Structure-Based Prediction of Anti-infective Drug Concentrations in the Human Lung Epithelial Lining Fluid

Purpose Obtaining pharmacologically relevant exposure levels of antibiotics in the epithelial lining fluid (ELF) is of critical importance to ensure optimal treatment of lung infections. Our objectives were to develop a model for the prediction of the ELF-plasma concentration ratio (EPR) of antibiot...

Full description

Saved in:
Bibliographic Details
Published in:Pharmaceutical research Vol. 33; no. 4; pp. 856 - 867
Main Authors: Välitalo, Pyry A. J., Griffioen, Koen, Rizk, Matthew L., Visser, Sandra A. G., Danhof, Meindert, Rao, Gaori, van der Graaf, Piet H., van Hasselt, J. G. Coen
Format: Journal Article
Language:English
Published: New York Springer US 01-04-2016
Springer
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Purpose Obtaining pharmacologically relevant exposure levels of antibiotics in the epithelial lining fluid (ELF) is of critical importance to ensure optimal treatment of lung infections. Our objectives were to develop a model for the prediction of the ELF-plasma concentration ratio (EPR) of antibiotics based on their chemical structure descriptors (CSDs). Methods EPR data was obtained by aggregating ELF and plasma concentrations from historical clinical studies investigating antibiotics and associated agents. An elastic net regularized regression model was used to predict EPRs based on a large number of CSDs. The model was tuned using leave-one-drug-out cross validation, and the predictions were further evaluated using a test dataset. Results EPR data of 56 unique compounds was included. A high degree of variability in EPRs both between- and within drugs was apparent. No trends related to study design or pharmacokinetic factors could be identified. The model predicted 80% of the within-drug variability (R 2 WDV ) and 78.6% of drugs were within 3-fold difference from the observations. Key CSDs were related to molecular size and lipophilicity. When predicting EPRs for a test dataset the R 2 WDV was 75%. Conclusions This model is of relevance to inform dose selection and optimization during antibiotic drug development of agents targeting lung infections.
AbstractList PURPOSEObtaining pharmacologically relevant exposure levels of antibiotics in the epithelial lining fluid (ELF) is of critical importance to ensure optimal treatment of lung infections. Our objectives were to develop a model for the prediction of the ELF-plasma concentration ratio (EPR) of antibiotics based on their chemical structure descriptors (CSDs).METHODSEPR data was obtained by aggregating ELF and plasma concentrations from historical clinical studies investigating antibiotics and associated agents. An elastic net regularized regression model was used to predict EPRs based on a large number of CSDs. The model was tuned using leave-one-drug-out cross validation, and the predictions were further evaluated using a test dataset.RESULTSEPR data of 56 unique compounds was included. A high degree of variability in EPRs both between- and within drugs was apparent. No trends related to study design or pharmacokinetic factors could be identified. The model predicted 80% of the within-drug variability (R(2) WDV) and 78.6% of drugs were within 3-fold difference from the observations. Key CSDs were related to molecular size and lipophilicity. When predicting EPRs for a test dataset the R(2) WDV was 75%.CONCLUSIONSThis model is of relevance to inform dose selection and optimization during antibiotic drug development of agents targeting lung infections.
Purpose Obtaining pharmacologically relevant exposure levels of antibiotics in the epithelial lining fluid (ELF) is of critical importance to ensure optimal treatment of lung infections. Our objectives were to develop a model for the prediction of the ELF-plasma concentration ratio (EPR) of antibiotics based on their chemical structure descriptors (CSDs). Methods EPR data was obtained by aggregating ELF and plasma concentrations from historical clinical studies investigating antibiotics and associated agents. An elastic net regularized regression model was used to predict EPRs based on a large number of CSDs. The model was tuned using leave-one-drug-out cross validation, and the predictions were further evaluated using a test dataset. Results EPR data of 56 unique compounds was included. A high degree of variability in EPRs both between- and within drugs was apparent. No trends related to study design or pharmacokinetic factors could be identified. The model predicted 80% of the within-drug variability (R 2 WDV ) and 78.6% of drugs were within 3-fold difference from the observations. Key CSDs were related to molecular size and lipophilicity. When predicting EPRs for a test dataset the R 2 WDV was 75%. Conclusions This model is of relevance to inform dose selection and optimization during antibiotic drug development of agents targeting lung infections.
Obtaining pharmacologically relevant exposure levels of antibiotics in the epithelial lining fluid (ELF) is of critical importance to ensure optimal treatment of lung infections. Our objectives were to develop a model for the prediction of the ELF-plasma concentration ratio (EPR) of antibiotics based on their chemical structure descriptors (CSDs). EPR data was obtained by aggregating ELF and plasma concentrations from historical clinical studies investigating antibiotics and associated agents. An elastic net regularized regression model was used to predict EPRs based on a large number of CSDs. The model was tuned using leave-one-drug-out cross validation, and the predictions were further evaluated using a test dataset. EPR data of 56 unique compounds was included. A high degree of variability in EPRs both between- and within drugs was apparent. No trends related to study design or pharmacokinetic factors could be identified. The model predicted 80% of the within-drug variability (R.sup.2.sub.WDV) and 78.6% of drugs were within 3-fold difference from the observations. Key CSDs were related to molecular size and lipophilicity. When predicting EPRs for a test dataset the R.sup.2.sub.WDV was 75%. This model is of relevance to inform dose selection and optimization during antibiotic drug development of agents targeting lung infections.
Purpose Obtaining pharmacologically relevant exposure levels of antibiotics in the epithelial lining fluid (ELF) is of critical importance to ensure optimal treatment of lung infections. Our objectives were to develop a model for the prediction of the ELF-plasma concentration ratio (EPR) of antibiotics based on their chemical structure descriptors (CSDs). Methods EPR data was obtained by aggregating ELF and plasma concentrations from historical clinical studies investigating antibiotics and associated agents. An elastic net regularized regression model was used to predict EPRs based on a large number of CSDs. The model was tuned using leave-one-drug-out cross validation, and the predictions were further evaluated using a test dataset. Results EPR data of 56 unique compounds was included. A high degree of variability in EPRs both between- and within drugs was apparent. No trends related to study design or pharmacokinetic factors could be identified. The model predicted 80% of the within-drug variability (R^sup 2^ ^sub WDV^) and 78.6% of drugs were within 3-fold difference from the observations. Key CSDs were related to molecular size and lipophilicity. When predicting EPRs for a test dataset the R^sup 2^ ^sub WDV^ was 75%. Conclusions This model is of relevance to inform dose selection and optimization during antibiotic drug development of agents targeting lung infections.
Obtaining pharmacologically relevant exposure levels of antibiotics in the epithelial lining fluid (ELF) is of critical importance to ensure optimal treatment of lung infections. Our objectives were to develop a model for the prediction of the ELF-plasma concentration ratio (EPR) of antibiotics based on their chemical structure descriptors (CSDs). EPR data was obtained by aggregating ELF and plasma concentrations from historical clinical studies investigating antibiotics and associated agents. An elastic net regularized regression model was used to predict EPRs based on a large number of CSDs. The model was tuned using leave-one-drug-out cross validation, and the predictions were further evaluated using a test dataset. EPR data of 56 unique compounds was included. A high degree of variability in EPRs both between- and within drugs was apparent. No trends related to study design or pharmacokinetic factors could be identified. The model predicted 80% of the within-drug variability (R(2) WDV) and 78.6% of drugs were within 3-fold difference from the observations. Key CSDs were related to molecular size and lipophilicity. When predicting EPRs for a test dataset the R(2) WDV was 75%. This model is of relevance to inform dose selection and optimization during antibiotic drug development of agents targeting lung infections.
Audience Academic
Author Griffioen, Koen
van Hasselt, J. G. Coen
Rizk, Matthew L.
Rao, Gaori
Danhof, Meindert
Visser, Sandra A. G.
Välitalo, Pyry A. J.
van der Graaf, Piet H.
Author_xml – sequence: 1
  givenname: Pyry A. J.
  surname: Välitalo
  fullname: Välitalo, Pyry A. J.
  organization: Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Faculty of Science, Leiden University
– sequence: 2
  givenname: Koen
  surname: Griffioen
  fullname: Griffioen, Koen
  organization: Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Faculty of Science, Leiden University
– sequence: 3
  givenname: Matthew L.
  surname: Rizk
  fullname: Rizk, Matthew L.
  organization: Merck & Co. Inc
– sequence: 4
  givenname: Sandra A. G.
  surname: Visser
  fullname: Visser, Sandra A. G.
  organization: Merck & Co. Inc
– sequence: 5
  givenname: Meindert
  surname: Danhof
  fullname: Danhof, Meindert
  organization: Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Faculty of Science, Leiden University
– sequence: 6
  givenname: Gaori
  surname: Rao
  fullname: Rao, Gaori
  organization: University at Buffalo
– sequence: 7
  givenname: Piet H.
  surname: van der Graaf
  fullname: van der Graaf, Piet H.
  organization: Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Faculty of Science, Leiden University
– sequence: 8
  givenname: J. G. Coen
  surname: van Hasselt
  fullname: van Hasselt, J. G. Coen
  email: jgc.vanhasselt@gmail.com
  organization: Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Faculty of Science, Leiden University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26626793$$D View this record in MEDLINE/PubMed
BookMark eNp1kU-PFCEQxYlZ486OfgAvhsSLF1YK6IY-juOuazKJJmrijXQDPTLppkdoNuu3l86sf6PhQPL4vaKq3gU6C1NwCD0FegmUypcJgDYVoVARUJyRuwdoBZXkpKHi8xlaUckEUVLAObpI6UApVdCIR-ic1TWrZcNX6PBhjtnMOTryqk3O4vfRWW9mPwU89XgTZk986F1Rbh1-HfMeb6dgXJhju0AJ-4DnLw7f5LENeJfDHl8dfVEG3w5454MvyvWQvX2MHvbtkNyT-3uNPl1ffdzekN27N2-3mx0xQrGZSMl5o1TfVbIFVVsqOFOUdbKGTlAHkoGyvAKjLGVgnKgbRRsjrep6Kxjja_TiVPcYp6_ZpVmPPhk3DG1wU04apKSq5hLqgj7_Cz1MOYbS3UJB-VdV4he1bwenyzamMrxZiuqNFFLwhpddrtHlP6hyrBu9KcH1vuh_GOBkMHFKKbpeH6Mf2_hNA9VLvvqUry756iVffVc8z-4bzt3o7E_Hj0ALwE5AKk9h7-JvE_236nfoCK-O
CitedBy_id crossref_primary_10_1097_MD_0000000000026253
crossref_primary_10_1007_s11095_017_2336_7
crossref_primary_10_1016_j_ejps_2017_05_018
crossref_primary_10_1111_cts_12448
crossref_primary_10_1007_s40262_022_01186_3
crossref_primary_10_1111_bcp_12901
crossref_primary_10_1128_Spectrum_00434_21
crossref_primary_10_1128_AAC_01411_17
crossref_primary_10_1038_s41467_021_25927_3
crossref_primary_10_1111_bcp_13016
crossref_primary_10_3389_fsysb_2023_1180948
Cites_doi 10.1002/(SICI)1520-6017(200001)89:1<16::AID-JPS3>3.0.CO;2-E
10.1183/09031936.96.09071381
10.1128/AAC.05354-11
10.1097/CCM.0b013e3182281f33
10.1152/ajpcell.1989.256.3.C688
10.1164/rccm.200301-111OC
10.1002/jcc.21707
10.1016/j.jiac.2014.05.007
10.1007/s00134-007-0688-x
10.1021/ci950186z
10.1016/j.jpba.2015.01.046
10.1007/s11095-015-1687-1
10.1128/AAC.01370-09
10.2165/11594090-000000000-00000
10.1128/AAC.02483-12
10.1002/jps.20502
10.1007/978-0-387-84858-7
10.1152/jappl.1986.60.2.532
10.1021/ci980411n
10.1016/j.ejps.2012.06.021
10.1016/j.ejpb.2005.02.010
10.1128/AAC.00133-06
10.18637/jss.v018.i05
10.1007/s10928-015-9438-9
10.1093/jac/47.2.129
10.1016/S0891-5520(03)00060-6
10.1021/ci600312d
10.1002/jps.20322
10.1021/ci025584y
10.18637/jss.v028.i05
10.1093/jac/dkm476
ContentType Journal Article
Copyright The Author(s) 2015
COPYRIGHT 2016 Springer
Springer Science+Business Media New York 2016
Copyright_xml – notice: The Author(s) 2015
– notice: COPYRIGHT 2016 Springer
– notice: Springer Science+Business Media New York 2016
DBID C6C
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7RV
7TK
7X7
7XB
88E
8AO
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
CCPQU
FYUFA
GHDGH
K9.
KB0
M0S
M1P
NAPCQ
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1007/s11095-015-1832-x
DatabaseName SpringerOpen
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
ProQuest Nursing and Allied Health Journals
Neurosciences Abstracts
ProQuest_Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
ProQuest One Community College
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Nursing & Allied Health Premium
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Pharma Collection
Neurosciences Abstracts
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


ProQuest One Academic Eastern Edition

MEDLINE
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1573-904X
EndPage 867
ExternalDocumentID 3974121671
A747439379
10_1007_s11095_015_1832_x
26626793
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-4W
-56
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29O
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5QI
5VS
67N
67Z
6NX
78A
7RV
7X7
88E
8AO
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANXM
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYOK
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABELW
ABFGW
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPRK
ACTTH
ACVWB
ACWMK
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADMDM
ADOAH
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFDYV
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKMHD
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
AOSHJ
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGNMA
BKEYQ
BPHCQ
BVXVI
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
EPAXT
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
IMOTQ
INH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
L7B
LAK
LLZTM
LSO
M1P
M4Y
MA-
MK0
N2Q
N9A
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK6
WK8
WOW
YCJ
YLTOR
Z45
Z5O
Z7S
Z7U
Z7V
Z7W
Z7X
Z81
Z82
Z83
Z84
Z87
Z88
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8V
Z8W
Z91
Z92
ZGI
ZMTXR
ZOVNA
~KM
AACDK
AAEOY
AAJBT
AAQLM
AASML
AAYZH
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
ALIPV
CGR
CUY
CVF
ECM
EIF
H13
NPM
AAYXX
CITATION
7TK
7XB
8FK
K9.
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c482t-7733988fb57a186d0432802b761b40e17218d351c8d021ce469809c7d8bfd4223
IEDL.DBID AEJHL
ISSN 0724-8741
IngestDate Fri Oct 25 04:04:52 EDT 2024
Wed Nov 06 07:50:29 EST 2024
Tue Nov 19 20:42:55 EST 2024
Tue Nov 12 23:14:42 EST 2024
Thu Nov 21 21:41:51 EST 2024
Tue Oct 15 23:49:59 EDT 2024
Sat Dec 16 11:59:12 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords modeling
pneumonia
pharmacokinetics
epithelial lining fluid
elastic net
machine learning
antibiotics
lung infection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c482t-7733988fb57a186d0432802b761b40e17218d351c8d021ce469809c7d8bfd4223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://link.springer.com/10.1007/s11095-015-1832-x
PMID 26626793
PQID 1771280854
PQPubID 37334
PageCount 12
ParticipantIDs proquest_miscellaneous_1770863716
proquest_journals_1771280854
gale_infotracmisc_A747439379
gale_infotracacademiconefile_A747439379
crossref_primary_10_1007_s11095_015_1832_x
pubmed_primary_26626793
springer_journals_10_1007_s11095_015_1832_x
PublicationCentury 2000
PublicationDate 2016-04-01
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-04-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle An Official Journal of the American Association of Pharmaceutical Scientists
PublicationTitle Pharmaceutical research
PublicationTitleAbbrev Pharm Res
PublicationTitleAlternate Pharm Res
PublicationYear 2016
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References ZhaoYHAbrahamMHIbrahimAFishPVColeSLewisMLPredicting penetration across the blood-brain barrier from simple descriptors and fragmentation schemesJ Chem Inf Model20074717051:CAS:528:DC%2BD28Xht1yiur3O10.1021/ci600312d17238262
RodvoldKAGeorgeJMYooLPenetration of anti-infective agents into pulmonary epithelial lining fluid: focus on antibacterial agentsClin Pharmacokinet201150637641:CAS:528:DC%2BC3MXhsVWrsbzM10.2165/11594090-000000000-0000021895037
YamazakiKOguraSIshizakaAOh-haraTNishimuraMBronchoscopic microsampling method for measuring drug concentration in epithelial lining fluidAm J Respir Crit Care Med20031681304710.1164/rccm.200301-111OC12904323
ForbesBEhrhardtCHuman respiratory epithelial cell culture for drug delivery applicationsEur J Pharm Biopharm2005601932051:CAS:528:DC%2BD2MXltFCrsr8%3D10.1016/j.ejpb.2005.02.01015939233
Kuhn M. Building predictive models in R using the caret package. J Stat Softw. [Internet]. 2008;28:1–26. Available from: http://www.jstatsoft.org/v28/i05/.
Guha R. Chemical Informatics Functionality in R. J. Stat. Softw. [Internet]. 2007;18:1–16. Available from: http://www.jstatsoft.org/v18/i05.
DrugBank [Internet]. Available from: http://www.drugbank.ca.
BoselliEBreilhDDjabaroutiSGuillaumeCRimmeléTGordienJ-BReliability of mini-bronchoalveolar lavage for the measurement of epithelial lining fluid concentrations of tobramycin in critically ill patientsIntensive Care Med2007331519231:CAS:528:DC%2BD1cXhtV2lsbbK10.1007/s00134-007-0688-x17530217
LoYLvan HasseltJGCHengSCLimCTLeeTCCharlesBGPopulation pharmacokinetics of vancomycin in premature malaysian neonates: identification of predictors for dosing determinationAntimicrob Agents Chemother2010542626321:CAS:528:DC%2BC3cXos1Ogs7o%3D10.1128/AAC.01370-09203858722876370
HousmanSTPopeJSRussomannoJSalernoEShoreEKutiJLPulmonary disposition of tedizolid following administration of once-daily oral 200-milligram tedizolid phosphate in healthy adult volunteersAntimicrob Agents Chemother2012562627341:CAS:528:DC%2BC38XmsVKrsbs%3D10.1128/AAC.05354-11223309253346604
Clewe O, Karlsson MO, Simonsson USH. Evaluation of optimized bronchoalveolar lavage sampling designs for characterization of pulmonary drug distribution. J Pharmacokinet Pharmacodyn. 2015.
CheekJMKimKJCrandallEDTight monolayers of rat alveolar epithelial cells: bioelectric properties and active sodium transportAm J Physiol1989256C688931:STN:280:DyaL1M7msVCktg%3D%3D2923201
Rhee E, Jumes P, Rizk M, Gotfried M, Mangin E, Bi S, et al. Intrapulmonary pharmacokinetics of MK-7655, a novel β-lactamase inhibitor, dosed in combination with imipenem/cilastatin in healthy subjects. Intersci Conf Antimicrob Agents Chemother. 2013. p. A – 1028.
PoulinPTheilFPA priori prediction of tissue:plasma partition coefficients of drugs to facilitate the use of physiologically-based pharmacokinetic models in drug discoveryJ Pharm Sci20008916351:CAS:528:DC%2BD3cXit1eis7c%3D10.1002/(SICI)1520-6017(200001)89:1<16::AID-JPS3>3.0.CO;2-E10664535
RennardSIBassetGLecossierDO’DonnellKMPinkstonPMartinPGEstimation of volume of epithelial lining fluid recovered by lavage using urea as marker of dilutionJ Appl Physiol19866053281:STN:280:DyaL287jvFKnuw%3D%3D3512509
TeneroDBowersGRodvoldKAPatelAKurtineczMDumontEIntrapulmonary pharmacokinetics of GSK2251052 in healthy volunteersAntimicrob Agents Chemother201357333491:CAS:528:DC%2BC3sXhtVart77E10.1128/AAC.02483-12236501643697385
DaganREvidence to support the rationale that bacterial eradication in respiratory tract infection is an important aim of antimicrobial therapyJ Antimicrob Chemother200147129401:CAS:528:DC%2BD3MXhtlGguro%3D10.1093/jac/47.2.12911157895
BujakRStruck-LewickaWKaliszanMKaliszanRMarkuszewskiMJBlood-brain barrier permeability mechanisms in view of quantitative structure-activity relationships (QSAR)J Pharm Biomed Anal2015108C293710.1016/j.jpba.2015.01.046
Wang W, Kim MT, Sedykh A, Zhu H. Developing enhanced blood-brain barrier permeability models: integrating external bio-assay data in QSAR modeling. Pharm Res. 2015.
LiuPDerendorfHAntimicrobial tissue concentrationsInfect Dis Clin North Am20031759961310.1016/S0891-5520(03)00060-614711079
GolmohammadiHDashtbozorgiZAcreeWEQuantitative structure-activity relationship prediction of blood-to-brain partitioning behavior using support vector machineEur J Pharm Sci20124742191:CAS:528:DC%2BC38Xht1Krsr3E10.1016/j.ejps.2012.06.02122771548
Hastie T, Tibshirani R, Friedman J. The elements of statistical learning the elements of statistical learningdata mining, inference, and prediction, Second Edition. Springer Ser Stat. 2009.
Yap CW. PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J Comput Chem. [Internet]. 2011 [cited 2015 Oct 26];32:1466–74. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21425294.
MoutonJWTheuretzbacherUCraigWATulkensPMDerendorfHCarsOTissue concentrations: do we ever learn?J Antimicrob Chemother20086123571:CAS:528:DC%2BD1cXptlGltg%3D%3D10.1093/jac/dkm47618065413
LucoJMPrediction of the brain-blood distribution of a large set of drugs from structurally derived descriptors using partial least-squares (PLS) modelingJ Chem Inf Comput Sci1999393964041:CAS:528:DyaK1MXhtlWntr0%3D10.1021/ci980411n10192950
RodgersTRowlandMPhysiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterionsJ Pharm Sci2006951238571:CAS:528:DC%2BD28XlsFWlsrY%3D10.1002/jps.2050216639716
GriggJKleinertSWoodsRLThomasCJVervaartPWilkinsonJLAlveolar epithelial lining fluid cellularity, protein and endothelin-1 in children with congenital heart diseaseEur Respir J19969138181:STN:280:DyaK28vjtlKltQ%3D%3D10.1183/09031936.96.090713818836647
RodgersTLeahyDRowlandMPhysiologically based pharmacokinetic modeling 1: predicting the tissue distribution of moderate-to-strong basesJ Pharm Sci2005941259761:CAS:528:DC%2BD2MXkvF2qtLs%3D10.1002/jps.2032215858854
Guha R, Rojas-Chertó M. rcdk : integrating the CDK with R. Chem. Informatics Funct. R [Internet]. 2010;1–17. Available from: http://cran.r-project.org/web/packages/rcdk/vignettes/rcdk.pdf.
EstradaERamirezAEdge adjacency relationships and molecular topographic descriptors. Definition and QSAR applicationsJ Chem Inf Comput Sci199636837431:CAS:528:DyaK28XjvFelsr0%3D10.1021/ci950186z
Melsen WG, Rovers MM, Koeman M, Bonten MJM. Estimating the attributable mortality of ventilator-associated pneumonia from randomized prevention studies. Crit. Care Med. 2011. p. 1.
FunatsuYHasegawaNFujiwaraHNamkoongHAsamiTTasakaSPharmacokinetics of arbekacin in bronchial epithelial lining fluid of healthy volunteersJ Infect Chemother201420607111:CAS:528:DC%2BC2MXjtV2rsLg%3D10.1016/j.jiac.2014.05.00724973909
Steinbeck C, Han Y, Kuhn S, Horlacher O, Luttmann E, Willighagen E. The Chemistry Development Kit (CDK): an open-source Java library for chemo- and bioinformatics. J Chem Inf Comput Sci. 2003. p. 493–500.
Zou H, Hastie T. elasticnet: elastic-net for sparse estimation and sparse PCA [Internet]. 2012 [cited 2014 Dec 30]. p. Version 1.1. Available from: http://cran.r-project.org/web/packages/elasticnet/index.html.
KiemSSchentagJJInterpretation of antibiotic concentration ratios measured in epithelial lining fluidAntimicrob Agents Chemother20085224361:CAS:528:DC%2BD1cXkslejtA%3D%3D10.1128/AAC.00133-06178461332223903
21895037 - Clin Pharmacokinet. 2011 Oct;50(10):637-64
23650164 - Antimicrob Agents Chemother. 2013 Jul;57(7):3334-9
25703237 - J Pharm Biomed Anal. 2015 Apr 10;108:29-37
15939233 - Eur J Pharm Biopharm. 2005 Jul;60(2):193-205
12904323 - Am J Respir Crit Care Med. 2003 Dec 1;168(11):1304-7
18065413 - J Antimicrob Chemother. 2008 Feb;61(2):235-7
20385872 - Antimicrob Agents Chemother. 2010 Jun;54(6):2626-32
8836647 - Eur Respir J. 1996 Jul;9(7):1381-8
25862462 - Pharm Res. 2015 Sep;32(9):3055-65
10192950 - J Chem Inf Comput Sci. 1999 Mar-Apr;39(2):396-404
21765351 - Crit Care Med. 2011 Dec;39(12):2736-42
10664535 - J Pharm Sci. 2000 Jan;89(1):16-35
24973909 - J Infect Chemother. 2014 Oct;20(10 ):607-11
2923201 - Am J Physiol. 1989 Mar;256(3 Pt 1):C688-93
14711079 - Infect Dis Clin North Am. 2003 Sep;17(3):599-613
17530217 - Intensive Care Med. 2007 Sep;33(9):1519-23
17238262 - J Chem Inf Model. 2007 Jan-Feb;47(1):170-5
26316105 - J Pharmacokinet Pharmacodyn. 2015 Dec;42(6):699-708
17846133 - Antimicrob Agents Chemother. 2008 Jan;52(1):24-36
15858854 - J Pharm Sci. 2005 Jun;94(6):1259-76
22771548 - Eur J Pharm Sci. 2012 Sep 29;47(2):421-9
3512509 - J Appl Physiol (1985). 1986 Feb;60(2):532-8
11157895 - J Antimicrob Chemother. 2001 Feb;47(2):129-40
12653513 - J Chem Inf Comput Sci. 2003 Mar-Apr;43(2):493-500
16639716 - J Pharm Sci. 2006 Jun;95(6):1238-57
22330925 - Antimicrob Agents Chemother. 2012 May;56(5):2627-34
21425294 - J Comput Chem. 2011 May;32(7):1466-74
P Poulin (1832_CR12) 2000; 89
1832_CR1
P Liu (1832_CR4) 2003; 17
T Rodgers (1832_CR14) 2005; 94
D Tenero (1832_CR31) 2013; 57
K Yamazaki (1832_CR11) 2003; 168
JW Mouton (1832_CR2) 2008; 61
Y Funatsu (1832_CR30) 2014; 20
1832_CR34
JM Luco (1832_CR16) 1999; 39
JM Cheek (1832_CR5) 1989; 256
E Boselli (1832_CR10) 2007; 33
1832_CR19
E Estrada (1832_CR33) 1996; 36
H Golmohammadi (1832_CR17) 2012; 47
1832_CR21
1832_CR20
R Dagan (1832_CR3) 2001; 47
1832_CR27
1832_CR26
1832_CR29
1832_CR28
J Grigg (1832_CR23) 1996; 9
KA Rodvold (1832_CR8) 2011; 50
1832_CR22
1832_CR25
1832_CR24
B Forbes (1832_CR6) 2005; 60
S Kiem (1832_CR7) 2008; 52
ST Housman (1832_CR32) 2012; 56
YH Zhao (1832_CR13) 2007; 47
YL Lo (1832_CR35) 2010; 54
T Rodgers (1832_CR15) 2006; 95
R Bujak (1832_CR18) 2015; 108C
SI Rennard (1832_CR9) 1986; 60
References_xml – volume: 89
  start-page: 16
  year: 2000
  ident: 1832_CR12
  publication-title: J Pharm Sci
  doi: 10.1002/(SICI)1520-6017(200001)89:1<16::AID-JPS3>3.0.CO;2-E
  contributor:
    fullname: P Poulin
– volume: 9
  start-page: 1381
  year: 1996
  ident: 1832_CR23
  publication-title: Eur Respir J
  doi: 10.1183/09031936.96.09071381
  contributor:
    fullname: J Grigg
– volume: 56
  start-page: 2627
  year: 2012
  ident: 1832_CR32
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.05354-11
  contributor:
    fullname: ST Housman
– ident: 1832_CR24
– ident: 1832_CR1
  doi: 10.1097/CCM.0b013e3182281f33
– volume: 256
  start-page: C688
  year: 1989
  ident: 1832_CR5
  publication-title: Am J Physiol
  doi: 10.1152/ajpcell.1989.256.3.C688
  contributor:
    fullname: JM Cheek
– volume: 168
  start-page: 1304
  year: 2003
  ident: 1832_CR11
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.200301-111OC
  contributor:
    fullname: K Yamazaki
– ident: 1832_CR29
  doi: 10.1002/jcc.21707
– volume: 20
  start-page: 607
  year: 2014
  ident: 1832_CR30
  publication-title: J Infect Chemother
  doi: 10.1016/j.jiac.2014.05.007
  contributor:
    fullname: Y Funatsu
– volume: 33
  start-page: 1519
  year: 2007
  ident: 1832_CR10
  publication-title: Intensive Care Med
  doi: 10.1007/s00134-007-0688-x
  contributor:
    fullname: E Boselli
– volume: 36
  start-page: 837
  year: 1996
  ident: 1832_CR33
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci950186z
  contributor:
    fullname: E Estrada
– volume: 108C
  start-page: 29
  year: 2015
  ident: 1832_CR18
  publication-title: J Pharm Biomed Anal
  doi: 10.1016/j.jpba.2015.01.046
  contributor:
    fullname: R Bujak
– ident: 1832_CR22
– ident: 1832_CR19
  doi: 10.1007/s11095-015-1687-1
– volume: 54
  start-page: 2626
  year: 2010
  ident: 1832_CR35
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.01370-09
  contributor:
    fullname: YL Lo
– volume: 50
  start-page: 637
  year: 2011
  ident: 1832_CR8
  publication-title: Clin Pharmacokinet
  doi: 10.2165/11594090-000000000-00000
  contributor:
    fullname: KA Rodvold
– volume: 57
  start-page: 3334
  year: 2013
  ident: 1832_CR31
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.02483-12
  contributor:
    fullname: D Tenero
– volume: 95
  start-page: 1238
  year: 2006
  ident: 1832_CR15
  publication-title: J Pharm Sci
  doi: 10.1002/jps.20502
  contributor:
    fullname: T Rodgers
– ident: 1832_CR20
  doi: 10.1007/978-0-387-84858-7
– volume: 60
  start-page: 532
  year: 1986
  ident: 1832_CR9
  publication-title: J Appl Physiol
  doi: 10.1152/jappl.1986.60.2.532
  contributor:
    fullname: SI Rennard
– volume: 39
  start-page: 396
  year: 1999
  ident: 1832_CR16
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci980411n
  contributor:
    fullname: JM Luco
– volume: 47
  start-page: 421
  year: 2012
  ident: 1832_CR17
  publication-title: Eur J Pharm Sci
  doi: 10.1016/j.ejps.2012.06.021
  contributor:
    fullname: H Golmohammadi
– volume: 60
  start-page: 193
  year: 2005
  ident: 1832_CR6
  publication-title: Eur J Pharm Biopharm
  doi: 10.1016/j.ejpb.2005.02.010
  contributor:
    fullname: B Forbes
– ident: 1832_CR27
– volume: 52
  start-page: 24
  year: 2008
  ident: 1832_CR7
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.00133-06
  contributor:
    fullname: S Kiem
– ident: 1832_CR21
– ident: 1832_CR25
  doi: 10.18637/jss.v018.i05
– ident: 1832_CR34
  doi: 10.1007/s10928-015-9438-9
– volume: 47
  start-page: 129
  year: 2001
  ident: 1832_CR3
  publication-title: J Antimicrob Chemother
  doi: 10.1093/jac/47.2.129
  contributor:
    fullname: R Dagan
– volume: 17
  start-page: 599
  year: 2003
  ident: 1832_CR4
  publication-title: Infect Dis Clin North Am
  doi: 10.1016/S0891-5520(03)00060-6
  contributor:
    fullname: P Liu
– volume: 47
  start-page: 170
  year: 2007
  ident: 1832_CR13
  publication-title: J Chem Inf Model
  doi: 10.1021/ci600312d
  contributor:
    fullname: YH Zhao
– volume: 94
  start-page: 1259
  year: 2005
  ident: 1832_CR14
  publication-title: J Pharm Sci
  doi: 10.1002/jps.20322
  contributor:
    fullname: T Rodgers
– ident: 1832_CR26
  doi: 10.1021/ci025584y
– ident: 1832_CR28
  doi: 10.18637/jss.v028.i05
– volume: 61
  start-page: 235
  year: 2008
  ident: 1832_CR2
  publication-title: J Antimicrob Chemother
  doi: 10.1093/jac/dkm476
  contributor:
    fullname: JW Mouton
SSID ssj0008194
Score 2.3061504
Snippet Purpose Obtaining pharmacologically relevant exposure levels of antibiotics in the epithelial lining fluid (ELF) is of critical importance to ensure optimal...
Obtaining pharmacologically relevant exposure levels of antibiotics in the epithelial lining fluid (ELF) is of critical importance to ensure optimal treatment...
Purpose Obtaining pharmacologically relevant exposure levels of antibiotics in the epithelial lining fluid (ELF) is of critical importance to ensure optimal...
PURPOSEObtaining pharmacologically relevant exposure levels of antibiotics in the epithelial lining fluid (ELF) is of critical importance to ensure optimal...
SourceID proquest
gale
crossref
pubmed
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 856
SubjectTerms Analysis
Anti-Bacterial Agents - blood
Anti-Bacterial Agents - chemistry
Anti-Bacterial Agents - pharmacokinetics
Antibiotics
Artificial intelligence
Biochemistry
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Bronchoalveolar Lavage Fluid - chemistry
Computer Simulation
Drug therapy
Health aspects
Humans
Infection
Lung - metabolism
Lung diseases
Machine Learning
Medical Law
Medical research
Medicine, Experimental
Models, Biological
Pharmacology
Pharmacology/Toxicology
Pharmacy
Pneumonia
Pneumonia - drug therapy
Research Paper
Respiratory agents
Respiratory Mucosa - metabolism
Title Structure-Based Prediction of Anti-infective Drug Concentrations in the Human Lung Epithelial Lining Fluid
URI https://link.springer.com/article/10.1007/s11095-015-1832-x
https://www.ncbi.nlm.nih.gov/pubmed/26626793
https://www.proquest.com/docview/1771280854
https://search.proquest.com/docview/1770863716
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED-N8sILGxvbwgDdpAmkjUz5cBLnsUCraqqmSoDEm5XYztQNpaglaPz3u8tHSxF72B4jO45j38fPPt_PAJ-8jKxiHhmODxpXhJp0LqbHOM1EagrSroL3dEcXyfdreT5gmpxguXVR_vraRSRrQ73KdfM9Tib2I5el0CXcuEmuJxI92OwPvo3GS_tLPq4mjUoCQbou_C6W-Vwja97oqU1-5JSeRElr5zN8-T_dfgXbLdTEfiMbO_DClq_haNJwVT-c4OUq9Wpxgkc4WbFYP7yBnxc1s2w1t-4peTqDkznHdHgecVZgv7ybuu1JrnuL5_PqB55xCmTZ8vAucFoioUuswwQ4JqOCg1vOALkhkcdxfTEFDm-qqdmFq-Hg8mzkthczuFrI4I4QeRimUhZ5lGS-jA3T-kkvyJPYz4VneVUpTRj5WhqCENryLZVeqhMj88IIAiRvoVfOSvseMJM6LIo4p5dzkekip7Yio7WNpRE6MA587iZI3Tb8G2rFtMxjq2hsFY-t-u3AMU-hYt2kn9VZm2JAn2KWK9WntZNgBsDUgf21mqRTer24EwLV6vRC-UlCzpwgqnDg47KY3-RzaqWdVXUdWiOGtAh14F0jPMtuExQKYjKHDnzpROVR43_7p71_qv0BtgjRxc3Ron3okaTYA9hYmOqwVZM_Vi0LLg
link.rule.ids 315,782,786,27934,27935,41074,42143,48345,48348,48358,49650,49653,49663,52154
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5BeoBLKa_W0MIgoSJBLfmxttfHtE1IRagiNUjcVvbuGgVVTpXUiP57ZvxImqoc4Gjtw97deXzr2fkW4L2XkVXMI8PxQeOKUJPOxfQYp5lITUHaVfA_3dFFcv5dng6YJifscmHq0-5dSLK21OtkN9_jbGI_clkMXQKOW0x27vVgq382_TxcGWBycjVrVBIIUnbhd8HM-zrZcEd3jfItr3QnTFp7n-GT__ruHdhuwSb2G-l4Cg9s-QwOJw1b9c0RTtfJV8sjPMTJmsf65jn8vKi5ZauFdY_J1xmcLDiqwyuJ8wL75fXMbc9y_bJ4uqh-4AknQZYtE-8SZyUSvsQ6UIBjMis4uOIckEsSehzXV1Pg8LKamRfwbTiYnozc9moGVwsZXBMmD8NUyiKPksyXsWFiP-kFeRL7ufAs7yulCSNfS0MgQlu-p9JLdWJkXhhBkOQl9Mp5afcAM6nDoohzapyLTBc59RUZrW0sjdCBceBjt0LqqmHgUGuuZZ5bRXOreG7Vbwc-8Boq1k4arM7aJAN6FfNcqT7tngRzAKYO7G_UJK3Sm8WdFKhWq5fKTxJy5wRShQPvVsXckk-qlXZe1XVolxjSNtSB3UZ6Vp9NYCiIySA68KkTlVud_21Mr_6p9lt4NJp-Havx2fmX1_CY8F3cHDTahx5JjT2Ah0tTvWl15g8-Ag8V
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Za9tAEB5SB0pf2qan0rTdQEmhjYiOlbR6Km5s4yQmGJJC3xZpj-IQZGNbpfn3ndFhx6F5KHkUWq20u3N8q5n5FuCTl6FVzCNN8UHt8lChzsV4GacZT7VF7bL0T3d4kZz_FL0-0eR8a2thqmz3NiRZ1zQQS1OxPJppe7QufPM9qiz2I5dE0kUQuc0ptbAD293-6XC0Msbo8CoGqSTgqPjcbwOb_-pkwzXdNdC3PNSdkGnliQbPHjyG5_C0AaGsW0vNDmyZ4gUcjGsW65tDdrkuylocsgM2XvNb37yEq4uKc7acG_c7-kDNxnOK9tAKs6ll3WI5cZscr9-G9eblL3ZMxZFFw9C7YJOCIe5kVQCBjdDcsP6MakOuURnYqDqygg2uy4l-BT8G_cvjodsc2eAqLoIlYvUwTIWweZRkvog1Ef4JL8iT2M-5Z2i_KXQY-UpoBBfK0PmVXqoSLXKrOUKV19AppoV5CywTKrQ2zvHhnGfK5thXpJUysdBcBdqBL-1qyVnNzCHXHMw0txLnVtLcyj8OfKb1lKS1OFiVNcUH-Criv5Jd3FVx4gZMHdjbaInapjZvtxIhG21fSD9J0M0jeOUO7K9u05OUwVaYaVm1wd1jiNtTB97UkrT6bARJQYyG0oGvrdjc6vy-Me3-V-uP8HjcG8jRyfnZO3iCsC-u84_2oINCY97Do4UuPzTq8xdEVRfh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure-Based+Prediction+of+Anti-infective+Drug+Concentrations+in+the+Human+Lung+Epithelial+Lining+Fluid&rft.jtitle=Pharmaceutical+research&rft.au=V%C3%A4litalo%2C+Pyry+A.+J.&rft.au=Griffioen%2C+Koen&rft.au=Rizk%2C+Matthew+L.&rft.au=Visser%2C+Sandra+A.+G.&rft.date=2016-04-01&rft.pub=Springer+US&rft.issn=0724-8741&rft.eissn=1573-904X&rft.volume=33&rft.issue=4&rft.spage=856&rft.epage=867&rft_id=info:doi/10.1007%2Fs11095-015-1832-x&rft.externalDocID=10_1007_s11095_015_1832_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0724-8741&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0724-8741&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0724-8741&client=summon