; 151 Aaron (2021011005250333500_B21) 2019; 83 Kühne (2021011005250333500_B51) 2004; 64 Kaliman (2021011005250333500_B23) 2014; 106 Kocgozlu (2021011005250333500_B54) 2010; 123 Frankenberg-Schwager (2021011005250333500_B3) 2005; 212 Melters (2021011005250333500_B15) 2019; 116 Fuhrmann (2021011005250333500_B11) 2011; 8 Abrahamsson (2021011005250333500_B19) 2013; 10 Riballo (2021011005250333500_B52) 2004; 16 Torgovnick (2021011005250333500_B6) 2015; 6 Lherbette (2021011005250333500_B10) 2017; 7 Murga (2021011005250333500_B53) 2007; 178 Mih (2021011005250333500_B56) 2012; 125 |
References_xml | – start-page: 521 volume-title: Methods in Cell Biology year: 2007 ident: 2021011005250333500_B22 article-title: Microtissue elasticity: measurements by atomic force microscopy and its influence on cell differentiation contributor: fullname: Engler – volume: 15 start-page: 1287 year: 2016 ident: 2021011005250333500_B59 article-title: Transcription upregulation via force-induced direct stretching of chromatin publication-title: Nat. Mater. doi: 10.1038/nmat4729 contributor: fullname: Tajik – volume: 112 start-page: 5720 year: 2015 ident: 2021011005250333500_B45 article-title: Direct force probe reveals the mechanics of nuclear homeostasis in the mammalian cell publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1502111112 contributor: fullname: Neelam – volume: 131 start-page: jcs209627 year: 2018 ident: 2021011005250333500_B46 article-title: Mechanical stability of the cell nucleus—roles played by the cytoskeleton in nuclear deformation and strain recovery publication-title: J. Cell Sci. doi: 10.1242/jcs.209627 contributor: fullname: Wang – volume: 178 start-page: 1101 year: 2007 ident: 2021011005250333500_B53 article-title: Global chromatin compaction limits the strength of the DNA damage response publication-title: J. Cell Biol. doi: 10.1083/jcb.200704140 contributor: fullname: Murga – volume: 11 start-page: 264 year: 2020 ident: 2021011005250333500_B16 article-title: Mechanical properties of nucleoprotein complexes determined by nanoindentation spectroscopy publication-title: Nucleus doi: 10.1080/19491034.2020.1816053 contributor: fullname: Rakshit – volume: 29 start-page: 2828 year: 2009 ident: 2021011005250333500_B31 article-title: H2AX is required for cell cycle arrest via the p53/p21 pathway publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01830-08 contributor: fullname: Fragkos – volume: 20 start-page: e48084 year: 2019 ident: 2021011005250333500_B58 article-title: Nuclear envelope deformation controls cell cycle progression in response to mechanical force publication-title: EMBO Rep. doi: 10.15252/embr.201948084 contributor: fullname: Aureille – volume: 8 start-page: 015007 year: 2011 ident: 2021011005250333500_B11 article-title: AFM stiffness nanotomography of normal, metaplastic and dysplastic human esophageal cells publication-title: Phys. Biol. doi: 10.1088/1478-3975/8/1/015007 contributor: fullname: Fuhrmann – volume: 31 start-page: 2204 year: 2017 ident: 2021011005250333500_B36 article-title: Chromatin and nucleosome dynamics in DNA damage and repair publication-title: Genes Dev. doi: 10.1101/gad.307702.117 contributor: fullname: Hauer – volume: 212 start-page: 175 year: 2005 ident: 2021011005250333500_B3 article-title: Cisplatin-mediated DNA double-strand breaks in replicating but not in quiescent cells of the yeast Saccharomyces cerevisiae publication-title: Toxicology doi: 10.1016/j.tox.2005.04.015 contributor: fullname: Frankenberg-Schwager – volume: 116 start-page: 24066 year: 2019 ident: 2021011005250333500_B15 article-title: Intrinsic elasticity of nucleosomes is encoded by histone variants and calibrated by their binding partners publication-title: PNAS doi: 10.1073/pnas.1911880116 contributor: fullname: Melters – volume: 276 start-page: 42462 year: 2001 ident: 2021011005250333500_B30 article-title: ATM phosphorylates histone H2AX in response to DNA double-strand breaks publication-title: J. Biol. Chem. doi: 10.1074/jbc.C100466200 contributor: fullname: Burma – volume: 106 start-page: L25 year: 2014 ident: 2021011005250333500_B23 article-title: Novel growth regime of MDCK II model tissues on soft substrates publication-title: Biophys. J. doi: 10.1016/j.bpj.2013.12.056 contributor: fullname: Kaliman – volume: 64 start-page: 500 year: 2004 ident: 2021011005250333500_B51 article-title: A double-strand break repair defect in ATM-Deficient cells contributes to radiosensitivity publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-03-2384 contributor: fullname: Kühne – volume: 8 start-page: 15 year: 2018 ident: 2021011005250333500_B25 article-title: DNA damage, repair, and cancer metabolism publication-title: Front. Oncol. doi: 10.3389/fonc.2018.00015 contributor: fullname: Turgeon – volume: 8 start-page: 757 year: 2012 ident: 2021011005250333500_B2 article-title: Correlative nanomechanical profiling with super-resolution F-actin imaging reveals novel insights into mechanisms of cisplatin resistance in ovarian cancer cells publication-title: Nanomedicine doi: 10.1016/j.nano.2011.09.015 contributor: fullname: Sharma – volume: 12 start-page: 2217 year: 2011 ident: 2021011005250333500_B37 article-title: Development of SNAP-tag fluorogenic probes for wash-free fluorescence imaging publication-title: Chembiochem doi: 10.1002/cbic.201100173 contributor: fullname: Sun – volume: 116 start-page: 13200 year: 2019 ident: 2021011005250333500_B47 article-title: Regulation of nuclear architecture, mechanics, and nucleocytoplasmic shuttling of epigenetic factors by cell geometric constraints publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1902035116 contributor: fullname: Alisafaei – volume: 310 start-page: 1139 year: 2005 ident: 2021011005250333500_B43 article-title: Tissue cells feel and respond to the stiffness of their substrate publication-title: Science doi: 10.1126/science.1116995 contributor: fullname: Discher – volume: 112 start-page: 318 year: 1987 ident: 2021011005250333500_B12 article-title: The effect of chromatin decondensation on DNA damage and repair publication-title: Radiat. Res. doi: 10.2307/3577259 contributor: fullname: Yasui – volume: 20 start-page: 698 year: 2019 ident: 2021011005250333500_B26 article-title: DNA double-strand break repair-pathway choice in somatic mammalian cells publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-019-0152-0 contributor: fullname: Scully – volume: 9 start-page: 389 year: 2010 ident: 2021011005250333500_B32 article-title: The complexity of phosphorylated H2AX foci formation and DNA repair assembly at DNA double-strand breaks publication-title: Cell Cycle doi: 10.4161/cc.9.2.10475 contributor: fullname: Nakamura – volume: 6 start-page: 611 year: 2014 ident: 2021011005250333500_B49 article-title: The role of Rho GTPase in cell stiffness and cisplatin resistance in ovarian cancer cells publication-title: Integr. Biol. doi: 10.1039/C3IB40246K contributor: fullname: Sharma – volume: 158 start-page: 633 year: 2014 ident: 2021011005250333500_B57 article-title: ATR mediates a checkpoint at the nuclear envelope in response to mechanical stress publication-title: Cell doi: 10.1016/j.cell.2014.05.046 contributor: fullname: Kumar – volume: 7 start-page: 8116 year: 2017 ident: 2021011005250333500_B10 article-title: Atomic Force Microscopy micro-rheology reveals large structural inhomogeneities in single cell-nuclei publication-title: Sci. Rep. doi: 10.1038/s41598-017-08517-6 contributor: fullname: Lherbette – volume: 83 start-page: e88 year: 2019 ident: 2021011005250333500_B21 article-title: Practical considerations in particle and object tracking and analysis publication-title: Curr. Protoc. Cell Biol. doi: 10.1002/cpcb.88 contributor: fullname: Aaron – volume: 28 start-page: 1984 year: 2017 ident: 2021011005250333500_B9 article-title: Chromatin and lamin A determine two different mechanical response regimes of the cell nucleus publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e16-09-0653 contributor: fullname: Stephens – volume: 114 start-page: 1025 year: 2001 ident: 2021011005250333500_B28 article-title: Effects of cytochalasin D and latrunculin B on mechanical properties of cells publication-title: J. Cell Sci. doi: 10.1242/jcs.114.5.1025 contributor: fullname: Wakatsuki – volume: 59 start-page: 1329 year: 2007 ident: 2021011005250333500_B44 article-title: Cell responses to the mechanochemical microenvironment–implications for regenerative medicine and drug delivery publication-title: Adv. Drug. Deliv. Rev. doi: 10.1016/j.addr.2007.08.007 contributor: fullname: Rehfeldt – volume: 13 start-page: 127 year: 1989 ident: 2021011005250333500_B29 article-title: Latrunculins–novel marine macrolides that disrupt microfilament organization and affect cell growth: I. Comparison with cytochalasin D publication-title: Cell Motil. Cytoskeleton doi: 10.1002/cm.970130302 contributor: fullname: Spector – volume: 461 start-page: 1071 year: 2009 ident: 2021011005250333500_B4 article-title: The DNA-damage response in human biology and disease publication-title: Nature doi: 10.1038/nature08467 contributor: fullname: Jackson – volume: 32 start-page: 3789 year: 2013 ident: 2021011005250333500_B5 article-title: Various modes of cell death induced by DNA damage publication-title: Oncogene doi: 10.1038/onc.2012.556 contributor: fullname: Surova – volume: 8 start-page: 15708 year: 2018 ident: 2021011005250333500_B61 article-title: Characterizing deformability of drug resistant patient-derived acute lymphoblastic leukemia (ALL) cells using acoustic tweezers publication-title: Sci. Rep. doi: 10.1038/s41598-018-34024-3 contributor: fullname: Liu – volume: 109 start-page: 3505 year: 2006 ident: 2021011005250333500_B1 article-title: Chemotherapy exposure increases leukemia cell stiffness publication-title: Blood doi: 10.1182/blood-2006-08-043570 contributor: fullname: Lam – volume: 6 start-page: 468 year: 2010 ident: 2021011005250333500_B24 article-title: Optimal matrix rigidity for stress fiber polarization in stem cells publication-title: Nat. Phys. doi: 10.1038/nphys1613 contributor: fullname: Zemel – volume: 6 start-page: 157 year: 2015 ident: 2021011005250333500_B6 article-title: DNA repair mechanisms in cancer development and therapy publication-title: Front. Genet. doi: 10.3389/fgene.2015.00157 contributor: fullname: Torgovnick – volume: 29 start-page: 1948 year: 2018 ident: 2021011005250333500_B39 article-title: Constricted migration increases DNA damage and independently represses cell cycle publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E18-02-0079 contributor: fullname: Pfeifer – volume: 16 start-page: 715 year: 2004 ident: 2021011005250333500_B52 article-title: A pathway of double-strand break rejoining dependent upon ATM, artemis, and proteins locating to γ-H2AX foci publication-title: Mol. Cell doi: 10.1016/j.molcel.2004.10.029 contributor: fullname: Riballo – volume: 123 start-page: 1213 year: 2005 ident: 2021011005250333500_B33 article-title: MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks publication-title: Cell doi: 10.1016/j.cell.2005.09.038 contributor: fullname: Stucki – volume: 341 start-page: 1240104 year: 2013 ident: 2021011005250333500_B48 article-title: Nuclear Lamin-A scales with tissue stiffness and enhances matrix-directed differentiation publication-title: Science doi: 10.1126/science.1240104 contributor: fullname: Swift – volume: 8 start-page: 870 year: 2006 ident: 2021011005250333500_B14 article-title: Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway publication-title: Nat. Cell Biol. doi: 10.1038/ncb1446 contributor: fullname: Ziv – year: 2020 ident: 2021011005250333500_B17 article-title: The roles of nuclear myosin in the DNA damage response publication-title: J. Biochem. doi: 10.1093/jb/mvaa113 contributor: fullname: Cook – volume: 123 start-page: 29 year: 2010 ident: 2021011005250333500_B54 article-title: Selective and uncoupled role of substrate elasticity in the regulation of replication and transcription in epithelial cells publication-title: J. Cell Sci. doi: 10.1242/jcs.053520 contributor: fullname: Kocgozlu – volume: 10 start-page: 60 year: 2013 ident: 2021011005250333500_B19 article-title: Fast multicolor 3D imaging using aberration-corrected multifocus microscopy publication-title: Nat. Methods doi: 10.1038/nmeth.2277 contributor: fullname: Abrahamsson – volume: 23 start-page: 87 year: 2018 ident: 2021011005250333500_B60 article-title: Mechanical alteration associated with chemotherapeutic resistance of breast cancer cells publication-title: J. Cancer Prevent. doi: 10.15430/JCP.2018.23.2.87 contributor: fullname: Park – volume: 19 start-page: 1656 year: 2005 ident: 2021011005250333500_B13 article-title: Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair publication-title: Genes Dev. doi: 10.1101/gad.1273105 contributor: fullname: Chai – volume: 217 start-page: 3796 year: 2018 ident: 2021011005250333500_B42 article-title: Nuclear rupture at sites of high curvature compromises retention of DNA repair factors publication-title: J. Cell Biol. doi: 10.1083/jcb.201711161 contributor: fullname: Xia – volume: 9 start-page: 1660 year: 2019 ident: 2021011005250333500_B50 article-title: Cisplatin enhances cell stiffness and decreases invasiveness rate in prostate cancer cells by actin accumulation publication-title: Sci. Rep. doi: 10.1038/s41598-018-38199-7 contributor: fullname: Raudenska – volume: 151 start-page: 182 year: 2005 ident: 2021011005250333500_B20 article-title: Feature point tracking and trajectory analysis for video imaging in cell biology publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2005.06.002 contributor: fullname: Sbalzarini – volume: 19 start-page: 1511 year: 2009 ident: 2021011005250333500_B55 article-title: Cell-cycle control by physiological matrix elasticity and in vivo tissue stiffening publication-title: Curr. Biol. doi: 10.1016/j.cub.2009.07.069 contributor: fullname: Klein – volume: 49 start-page: 920 year: 2019 ident: 2021011005250333500_B40 article-title: Mechanosensing by the lamina protects against nuclear rupture, dna damage, and cell-cycle arrest publication-title: Dev. Cell doi: 10.1016/j.devcel.2019.04.020 contributor: fullname: Cho – volume: 116 start-page: 7323 year: 2019 ident: 2021011005250333500_B34 article-title: Phasor histone FLIM-FRET microscopy quantifies spatiotemporal rearrangement of chromatin architecture during the DNA damage response publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1814965116 contributor: fullname: Lou – volume: 181 start-page: 800 year: 2020 ident: 2021011005250333500_B41 article-title: Heterochromatin-driven nuclear softening protects the genome against mechanical stress-induced damage publication-title: Cell doi: 10.1016/j.cell.2020.03.052 contributor: fullname: Nava – volume: 47 start-page: 9467 year: 2019 ident: 2021011005250333500_B35 article-title: DNA-PKcs promotes chromatin decondensation to facilitate initiation of the DNA damage response publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz694 contributor: fullname: Lu – volume: 125 start-page: 5974 year: 2012 ident: 2021011005250333500_B56 article-title: Matrix stiffness reverses the effect of actomyosin tension on cell proliferation publication-title: J. Cell Sci. doi: 10.1242/jcs.108886 contributor: fullname: Mih – volume: 6 start-page: 85 year: 2013 ident: 2021011005250333500_B38 article-title: Fluorescent labeling and modification of proteins publication-title: J. Chem. Biol. doi: 10.1007/s12154-013-0094-5 contributor: fullname: Toseland – volume: 8 start-page: 1871 year: 2017 ident: 2021011005250333500_B18 article-title: NDP52 activates nuclear myosin VI to enhance RNA polymerase II transcription publication-title: Nat. Commun. doi: 10.1038/s41467-017-02050-w contributor: fullname: Fili – volume: 279 start-page: 35557 year: 2004 ident: 2021011005250333500_B27 article-title: Mechanism of Blebbistatin Inhibition of Myosin II publication-title: J. Biol. Chem. doi: 10.1074/jbc.M405319200 contributor: fullname: Kovács – volume: 25 start-page: 409 year: 2011 ident: 2021011005250333500_B8 article-title: Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications publication-title: Genes Dev. doi: 10.1101/gad.2021311 contributor: fullname: Polo – volume: 10 start-page: 886 year: 2000 ident: 2021011005250333500_B7 article-title: A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage publication-title: Curr. Biol. doi: 10.1016/S0960-9822(00)00610-2 contributor: fullname: Paull |
SSID | ssj0014154 |
Score | 2.5695946 |
Snippet | Abstract
DNA double-strand breaks drive genomic instability. However, it remains unknown how these processes may affect the biomechanical properties of the... DNA double-strand breaks drive genomic instability. However, it remains unknown how these processes may affect the biomechanical properties of the nucleus and... |
SourceID | pubmedcentral proquest crossref pubmed oup |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 340 |
SubjectTerms | Cell Nucleus - drug effects Cell Nucleus - ultrastructure Cells, Cultured Chromatin - genetics Chromatin - ultrastructure Cisplatin - pharmacology Cross-Linking Reagents - pharmacology Cytoskeleton - ultrastructure DNA Breaks, Double-Stranded DNA Damage Elasticity Genome Integrity, Repair and Genomic Instability - genetics HeLa Cells Humans Mesenchymal Stem Cells - cytology Mesenchymal Stem Cells - drug effects Microscopy, Atomic Force Single Molecule Imaging |
Title | DNA damage alters nuclear mechanics through chromatin reorganization |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33330932 https://search.proquest.com/docview/2470902587 https://pubmed.ncbi.nlm.nih.gov/PMC7797048 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLYYB-CCeDNeChJwK-sjaZrjtIG4gJAAiVuVNClM0Axt7MC_x0lbtHFBopdKTVpVtlvb8ecvAGcsKUpXHQuEKlhA01QEwsg4SCUVoZI4JF3v8M0Dv3vOhleOJoe1vTAetF-o0aV9ry7t6NVjKz-qotfixHr3twPOBXd8sx3oYGzYpuhN6QA9Us0Z5Sk2adag3TFz71k56b28SRlhxr8GKwkeeDlecEkLbW5z0eZv0OScF7regPUmfCT9-jU3YcnYLdjuW0ydqy9yQTyg06-Ub8HqoN3MbRuGw7s-0bLCvwfxBfIpsY7JWE5IZVzz76iYkmbPHlLg2QWylkzMeK5Xcweerq8eBzdBs4FCUNAs_gy4YSxmZarwu2ZaFaUImcoEL3Wq41SKSFH0zsa1DGLcoEPlyLc0i4VSUWlMlOzCsh1bsw8kzKhQqWPHEgnlqlRSGowcNNcZ55mhXThvZZh_1DwZeV3fTnIUe96KvQsEBfzHlNNW-jlKyRUwpDXj2TSPKXcwUpbxLuzV2vh5UqvMLvAFPf1McDzaiyNoXp5PuzGng3_feQhrsYO6hFEQRUew_DmZmWPoTPXsxOf4J95CvwHAjOoE |
link.rule.ids | 230,315,729,782,786,866,887,27933,27934,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB7xkIAL70d5eqWFW2gedhwfqxbU1UK1EqzELbJjByqIi1p64N8zzgO1XJDIJVLsRIo_xzOT-eYzwG8WZbnLjnlCZcyjcSw8YWToxZIKX0lskq52uH_HBw9J78rJ5LCmFqYk7WdqeGlfiks7fCq5la9F1m54Yu1_t13OBXd6s4uwjN-r7zdBep08QJtUqUaVIps0qfnuGLu3rRy3H5-lDDDmX4OVCA-8HM4ZpblCtxl_8yttcsYOXW_88A02Yb12PEmnat6CBWO3YadjMegu3skFKamg5T_2bVjtNtvA7UCvN-gQLQtcd0iZWp8Q6zSQ5ZgUxpUND7MJqXf7IRmenQtsydiMZqo8d-H_9dV9t-_VWy94GU3CN48bxkKWxwpXBKZVlgufqUTwXMc6jKUIFEW7blyxIXoc2ldOtkuzUCgV5MYE0R4s2ZE1B0D8hAoVO10tEVGuciWlQZ9Dc51wnhjagvNm7NPXSmEjrTLjUYpwpQ1cLSAIzDddfjWopThKLvUhrRlNJ2lIuSOgsoS3YL9C8fNJzSRoAZ_D97ODU-Ceb0FYSyXuGsbDH995Bqv9-9ub9ObP4O8RrIWOMOMHXhAcw9LbeGpOYHGip6fl_P4Azdf-oQ |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH5iQxq7sF-wlW3gScAtS-LYcXys2lVDbNUkQOIW2bEzKohbteuB_57n_KjaXZC2XCLFTqT4c_zey_veZ4CPPClKnx0LpC54wNJUBtIqGqSKyUgrbFK-dvj6mxj_zIZXXiZntdVXTdov9OTS_aku3eRXza2cVUXY8cTCu9uBEFJ4vdmZKcMteInfbES7QL1NIKBdapSjaqFNlrWcd4zfQ6fm4f1vpWKM-3dhJ8EDL9MNw7RR7Lbmcz6mTq7ZotHeM95iH163DijpN10O4IV1h3DUdxh8V3_JZ1JTQut_7YfwatBtB3cEw-G4T4yqcP0hdYp9QZzXQlZzUllfPjwpFqTd9YcUePausCNzO12r9nwDP0ZX3wfXQbsFQ1CwjD4EwnJOeZlqXBm40UUpI64zKUqTGpoqGWuG9t36okP0PEykvXyX4VRqHZfWxslb2HZTZ0-ARBmTOvX6WjJhQpdaKYu-hxEmEyKzrAefuvHPZ43SRt5kyJMcIcs7yHpAEJz_dLnokMtxlHwKRDk7XS5yyoQnovJM9OC4QXL1pG4i9EBsYLzq4JW4N1sQ2lqRu4Xy3ZPv_AA7d8NRfvNl_PUUdqnnzURxEMdnsP0wX9pz2FqY5ft6iv8D2nUBMA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DNA+damage+alters+nuclear+mechanics+through+chromatin+reorganization&rft.jtitle=Nucleic+acids+research&rft.au=dos%C2%A0Santos%2C+%C3%81lia&rft.au=Cook%2C+Alexander+W&rft.au=Gough%2C+Rosemarie+E&rft.au=Schilling%2C+Martin&rft.date=2021-01-11&rft.pub=Oxford+University+Press&rft.issn=0305-1048&rft.eissn=1362-4962&rft.volume=49&rft.issue=1&rft.spage=340&rft.epage=353&rft_id=info:doi/10.1093%2Fnar%2Fgkaa1202&rft.externalDocID=10.1093%2Fnar%2Fgkaa1202 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |