Structure-Based Prediction of Anti-infective Drug Concentrations in the Human Lung Epithelial Lining Fluid
Purpose Obtaining pharmacologically relevant exposure levels of antibiotics in the epithelial lining fluid (ELF) is of critical importance to ensure optimal treatment of lung infections. Our objectives were to develop a model for the prediction of the ELF-plasma concentration ratio (EPR) of antibiot...
Saved in:
Published in: | Pharmaceutical research Vol. 33; no. 4; pp. 856 - 867 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
Springer US
01-04-2016
Springer Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Purpose
Obtaining pharmacologically relevant exposure levels of antibiotics in the epithelial lining fluid (ELF) is of critical importance to ensure optimal treatment of lung infections. Our objectives were to develop a model for the prediction of the ELF-plasma concentration ratio (EPR) of antibiotics based on their chemical structure descriptors (CSDs).
Methods
EPR data was obtained by aggregating ELF and plasma concentrations from historical clinical studies investigating antibiotics and associated agents. An elastic net regularized regression model was used to predict EPRs based on a large number of CSDs. The model was tuned using leave-one-drug-out cross validation, and the predictions were further evaluated using a test dataset.
Results
EPR data of 56 unique compounds was included. A high degree of variability in EPRs both between- and within drugs was apparent. No trends related to study design or pharmacokinetic factors could be identified. The model predicted 80% of the within-drug variability (R
2
WDV
) and 78.6% of drugs were within 3-fold difference from the observations. Key CSDs were related to molecular size and lipophilicity. When predicting EPRs for a test dataset the R
2
WDV
was 75%.
Conclusions
This model is of relevance to inform dose selection and optimization during antibiotic drug development of agents targeting lung infections. |
---|---|
AbstractList | PURPOSEObtaining pharmacologically relevant exposure levels of antibiotics in the epithelial lining fluid (ELF) is of critical importance to ensure optimal treatment of lung infections. Our objectives were to develop a model for the prediction of the ELF-plasma concentration ratio (EPR) of antibiotics based on their chemical structure descriptors (CSDs).METHODSEPR data was obtained by aggregating ELF and plasma concentrations from historical clinical studies investigating antibiotics and associated agents. An elastic net regularized regression model was used to predict EPRs based on a large number of CSDs. The model was tuned using leave-one-drug-out cross validation, and the predictions were further evaluated using a test dataset.RESULTSEPR data of 56 unique compounds was included. A high degree of variability in EPRs both between- and within drugs was apparent. No trends related to study design or pharmacokinetic factors could be identified. The model predicted 80% of the within-drug variability (R(2) WDV) and 78.6% of drugs were within 3-fold difference from the observations. Key CSDs were related to molecular size and lipophilicity. When predicting EPRs for a test dataset the R(2) WDV was 75%.CONCLUSIONSThis model is of relevance to inform dose selection and optimization during antibiotic drug development of agents targeting lung infections. Purpose Obtaining pharmacologically relevant exposure levels of antibiotics in the epithelial lining fluid (ELF) is of critical importance to ensure optimal treatment of lung infections. Our objectives were to develop a model for the prediction of the ELF-plasma concentration ratio (EPR) of antibiotics based on their chemical structure descriptors (CSDs). Methods EPR data was obtained by aggregating ELF and plasma concentrations from historical clinical studies investigating antibiotics and associated agents. An elastic net regularized regression model was used to predict EPRs based on a large number of CSDs. The model was tuned using leave-one-drug-out cross validation, and the predictions were further evaluated using a test dataset. Results EPR data of 56 unique compounds was included. A high degree of variability in EPRs both between- and within drugs was apparent. No trends related to study design or pharmacokinetic factors could be identified. The model predicted 80% of the within-drug variability (R 2 WDV ) and 78.6% of drugs were within 3-fold difference from the observations. Key CSDs were related to molecular size and lipophilicity. When predicting EPRs for a test dataset the R 2 WDV was 75%. Conclusions This model is of relevance to inform dose selection and optimization during antibiotic drug development of agents targeting lung infections. Obtaining pharmacologically relevant exposure levels of antibiotics in the epithelial lining fluid (ELF) is of critical importance to ensure optimal treatment of lung infections. Our objectives were to develop a model for the prediction of the ELF-plasma concentration ratio (EPR) of antibiotics based on their chemical structure descriptors (CSDs). EPR data was obtained by aggregating ELF and plasma concentrations from historical clinical studies investigating antibiotics and associated agents. An elastic net regularized regression model was used to predict EPRs based on a large number of CSDs. The model was tuned using leave-one-drug-out cross validation, and the predictions were further evaluated using a test dataset. EPR data of 56 unique compounds was included. A high degree of variability in EPRs both between- and within drugs was apparent. No trends related to study design or pharmacokinetic factors could be identified. The model predicted 80% of the within-drug variability (R.sup.2.sub.WDV) and 78.6% of drugs were within 3-fold difference from the observations. Key CSDs were related to molecular size and lipophilicity. When predicting EPRs for a test dataset the R.sup.2.sub.WDV was 75%. This model is of relevance to inform dose selection and optimization during antibiotic drug development of agents targeting lung infections. Purpose Obtaining pharmacologically relevant exposure levels of antibiotics in the epithelial lining fluid (ELF) is of critical importance to ensure optimal treatment of lung infections. Our objectives were to develop a model for the prediction of the ELF-plasma concentration ratio (EPR) of antibiotics based on their chemical structure descriptors (CSDs). Methods EPR data was obtained by aggregating ELF and plasma concentrations from historical clinical studies investigating antibiotics and associated agents. An elastic net regularized regression model was used to predict EPRs based on a large number of CSDs. The model was tuned using leave-one-drug-out cross validation, and the predictions were further evaluated using a test dataset. Results EPR data of 56 unique compounds was included. A high degree of variability in EPRs both between- and within drugs was apparent. No trends related to study design or pharmacokinetic factors could be identified. The model predicted 80% of the within-drug variability (R^sup 2^ ^sub WDV^) and 78.6% of drugs were within 3-fold difference from the observations. Key CSDs were related to molecular size and lipophilicity. When predicting EPRs for a test dataset the R^sup 2^ ^sub WDV^ was 75%. Conclusions This model is of relevance to inform dose selection and optimization during antibiotic drug development of agents targeting lung infections. Obtaining pharmacologically relevant exposure levels of antibiotics in the epithelial lining fluid (ELF) is of critical importance to ensure optimal treatment of lung infections. Our objectives were to develop a model for the prediction of the ELF-plasma concentration ratio (EPR) of antibiotics based on their chemical structure descriptors (CSDs). EPR data was obtained by aggregating ELF and plasma concentrations from historical clinical studies investigating antibiotics and associated agents. An elastic net regularized regression model was used to predict EPRs based on a large number of CSDs. The model was tuned using leave-one-drug-out cross validation, and the predictions were further evaluated using a test dataset. EPR data of 56 unique compounds was included. A high degree of variability in EPRs both between- and within drugs was apparent. No trends related to study design or pharmacokinetic factors could be identified. The model predicted 80% of the within-drug variability (R(2) WDV) and 78.6% of drugs were within 3-fold difference from the observations. Key CSDs were related to molecular size and lipophilicity. When predicting EPRs for a test dataset the R(2) WDV was 75%. This model is of relevance to inform dose selection and optimization during antibiotic drug development of agents targeting lung infections. |
Audience | Academic |
Author | Griffioen, Koen van Hasselt, J. G. Coen Rizk, Matthew L. Rao, Gaori Danhof, Meindert Visser, Sandra A. G. Välitalo, Pyry A. J. van der Graaf, Piet H. |
Author_xml | – sequence: 1 givenname: Pyry A. J. surname: Välitalo fullname: Välitalo, Pyry A. J. organization: Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Faculty of Science, Leiden University – sequence: 2 givenname: Koen surname: Griffioen fullname: Griffioen, Koen organization: Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Faculty of Science, Leiden University – sequence: 3 givenname: Matthew L. surname: Rizk fullname: Rizk, Matthew L. organization: Merck & Co. Inc – sequence: 4 givenname: Sandra A. G. surname: Visser fullname: Visser, Sandra A. G. organization: Merck & Co. Inc – sequence: 5 givenname: Meindert surname: Danhof fullname: Danhof, Meindert organization: Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Faculty of Science, Leiden University – sequence: 6 givenname: Gaori surname: Rao fullname: Rao, Gaori organization: University at Buffalo – sequence: 7 givenname: Piet H. surname: van der Graaf fullname: van der Graaf, Piet H. organization: Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Faculty of Science, Leiden University – sequence: 8 givenname: J. G. Coen surname: van Hasselt fullname: van Hasselt, J. G. Coen email: jgc.vanhasselt@gmail.com organization: Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Faculty of Science, Leiden University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26626793$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU-PFCEQxYlZ486OfgAvhsSLF1YK6IY-juOuazKJJmrijXQDPTLppkdoNuu3l86sf6PhQPL4vaKq3gU6C1NwCD0FegmUypcJgDYVoVARUJyRuwdoBZXkpKHi8xlaUckEUVLAObpI6UApVdCIR-ic1TWrZcNX6PBhjtnMOTryqk3O4vfRWW9mPwU89XgTZk986F1Rbh1-HfMeb6dgXJhju0AJ-4DnLw7f5LENeJfDHl8dfVEG3w5454MvyvWQvX2MHvbtkNyT-3uNPl1ffdzekN27N2-3mx0xQrGZSMl5o1TfVbIFVVsqOFOUdbKGTlAHkoGyvAKjLGVgnKgbRRsjrep6Kxjja_TiVPcYp6_ZpVmPPhk3DG1wU04apKSq5hLqgj7_Cz1MOYbS3UJB-VdV4he1bwenyzamMrxZiuqNFFLwhpddrtHlP6hyrBu9KcH1vuh_GOBkMHFKKbpeH6Mf2_hNA9VLvvqUry756iVffVc8z-4bzt3o7E_Hj0ALwE5AKk9h7-JvE_236nfoCK-O |
CitedBy_id | crossref_primary_10_1097_MD_0000000000026253 crossref_primary_10_1007_s11095_017_2336_7 crossref_primary_10_1016_j_ejps_2017_05_018 crossref_primary_10_1111_cts_12448 crossref_primary_10_1007_s40262_022_01186_3 crossref_primary_10_1111_bcp_12901 crossref_primary_10_1128_Spectrum_00434_21 crossref_primary_10_1128_AAC_01411_17 crossref_primary_10_1038_s41467_021_25927_3 crossref_primary_10_1111_bcp_13016 crossref_primary_10_3389_fsysb_2023_1180948 |
Cites_doi | 10.1002/(SICI)1520-6017(200001)89:1<16::AID-JPS3>3.0.CO;2-E 10.1183/09031936.96.09071381 10.1128/AAC.05354-11 10.1097/CCM.0b013e3182281f33 10.1152/ajpcell.1989.256.3.C688 10.1164/rccm.200301-111OC 10.1002/jcc.21707 10.1016/j.jiac.2014.05.007 10.1007/s00134-007-0688-x 10.1021/ci950186z 10.1016/j.jpba.2015.01.046 10.1007/s11095-015-1687-1 10.1128/AAC.01370-09 10.2165/11594090-000000000-00000 10.1128/AAC.02483-12 10.1002/jps.20502 10.1007/978-0-387-84858-7 10.1152/jappl.1986.60.2.532 10.1021/ci980411n 10.1016/j.ejps.2012.06.021 10.1016/j.ejpb.2005.02.010 10.1128/AAC.00133-06 10.18637/jss.v018.i05 10.1007/s10928-015-9438-9 10.1093/jac/47.2.129 10.1016/S0891-5520(03)00060-6 10.1021/ci600312d 10.1002/jps.20322 10.1021/ci025584y 10.18637/jss.v028.i05 10.1093/jac/dkm476 |
ContentType | Journal Article |
Copyright | The Author(s) 2015 COPYRIGHT 2016 Springer Springer Science+Business Media New York 2016 |
Copyright_xml | – notice: The Author(s) 2015 – notice: COPYRIGHT 2016 Springer – notice: Springer Science+Business Media New York 2016 |
DBID | C6C CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7RV 7TK 7X7 7XB 88E 8AO 8FI 8FJ 8FK ABUWG AFKRA BENPR CCPQU FYUFA GHDGH K9. KB0 M0S M1P NAPCQ PQEST PQQKQ PQUKI PRINS 7X8 |
DOI | 10.1007/s11095-015-1832-x |
DatabaseName | SpringerOpen Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) ProQuest Nursing and Allied Health Journals Neurosciences Abstracts ProQuest_Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central ProQuest One Community College Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Nursing & Allied Health Premium ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Pharma Collection Neurosciences Abstracts ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central Nursing & Allied Health Premium ProQuest Health & Medical Complete Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest One Academic Eastern Edition MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1573-904X |
EndPage | 867 |
ExternalDocumentID | 3974121671 A747439379 10_1007_s11095_015_1832_x 26626793 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -4W -56 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29O 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5QI 5VS 67N 67Z 6NX 78A 7RV 7X7 88E 8AO 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANXM AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYOK AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABELW ABFGW ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKAS ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACTTH ACVWB ACWMK ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADMDM ADOAH ADOXG ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFDYV AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKMHD AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG AOSHJ ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBWZM BDATZ BENPR BGNMA BKEYQ BPHCQ BVXVI C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMOBN EN4 EPAXT ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IJ- IKXTQ IMOTQ INH ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH L7B LAK LLZTM LSO M1P M4Y MA- MK0 N2Q N9A NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TEORI TSG TSK TSV TUC U2A U9L UG4 UKHRP UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 WOW YCJ YLTOR Z45 Z5O Z7S Z7U Z7V Z7W Z7X Z81 Z82 Z83 Z84 Z87 Z88 Z8N Z8O Z8P Z8Q Z8R Z8V Z8W Z91 Z92 ZGI ZMTXR ZOVNA ~KM AACDK AAEOY AAJBT AAQLM AASML AAYZH ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU ALIPV CGR CUY CVF ECM EIF H13 NPM AAYXX CITATION 7TK 7XB 8FK K9. PQEST PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c482t-7733988fb57a186d0432802b761b40e17218d351c8d021ce469809c7d8bfd4223 |
IEDL.DBID | AEJHL |
ISSN | 0724-8741 |
IngestDate | Fri Oct 25 04:04:52 EDT 2024 Wed Nov 06 07:50:29 EST 2024 Tue Nov 19 20:42:55 EST 2024 Tue Nov 12 23:14:42 EST 2024 Thu Nov 21 21:41:51 EST 2024 Tue Oct 15 23:49:59 EDT 2024 Sat Dec 16 11:59:12 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | modeling pneumonia pharmacokinetics epithelial lining fluid elastic net machine learning antibiotics lung infection |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c482t-7733988fb57a186d0432802b761b40e17218d351c8d021ce469809c7d8bfd4223 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://link.springer.com/10.1007/s11095-015-1832-x |
PMID | 26626793 |
PQID | 1771280854 |
PQPubID | 37334 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1770863716 proquest_journals_1771280854 gale_infotracmisc_A747439379 gale_infotracacademiconefile_A747439379 crossref_primary_10_1007_s11095_015_1832_x pubmed_primary_26626793 springer_journals_10_1007_s11095_015_1832_x |
PublicationCentury | 2000 |
PublicationDate | 2016-04-01 |
PublicationDateYYYYMMDD | 2016-04-01 |
PublicationDate_xml | – month: 04 year: 2016 text: 2016-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationSubtitle | An Official Journal of the American Association of Pharmaceutical Scientists |
PublicationTitle | Pharmaceutical research |
PublicationTitleAbbrev | Pharm Res |
PublicationTitleAlternate | Pharm Res |
PublicationYear | 2016 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | ZhaoYHAbrahamMHIbrahimAFishPVColeSLewisMLPredicting penetration across the blood-brain barrier from simple descriptors and fragmentation schemesJ Chem Inf Model20074717051:CAS:528:DC%2BD28Xht1yiur3O10.1021/ci600312d17238262 RodvoldKAGeorgeJMYooLPenetration of anti-infective agents into pulmonary epithelial lining fluid: focus on antibacterial agentsClin Pharmacokinet201150637641:CAS:528:DC%2BC3MXhsVWrsbzM10.2165/11594090-000000000-0000021895037 YamazakiKOguraSIshizakaAOh-haraTNishimuraMBronchoscopic microsampling method for measuring drug concentration in epithelial lining fluidAm J Respir Crit Care Med20031681304710.1164/rccm.200301-111OC12904323 ForbesBEhrhardtCHuman respiratory epithelial cell culture for drug delivery applicationsEur J Pharm Biopharm2005601932051:CAS:528:DC%2BD2MXltFCrsr8%3D10.1016/j.ejpb.2005.02.01015939233 Kuhn M. Building predictive models in R using the caret package. J Stat Softw. [Internet]. 2008;28:1–26. Available from: http://www.jstatsoft.org/v28/i05/. Guha R. Chemical Informatics Functionality in R. J. Stat. Softw. [Internet]. 2007;18:1–16. Available from: http://www.jstatsoft.org/v18/i05. DrugBank [Internet]. Available from: http://www.drugbank.ca. BoselliEBreilhDDjabaroutiSGuillaumeCRimmeléTGordienJ-BReliability of mini-bronchoalveolar lavage for the measurement of epithelial lining fluid concentrations of tobramycin in critically ill patientsIntensive Care Med2007331519231:CAS:528:DC%2BD1cXhtV2lsbbK10.1007/s00134-007-0688-x17530217 LoYLvan HasseltJGCHengSCLimCTLeeTCCharlesBGPopulation pharmacokinetics of vancomycin in premature malaysian neonates: identification of predictors for dosing determinationAntimicrob Agents Chemother2010542626321:CAS:528:DC%2BC3cXos1Ogs7o%3D10.1128/AAC.01370-09203858722876370 HousmanSTPopeJSRussomannoJSalernoEShoreEKutiJLPulmonary disposition of tedizolid following administration of once-daily oral 200-milligram tedizolid phosphate in healthy adult volunteersAntimicrob Agents Chemother2012562627341:CAS:528:DC%2BC38XmsVKrsbs%3D10.1128/AAC.05354-11223309253346604 Clewe O, Karlsson MO, Simonsson USH. Evaluation of optimized bronchoalveolar lavage sampling designs for characterization of pulmonary drug distribution. J Pharmacokinet Pharmacodyn. 2015. CheekJMKimKJCrandallEDTight monolayers of rat alveolar epithelial cells: bioelectric properties and active sodium transportAm J Physiol1989256C688931:STN:280:DyaL1M7msVCktg%3D%3D2923201 Rhee E, Jumes P, Rizk M, Gotfried M, Mangin E, Bi S, et al. Intrapulmonary pharmacokinetics of MK-7655, a novel β-lactamase inhibitor, dosed in combination with imipenem/cilastatin in healthy subjects. Intersci Conf Antimicrob Agents Chemother. 2013. p. A – 1028. PoulinPTheilFPA priori prediction of tissue:plasma partition coefficients of drugs to facilitate the use of physiologically-based pharmacokinetic models in drug discoveryJ Pharm Sci20008916351:CAS:528:DC%2BD3cXit1eis7c%3D10.1002/(SICI)1520-6017(200001)89:1<16::AID-JPS3>3.0.CO;2-E10664535 RennardSIBassetGLecossierDO’DonnellKMPinkstonPMartinPGEstimation of volume of epithelial lining fluid recovered by lavage using urea as marker of dilutionJ Appl Physiol19866053281:STN:280:DyaL287jvFKnuw%3D%3D3512509 TeneroDBowersGRodvoldKAPatelAKurtineczMDumontEIntrapulmonary pharmacokinetics of GSK2251052 in healthy volunteersAntimicrob Agents Chemother201357333491:CAS:528:DC%2BC3sXhtVart77E10.1128/AAC.02483-12236501643697385 DaganREvidence to support the rationale that bacterial eradication in respiratory tract infection is an important aim of antimicrobial therapyJ Antimicrob Chemother200147129401:CAS:528:DC%2BD3MXhtlGguro%3D10.1093/jac/47.2.12911157895 BujakRStruck-LewickaWKaliszanMKaliszanRMarkuszewskiMJBlood-brain barrier permeability mechanisms in view of quantitative structure-activity relationships (QSAR)J Pharm Biomed Anal2015108C293710.1016/j.jpba.2015.01.046 Wang W, Kim MT, Sedykh A, Zhu H. Developing enhanced blood-brain barrier permeability models: integrating external bio-assay data in QSAR modeling. Pharm Res. 2015. LiuPDerendorfHAntimicrobial tissue concentrationsInfect Dis Clin North Am20031759961310.1016/S0891-5520(03)00060-614711079 GolmohammadiHDashtbozorgiZAcreeWEQuantitative structure-activity relationship prediction of blood-to-brain partitioning behavior using support vector machineEur J Pharm Sci20124742191:CAS:528:DC%2BC38Xht1Krsr3E10.1016/j.ejps.2012.06.02122771548 Hastie T, Tibshirani R, Friedman J. The elements of statistical learning the elements of statistical learningdata mining, inference, and prediction, Second Edition. Springer Ser Stat. 2009. Yap CW. PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J Comput Chem. [Internet]. 2011 [cited 2015 Oct 26];32:1466–74. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21425294. MoutonJWTheuretzbacherUCraigWATulkensPMDerendorfHCarsOTissue concentrations: do we ever learn?J Antimicrob Chemother20086123571:CAS:528:DC%2BD1cXptlGltg%3D%3D10.1093/jac/dkm47618065413 LucoJMPrediction of the brain-blood distribution of a large set of drugs from structurally derived descriptors using partial least-squares (PLS) modelingJ Chem Inf Comput Sci1999393964041:CAS:528:DyaK1MXhtlWntr0%3D10.1021/ci980411n10192950 RodgersTRowlandMPhysiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterionsJ Pharm Sci2006951238571:CAS:528:DC%2BD28XlsFWlsrY%3D10.1002/jps.2050216639716 GriggJKleinertSWoodsRLThomasCJVervaartPWilkinsonJLAlveolar epithelial lining fluid cellularity, protein and endothelin-1 in children with congenital heart diseaseEur Respir J19969138181:STN:280:DyaK28vjtlKltQ%3D%3D10.1183/09031936.96.090713818836647 RodgersTLeahyDRowlandMPhysiologically based pharmacokinetic modeling 1: predicting the tissue distribution of moderate-to-strong basesJ Pharm Sci2005941259761:CAS:528:DC%2BD2MXkvF2qtLs%3D10.1002/jps.2032215858854 Guha R, Rojas-Chertó M. rcdk : integrating the CDK with R. Chem. Informatics Funct. R [Internet]. 2010;1–17. Available from: http://cran.r-project.org/web/packages/rcdk/vignettes/rcdk.pdf. EstradaERamirezAEdge adjacency relationships and molecular topographic descriptors. Definition and QSAR applicationsJ Chem Inf Comput Sci199636837431:CAS:528:DyaK28XjvFelsr0%3D10.1021/ci950186z Melsen WG, Rovers MM, Koeman M, Bonten MJM. Estimating the attributable mortality of ventilator-associated pneumonia from randomized prevention studies. Crit. Care Med. 2011. p. 1. FunatsuYHasegawaNFujiwaraHNamkoongHAsamiTTasakaSPharmacokinetics of arbekacin in bronchial epithelial lining fluid of healthy volunteersJ Infect Chemother201420607111:CAS:528:DC%2BC2MXjtV2rsLg%3D10.1016/j.jiac.2014.05.00724973909 Steinbeck C, Han Y, Kuhn S, Horlacher O, Luttmann E, Willighagen E. The Chemistry Development Kit (CDK): an open-source Java library for chemo- and bioinformatics. J Chem Inf Comput Sci. 2003. p. 493–500. Zou H, Hastie T. elasticnet: elastic-net for sparse estimation and sparse PCA [Internet]. 2012 [cited 2014 Dec 30]. p. Version 1.1. Available from: http://cran.r-project.org/web/packages/elasticnet/index.html. KiemSSchentagJJInterpretation of antibiotic concentration ratios measured in epithelial lining fluidAntimicrob Agents Chemother20085224361:CAS:528:DC%2BD1cXkslejtA%3D%3D10.1128/AAC.00133-06178461332223903 21895037 - Clin Pharmacokinet. 2011 Oct;50(10):637-64 23650164 - Antimicrob Agents Chemother. 2013 Jul;57(7):3334-9 25703237 - J Pharm Biomed Anal. 2015 Apr 10;108:29-37 15939233 - Eur J Pharm Biopharm. 2005 Jul;60(2):193-205 12904323 - Am J Respir Crit Care Med. 2003 Dec 1;168(11):1304-7 18065413 - J Antimicrob Chemother. 2008 Feb;61(2):235-7 20385872 - Antimicrob Agents Chemother. 2010 Jun;54(6):2626-32 8836647 - Eur Respir J. 1996 Jul;9(7):1381-8 25862462 - Pharm Res. 2015 Sep;32(9):3055-65 10192950 - J Chem Inf Comput Sci. 1999 Mar-Apr;39(2):396-404 21765351 - Crit Care Med. 2011 Dec;39(12):2736-42 10664535 - J Pharm Sci. 2000 Jan;89(1):16-35 24973909 - J Infect Chemother. 2014 Oct;20(10 ):607-11 2923201 - Am J Physiol. 1989 Mar;256(3 Pt 1):C688-93 14711079 - Infect Dis Clin North Am. 2003 Sep;17(3):599-613 17530217 - Intensive Care Med. 2007 Sep;33(9):1519-23 17238262 - J Chem Inf Model. 2007 Jan-Feb;47(1):170-5 26316105 - J Pharmacokinet Pharmacodyn. 2015 Dec;42(6):699-708 17846133 - Antimicrob Agents Chemother. 2008 Jan;52(1):24-36 15858854 - J Pharm Sci. 2005 Jun;94(6):1259-76 22771548 - Eur J Pharm Sci. 2012 Sep 29;47(2):421-9 3512509 - J Appl Physiol (1985). 1986 Feb;60(2):532-8 11157895 - J Antimicrob Chemother. 2001 Feb;47(2):129-40 12653513 - J Chem Inf Comput Sci. 2003 Mar-Apr;43(2):493-500 16639716 - J Pharm Sci. 2006 Jun;95(6):1238-57 22330925 - Antimicrob Agents Chemother. 2012 May;56(5):2627-34 21425294 - J Comput Chem. 2011 May;32(7):1466-74 P Poulin (1832_CR12) 2000; 89 1832_CR1 P Liu (1832_CR4) 2003; 17 T Rodgers (1832_CR14) 2005; 94 D Tenero (1832_CR31) 2013; 57 K Yamazaki (1832_CR11) 2003; 168 JW Mouton (1832_CR2) 2008; 61 Y Funatsu (1832_CR30) 2014; 20 1832_CR34 JM Luco (1832_CR16) 1999; 39 JM Cheek (1832_CR5) 1989; 256 E Boselli (1832_CR10) 2007; 33 1832_CR19 E Estrada (1832_CR33) 1996; 36 H Golmohammadi (1832_CR17) 2012; 47 1832_CR21 1832_CR20 R Dagan (1832_CR3) 2001; 47 1832_CR27 1832_CR26 1832_CR29 1832_CR28 J Grigg (1832_CR23) 1996; 9 KA Rodvold (1832_CR8) 2011; 50 1832_CR22 1832_CR25 1832_CR24 B Forbes (1832_CR6) 2005; 60 S Kiem (1832_CR7) 2008; 52 ST Housman (1832_CR32) 2012; 56 YH Zhao (1832_CR13) 2007; 47 YL Lo (1832_CR35) 2010; 54 T Rodgers (1832_CR15) 2006; 95 R Bujak (1832_CR18) 2015; 108C SI Rennard (1832_CR9) 1986; 60 |
References_xml | – volume: 89 start-page: 16 year: 2000 ident: 1832_CR12 publication-title: J Pharm Sci doi: 10.1002/(SICI)1520-6017(200001)89:1<16::AID-JPS3>3.0.CO;2-E contributor: fullname: P Poulin – volume: 9 start-page: 1381 year: 1996 ident: 1832_CR23 publication-title: Eur Respir J doi: 10.1183/09031936.96.09071381 contributor: fullname: J Grigg – volume: 56 start-page: 2627 year: 2012 ident: 1832_CR32 publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.05354-11 contributor: fullname: ST Housman – ident: 1832_CR24 – ident: 1832_CR1 doi: 10.1097/CCM.0b013e3182281f33 – volume: 256 start-page: C688 year: 1989 ident: 1832_CR5 publication-title: Am J Physiol doi: 10.1152/ajpcell.1989.256.3.C688 contributor: fullname: JM Cheek – volume: 168 start-page: 1304 year: 2003 ident: 1832_CR11 publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.200301-111OC contributor: fullname: K Yamazaki – ident: 1832_CR29 doi: 10.1002/jcc.21707 – volume: 20 start-page: 607 year: 2014 ident: 1832_CR30 publication-title: J Infect Chemother doi: 10.1016/j.jiac.2014.05.007 contributor: fullname: Y Funatsu – volume: 33 start-page: 1519 year: 2007 ident: 1832_CR10 publication-title: Intensive Care Med doi: 10.1007/s00134-007-0688-x contributor: fullname: E Boselli – volume: 36 start-page: 837 year: 1996 ident: 1832_CR33 publication-title: J Chem Inf Comput Sci doi: 10.1021/ci950186z contributor: fullname: E Estrada – volume: 108C start-page: 29 year: 2015 ident: 1832_CR18 publication-title: J Pharm Biomed Anal doi: 10.1016/j.jpba.2015.01.046 contributor: fullname: R Bujak – ident: 1832_CR22 – ident: 1832_CR19 doi: 10.1007/s11095-015-1687-1 – volume: 54 start-page: 2626 year: 2010 ident: 1832_CR35 publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.01370-09 contributor: fullname: YL Lo – volume: 50 start-page: 637 year: 2011 ident: 1832_CR8 publication-title: Clin Pharmacokinet doi: 10.2165/11594090-000000000-00000 contributor: fullname: KA Rodvold – volume: 57 start-page: 3334 year: 2013 ident: 1832_CR31 publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.02483-12 contributor: fullname: D Tenero – volume: 95 start-page: 1238 year: 2006 ident: 1832_CR15 publication-title: J Pharm Sci doi: 10.1002/jps.20502 contributor: fullname: T Rodgers – ident: 1832_CR20 doi: 10.1007/978-0-387-84858-7 – volume: 60 start-page: 532 year: 1986 ident: 1832_CR9 publication-title: J Appl Physiol doi: 10.1152/jappl.1986.60.2.532 contributor: fullname: SI Rennard – volume: 39 start-page: 396 year: 1999 ident: 1832_CR16 publication-title: J Chem Inf Comput Sci doi: 10.1021/ci980411n contributor: fullname: JM Luco – volume: 47 start-page: 421 year: 2012 ident: 1832_CR17 publication-title: Eur J Pharm Sci doi: 10.1016/j.ejps.2012.06.021 contributor: fullname: H Golmohammadi – volume: 60 start-page: 193 year: 2005 ident: 1832_CR6 publication-title: Eur J Pharm Biopharm doi: 10.1016/j.ejpb.2005.02.010 contributor: fullname: B Forbes – ident: 1832_CR27 – volume: 52 start-page: 24 year: 2008 ident: 1832_CR7 publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.00133-06 contributor: fullname: S Kiem – ident: 1832_CR21 – ident: 1832_CR25 doi: 10.18637/jss.v018.i05 – ident: 1832_CR34 doi: 10.1007/s10928-015-9438-9 – volume: 47 start-page: 129 year: 2001 ident: 1832_CR3 publication-title: J Antimicrob Chemother doi: 10.1093/jac/47.2.129 contributor: fullname: R Dagan – volume: 17 start-page: 599 year: 2003 ident: 1832_CR4 publication-title: Infect Dis Clin North Am doi: 10.1016/S0891-5520(03)00060-6 contributor: fullname: P Liu – volume: 47 start-page: 170 year: 2007 ident: 1832_CR13 publication-title: J Chem Inf Model doi: 10.1021/ci600312d contributor: fullname: YH Zhao – volume: 94 start-page: 1259 year: 2005 ident: 1832_CR14 publication-title: J Pharm Sci doi: 10.1002/jps.20322 contributor: fullname: T Rodgers – ident: 1832_CR26 doi: 10.1021/ci025584y – ident: 1832_CR28 doi: 10.18637/jss.v028.i05 – volume: 61 start-page: 235 year: 2008 ident: 1832_CR2 publication-title: J Antimicrob Chemother doi: 10.1093/jac/dkm476 contributor: fullname: JW Mouton |
SSID | ssj0008194 |
Score | 2.3061504 |
Snippet | Purpose
Obtaining pharmacologically relevant exposure levels of antibiotics in the epithelial lining fluid (ELF) is of critical importance to ensure optimal... Obtaining pharmacologically relevant exposure levels of antibiotics in the epithelial lining fluid (ELF) is of critical importance to ensure optimal treatment... Purpose Obtaining pharmacologically relevant exposure levels of antibiotics in the epithelial lining fluid (ELF) is of critical importance to ensure optimal... PURPOSEObtaining pharmacologically relevant exposure levels of antibiotics in the epithelial lining fluid (ELF) is of critical importance to ensure optimal... |
SourceID | proquest gale crossref pubmed springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 856 |
SubjectTerms | Analysis Anti-Bacterial Agents - blood Anti-Bacterial Agents - chemistry Anti-Bacterial Agents - pharmacokinetics Antibiotics Artificial intelligence Biochemistry Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Bronchoalveolar Lavage Fluid - chemistry Computer Simulation Drug therapy Health aspects Humans Infection Lung - metabolism Lung diseases Machine Learning Medical Law Medical research Medicine, Experimental Models, Biological Pharmacology Pharmacology/Toxicology Pharmacy Pneumonia Pneumonia - drug therapy Research Paper Respiratory agents Respiratory Mucosa - metabolism |
Title | Structure-Based Prediction of Anti-infective Drug Concentrations in the Human Lung Epithelial Lining Fluid |
URI | https://link.springer.com/article/10.1007/s11095-015-1832-x https://www.ncbi.nlm.nih.gov/pubmed/26626793 https://www.proquest.com/docview/1771280854 https://search.proquest.com/docview/1770863716 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED-N8sILGxvbwgDdpAmkjUz5cBLnsUCraqqmSoDEm5XYztQNpaglaPz3u8tHSxF72B4jO45j38fPPt_PAJ-8jKxiHhmODxpXhJp0LqbHOM1EagrSroL3dEcXyfdreT5gmpxguXVR_vraRSRrQ73KdfM9Tib2I5el0CXcuEmuJxI92OwPvo3GS_tLPq4mjUoCQbou_C6W-Vwja97oqU1-5JSeRElr5zN8-T_dfgXbLdTEfiMbO_DClq_haNJwVT-c4OUq9Wpxgkc4WbFYP7yBnxc1s2w1t-4peTqDkznHdHgecVZgv7ybuu1JrnuL5_PqB55xCmTZ8vAucFoioUuswwQ4JqOCg1vOALkhkcdxfTEFDm-qqdmFq-Hg8mzkthczuFrI4I4QeRimUhZ5lGS-jA3T-kkvyJPYz4VneVUpTRj5WhqCENryLZVeqhMj88IIAiRvoVfOSvseMJM6LIo4p5dzkekip7Yio7WNpRE6MA587iZI3Tb8G2rFtMxjq2hsFY-t-u3AMU-hYt2kn9VZm2JAn2KWK9WntZNgBsDUgf21mqRTer24EwLV6vRC-UlCzpwgqnDg47KY3-RzaqWdVXUdWiOGtAh14F0jPMtuExQKYjKHDnzpROVR43_7p71_qv0BtgjRxc3Ron3okaTYA9hYmOqwVZM_Vi0LLg |
link.rule.ids | 315,782,786,27934,27935,41074,42143,48345,48348,48358,49650,49653,49663,52154 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5BeoBLKa_W0MIgoSJBLfmxttfHtE1IRagiNUjcVvbuGgVVTpXUiP57ZvxImqoc4Gjtw97deXzr2fkW4L2XkVXMI8PxQeOKUJPOxfQYp5lITUHaVfA_3dFFcv5dng6YJifscmHq0-5dSLK21OtkN9_jbGI_clkMXQKOW0x27vVgq382_TxcGWBycjVrVBIIUnbhd8HM-zrZcEd3jfItr3QnTFp7n-GT__ruHdhuwSb2G-l4Cg9s-QwOJw1b9c0RTtfJV8sjPMTJmsf65jn8vKi5ZauFdY_J1xmcLDiqwyuJ8wL75fXMbc9y_bJ4uqh-4AknQZYtE-8SZyUSvsQ6UIBjMis4uOIckEsSehzXV1Pg8LKamRfwbTiYnozc9moGVwsZXBMmD8NUyiKPksyXsWFiP-kFeRL7ufAs7yulCSNfS0MgQlu-p9JLdWJkXhhBkOQl9Mp5afcAM6nDoohzapyLTBc59RUZrW0sjdCBceBjt0LqqmHgUGuuZZ5bRXOreG7Vbwc-8Boq1k4arM7aJAN6FfNcqT7tngRzAKYO7G_UJK3Sm8WdFKhWq5fKTxJy5wRShQPvVsXckk-qlXZe1XVolxjSNtSB3UZ6Vp9NYCiIySA68KkTlVud_21Mr_6p9lt4NJp-Havx2fmX1_CY8F3cHDTahx5JjT2Ah0tTvWl15g8-Ag8V |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Za9tAEB5SB0pf2qan0rTdQEmhjYiOlbR6Km5s4yQmGJJC3xZpj-IQZGNbpfn3ndFhx6F5KHkUWq20u3N8q5n5FuCTl6FVzCNN8UHt8lChzsV4GacZT7VF7bL0T3d4kZz_FL0-0eR8a2thqmz3NiRZ1zQQS1OxPJppe7QufPM9qiz2I5dE0kUQuc0ptbAD293-6XC0Msbo8CoGqSTgqPjcbwOb_-pkwzXdNdC3PNSdkGnliQbPHjyG5_C0AaGsW0vNDmyZ4gUcjGsW65tDdrkuylocsgM2XvNb37yEq4uKc7acG_c7-kDNxnOK9tAKs6ll3WI5cZscr9-G9eblL3ZMxZFFw9C7YJOCIe5kVQCBjdDcsP6MakOuURnYqDqygg2uy4l-BT8G_cvjodsc2eAqLoIlYvUwTIWweZRkvog1Ef4JL8iT2M-5Z2i_KXQY-UpoBBfK0PmVXqoSLXKrOUKV19AppoV5CywTKrQ2zvHhnGfK5thXpJUysdBcBdqBL-1qyVnNzCHXHMw0txLnVtLcyj8OfKb1lKS1OFiVNcUH-Criv5Jd3FVx4gZMHdjbaInapjZvtxIhG21fSD9J0M0jeOUO7K9u05OUwVaYaVm1wd1jiNtTB97UkrT6bARJQYyG0oGvrdjc6vy-Me3-V-uP8HjcG8jRyfnZO3iCsC-u84_2oINCY97Do4UuPzTq8xdEVRfh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure-Based+Prediction+of+Anti-infective+Drug+Concentrations+in+the+Human+Lung+Epithelial+Lining+Fluid&rft.jtitle=Pharmaceutical+research&rft.au=V%C3%A4litalo%2C+Pyry+A.+J.&rft.au=Griffioen%2C+Koen&rft.au=Rizk%2C+Matthew+L.&rft.au=Visser%2C+Sandra+A.+G.&rft.date=2016-04-01&rft.pub=Springer+US&rft.issn=0724-8741&rft.eissn=1573-904X&rft.volume=33&rft.issue=4&rft.spage=856&rft.epage=867&rft_id=info:doi/10.1007%2Fs11095-015-1832-x&rft.externalDocID=10_1007_s11095_015_1832_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0724-8741&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0724-8741&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0724-8741&client=summon |