Equilibrium Shape of Internal Cavities in Sapphire

The equilibrium shape of internal cavities in sapphire was determined through the study of submicrometer internal cavities in single crystals. Cavities formed from indentation cracks during annealing at 1600°C. Equilibrium could be reached only for cavities that were smaller than is approximately100...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Ceramic Society Vol. 80; no. 1; pp. 62 - 68
Main Authors: Choi, Jung-Hae, Kim, Doh-Yeon, Hockey, Bernard J., Wiederhorn, Sheldon M., Handwerker, Carol A., Blendell, John E., Carter, W. Craig, Roosen, Andrew R.
Format: Journal Article
Language:English
Published: Westerville, Ohio American Ceramics Society 01-01-1997
Blackwell
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The equilibrium shape of internal cavities in sapphire was determined through the study of submicrometer internal cavities in single crystals. Cavities formed from indentation cracks during annealing at 1600°C. Equilibrium could be reached only for cavities that were smaller than is approximately100 nm. Excessive times were required to achieve equilibrium for cavities larger than is approximately 1μm. Five equilibrium facet planes were observed to bound the cavities: the basal (C) {0001}, rhombohedral (R) {1¯012}, prismatic (A) {12¯10}, pyramidal (P) {112¯3}, and structural rhombohedral (S) {101¯1}. The surface energies for these planes relative to the surface energy of the basal plane were γR = 1.05, γA = 1.12, γP = 1.06, γS = 1.07. These energies were compared with the most recent theoretical calculations of the surface energy of sapphire. The comparison was not within experimental scatter for any of the surfaces, with the measured relative surface energies being lower than the calculated energies. Although the prismatic (M) {101¯0} planes are predicted to be a low‐energy surface, facets of this orientation were not observed.
AbstractList The equilibrium shape of internal cavities in sapphire was determined through the study of submicrometer internal cavities in single crystals. Cavities formed from indentation cracks during annealing at 1600°C. Equilibrium could be reached only for cavities that were smaller than is approximately100 nm. Excessive times were required to achieve equilibrium for cavities larger than is approximately 1μm. Five equilibrium facet planes were observed to bound the cavities: the basal (C) {0001}, rhombohedral (R) {1¯012}, prismatic (A) {12¯10}, pyramidal (P) {112¯3}, and structural rhombohedral (S) {101¯1}. The surface energies for these planes relative to the surface energy of the basal plane were γR = 1.05, γA = 1.12, γP = 1.06, γS = 1.07. These energies were compared with the most recent theoretical calculations of the surface energy of sapphire. The comparison was not within experimental scatter for any of the surfaces, with the measured relative surface energies being lower than the calculated energies. Although the prismatic (M) {101¯0} planes are predicted to be a low‐energy surface, facets of this orientation were not observed.
The equilibrium shape of internal cavities in sapphire was determined through the study of submicrometer internal cavities in single crystals. Cavities formed from indentation cracks during annealing at 1600C. Equilibrium could be reached only for cavities that were smaller than is approximately100 nm. Excessive times were required to achieve equilibrium for cavities larger than is approximately 1km. Five equilibrium facet planes were observed to bound the cavities: the basal (C) {0001}, rhombohedral (R) {1[macr]012}, prismatic (A) {12[macr]10}, pyramidal (P) {112[macr]3}, and structural rhombohedral (S) {101[macr]1}. The surface energies for these planes relative to the surface energy of the basal plane were gR = 1.05, gA = 1.12, gP = 1.06, gS = 1.07. These energies were compared with the most recent theoretical calculations of the surface energy of sapphire. The comparison was not within experimental scatter for any of the surfaces, with the measured relative surface energies being lower than the calculated energies. Although the prismatic (M) {101[macr]0} planes are predicted to be a low-energy surface, facets of this orientation were not observed.
Author Hockey, Bernard J.
Kim, Doh-Yeon
Handwerker, Carol A.
Wiederhorn, Sheldon M.
Choi, Jung-Hae
Carter, W. Craig
Blendell, John E.
Roosen, Andrew R.
Author_xml – sequence: 1
  givenname: Jung-Hae
  surname: Choi
  fullname: Choi, Jung-Hae
  organization: Department of Inorganic Materials Engineering, Seoul National University, Seoul, 151-742, Korea
– sequence: 2
  givenname: Doh-Yeon
  surname: Kim
  fullname: Kim, Doh-Yeon
  organization: Department of Inorganic Materials Engineering, Seoul National University, Seoul, 151-742, Korea
– sequence: 3
  givenname: Bernard J.
  surname: Hockey
  fullname: Hockey, Bernard J.
  organization: National Institute of Standards and Technology, Gaithersburg, Maryland 20899
– sequence: 4
  givenname: Sheldon M.
  surname: Wiederhorn
  fullname: Wiederhorn, Sheldon M.
  organization: National Institute of Standards and Technology, Gaithersburg, Maryland 20899
– sequence: 5
  givenname: Carol A.
  surname: Handwerker
  fullname: Handwerker, Carol A.
  organization: National Institute of Standards and Technology, Gaithersburg, Maryland 20899
– sequence: 6
  givenname: John E.
  surname: Blendell
  fullname: Blendell, John E.
  organization: National Institute of Standards and Technology, Gaithersburg, Maryland 20899
– sequence: 7
  givenname: W. Craig
  surname: Carter
  fullname: Carter, W. Craig
  organization: National Institute of Standards and Technology, Gaithersburg, Maryland 20899
– sequence: 8
  givenname: Andrew R.
  surname: Roosen
  fullname: Roosen, Andrew R.
  organization: National Institute of Standards and Technology, Gaithersburg, Maryland 20899
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2553439$$DView record in Pascal Francis
BookMark eNqVkFtPwjAYhhuDiYD-h8V44c2wh3VrvTBBAggSD8FD4k3TjTYUxzbaofDvLYFwb2--NN_zvW_ytECjKAsFwCWCHeTfzcIPikLMUdxBnCedOoU44aizOQFNRA-rBmhCCHGYMAzPQMu5hf8izqImwP3V2uQmtWa9DKZzWamg1MGoqJUtZB705I-pjXKBKYKprKq5seocnGqZO3VxmG3wPui_9R7CyfNw1OtOwixi2JfBCErC4iRFESRSMp1ySnUqsZ5RjXTCKIoizDOZoAzPGFOEs5TM0hmElKYxaYPrfW5ly9VauVosjctUnstClWsnEPQ1EMYx9OjtHs1s6ZxVWlTWLKXdekjsRImF2IkSOxtiJ0ocRImNP7469EiXyVxbWWTGHRMwpSQi3GN3e-zX5Gr7jwIx7vb6MfYB4T7AuFptjgHSfos4IQkVn09DMb7_enkdkEfxQf4AzZCMTQ
CODEN JACTAW
CitedBy_id crossref_primary_10_1016_j_matchemphys_2022_126187
crossref_primary_10_1021_jp303301q
crossref_primary_10_1051_epjap_1999247
crossref_primary_10_4028_www_scientific_net_KEM_334_335_293
crossref_primary_10_1016_j_surfcoat_2011_09_018
crossref_primary_10_1063_1_3527899
crossref_primary_10_1016_j_scriptamat_2006_07_026
crossref_primary_10_1016_j_gca_2005_03_044
crossref_primary_10_1088_0953_8984_16_27_010
crossref_primary_10_1016_j_susc_2005_11_038
crossref_primary_10_1111_j_1551_2916_2012_05241_x
crossref_primary_10_1002_chem_201400006
crossref_primary_10_1016_j_actamat_2011_04_012
crossref_primary_10_2497_jjspm_66_266
crossref_primary_10_1016_S0955_2219_03_00261_9
crossref_primary_10_1557_JMR_2002_0016
crossref_primary_10_1016_j_jcrysgro_2018_11_024
crossref_primary_10_1557_PROC_581_467
crossref_primary_10_1016_j_cattod_2014_07_009
crossref_primary_10_1146_annurev_matsci_33_013102_094710
crossref_primary_10_1016_j_ceramint_2024_04_096
crossref_primary_10_1103_PhysRevB_69_115409
crossref_primary_10_1016_S0955_2219_03_00290_5
crossref_primary_10_1021_jp408126e
crossref_primary_10_1007_s10853_006_6482_2
crossref_primary_10_1111_j_1151_2916_2002_tb00362_x
crossref_primary_10_1111_j_1151_2916_2003_tb03584_x
crossref_primary_10_1007_s10853_005_2675_3
crossref_primary_10_1111_j_1151_2916_2001_tb00965_x
crossref_primary_10_1002_cctc_201500436
crossref_primary_10_1063_1_4833240
crossref_primary_10_1016_j_jsb_2005_04_001
crossref_primary_10_1111_j_1151_2916_2000_tb01592_x
crossref_primary_10_1557_JMR_2005_0127
crossref_primary_10_1016_j_tsf_2010_01_011
crossref_primary_10_1021_acs_jpcc_8b10782
crossref_primary_10_1016_j_susc_2008_11_015
crossref_primary_10_3390_nano11030624
crossref_primary_10_1021_acs_jpcc_8b04063
crossref_primary_10_1088_0022_3727_42_12_125302
crossref_primary_10_1111_j_1151_2916_2004_tb06328_x
crossref_primary_10_1007_s10853_013_7925_1
crossref_primary_10_1016_j_actamat_2007_12_054
crossref_primary_10_1016_j_actamat_2010_06_008
crossref_primary_10_1016_j_commatsci_2015_09_017
crossref_primary_10_1021_acsnano_2c07480
crossref_primary_10_3139_146_110253
crossref_primary_10_1007_s10853_006_6565_0
crossref_primary_10_1126_science_1208455
crossref_primary_10_2109_jcersj_114_290
crossref_primary_10_7567_1347_4065_ab55c6
crossref_primary_10_1016_S0955_2219_99_00102_8
crossref_primary_10_1111_j_1151_2916_2000_tb01358_x
crossref_primary_10_1111_j_1151_2916_2001_tb01092_x
crossref_primary_10_4191_KCERS_2002_39_10_907
crossref_primary_10_1016_j_tsf_2011_06_041
crossref_primary_10_1111_j_1151_2916_2002_tb00558_x
crossref_primary_10_1039_c2cp22712f
crossref_primary_10_1111_j_1551_2916_2005_00560_x
crossref_primary_10_1016_S1359_6454_03_00084_3
crossref_primary_10_1111_j_1151_2916_2002_tb00531_x
crossref_primary_10_1016_S0921_5093_97_00439_5
crossref_primary_10_1134_S0018143919030093
crossref_primary_10_1111_j_1551_2916_2008_02619_x
crossref_primary_10_1016_S1359_6454_01_00082_9
crossref_primary_10_1063_1_4947193
crossref_primary_10_1063_5_0188559
crossref_primary_10_1111_j_1151_2916_2000_tb01591_x
crossref_primary_10_1111_j_1151_2916_2002_tb00199_x
crossref_primary_10_1016_j_susc_2012_07_024
crossref_primary_10_1016_j_actamat_2013_10_041
crossref_primary_10_1016_j_ceramint_2022_02_052
crossref_primary_10_1111_j_1151_2916_2000_tb01173_x
crossref_primary_10_1016_S1359_6454_99_00279_7
crossref_primary_10_1016_j_susc_2009_07_004
crossref_primary_10_1111_j_1551_2916_2005_00604_x
crossref_primary_10_1039_C6CE00642F
crossref_primary_10_1021_acsomega_1c03771
crossref_primary_10_3740_MRSK_2008_18_1_018
crossref_primary_10_1007_s10853_006_0407_y
crossref_primary_10_1021_acs_jpcc_6b05191
crossref_primary_10_1016_j_jcrysgro_2020_125926
crossref_primary_10_1103_PhysRevB_82_155319
crossref_primary_10_1016_S0370_1573_03_00273_4
crossref_primary_10_1016_j_actamat_2014_09_045
crossref_primary_10_1111_j_1151_2916_2001_tb00678_x
crossref_primary_10_1021_nn3020695
crossref_primary_10_1111_j_1151_2916_2003_tb03348_x
crossref_primary_10_1002_1521_4095_200012_12_24_1952__AID_ADMA1952_3_0_CO_2
crossref_primary_10_1016_j_scriptamat_2016_09_017
crossref_primary_10_1016_j_susc_2021_121805
crossref_primary_10_1016_j_engfracmech_2012_08_005
crossref_primary_10_1088_0957_4484_27_47_475701
crossref_primary_10_1111_j_1151_2916_1998_tb02498_x
crossref_primary_10_1111_j_1151_2916_2001_tb01119_x
crossref_primary_10_1080_14786430903164598
crossref_primary_10_1039_C7CE01506B
crossref_primary_10_1111_j_1151_2916_1999_tb02013_x
crossref_primary_10_1039_D2NR01625G
crossref_primary_10_1021_acsnano_8b02484
crossref_primary_10_1016_j_jeurceramsoc_2011_07_010
crossref_primary_10_1103_PhysRevB_74_125409
crossref_primary_10_1016_S0955_2219_03_00286_3
crossref_primary_10_1016_j_actamat_2013_06_005
crossref_primary_10_1007_s10853_012_7080_0
crossref_primary_10_1016_S0169_4332_01_00205_7
crossref_primary_10_1016_j_ijhydene_2020_11_130
crossref_primary_10_1146_annurev_matsci_38_060407_130210
crossref_primary_10_1016_j_jeurceramsoc_2005_04_006
crossref_primary_10_1021_ja052759m
crossref_primary_10_1111_j_1151_2916_2002_tb00140_x
crossref_primary_10_1103_PhysRevB_81_125423
crossref_primary_10_1016_S1359_6454_01_00345_7
crossref_primary_10_1007_s10853_005_1954_3
crossref_primary_10_1111_j_1551_2916_2006_01194_x
crossref_primary_10_1021_acsami_3c15797
crossref_primary_10_1016_j_actamat_2013_11_055
crossref_primary_10_1002_adma_200601625
crossref_primary_10_1021_acsami_1c22029
crossref_primary_10_1016_S0927_0256_97_00167_5
crossref_primary_10_1016_j_phpro_2012_03_611
Cites_doi 10.1111/j.1151-2916.1992.tb05610.x
10.1111/j.1151-2916.1972.tb13417.x
10.1111/j.1151-2916.1978.tb09276.x
10.1111/j.1151-2916.1993.tb07758.x
10.1016/0167-577X(88)90121-8
10.1111/j.1151-2916.1994.tb07000.x
10.1063/1.1714360
10.1080/14786436508211927
10.1007/BF01343861
10.1111/j.1151-2916.1990.tb06558.x
10.1111/j.1151-2916.1990.tb04274.x
10.1524/zkri.1901.34.1.449
10.1016/0956-7151(95)00134-H
10.1016/0039-6028(95)00896-9
ContentType Journal Article
Copyright 1997 INIST-CNRS
Copyright_xml – notice: 1997 INIST-CNRS
DBID BSCLL
IQODW
AAYXX
CITATION
7QF
7QQ
7SR
8FD
JG9
DOI 10.1111/j.1151-2916.1997.tb02791.x
DatabaseName Istex
Pascal-Francis
CrossRef
Aluminium Industry Abstracts
Ceramic Abstracts
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Aluminium Industry Abstracts
Ceramic Abstracts
Technology Research Database
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
Engineering
Physics
EISSN 1551-2916
EndPage 68
ExternalDocumentID 10_1111_j_1151_2916_1997_tb02791_x
2553439
JACE62
ark_67375_WNG_JBZPQF3K_V
Genre article
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1OB
1OC
29L
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEFU
ABEML
ABJNI
ABPVW
ABTAH
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACKIV
ACNCT
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
CO8
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBO
EBS
EDO
EJD
EMK
ESX
F00
F01
F04
FEDTE
FOJGT
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
H~9
I-F
IRD
ITF
ITG
ITH
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NDZJH
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QF4
QM1
QN7
QO4
R.K
RAX
RIWAO
RJQFR
ROL
RX1
SAMSI
SJN
SUPJJ
TAE
TH9
TN5
TUS
UB1
UPT
V8K
VH1
W8V
W99
WBKPD
WFSAM
WH7
WIH
WIK
WOHZO
WQJ
WRC
WTY
WXSBR
WYISQ
XG1
YQT
ZCG
ZE2
ZY4
ZZTAW
~02
~IA
~WT
G8K
08R
AAJUZ
ABCVL
ABHUG
ABPTK
ACSMX
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
IQODW
PK8
AAMNL
AAYXX
CITATION
7QF
7QQ
7SR
8FD
JG9
ID FETCH-LOGICAL-c4822-7040a3867b1403aa8fb955fba2fd5f1f78514429ca71c2d88e398b3dbd0055b63
IEDL.DBID 33P
ISSN 0002-7820
IngestDate Fri Oct 25 07:22:29 EDT 2024
Thu Nov 21 20:58:58 EST 2024
Sun Oct 29 17:08:23 EDT 2023
Sat Aug 24 00:53:00 EDT 2024
Wed Oct 30 09:55:21 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Crystal defects
Inorganic compounds
Equilibrium shape
Theoretical study
Binary compounds
Computerized simulation
High temperature
Experimental study
Indentation
Faceting
Cavities
Cracks
Sapphire
Thermal annealing
TEM
Surface energy
Aluminium oxides
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4822-7040a3867b1403aa8fb955fba2fd5f1f78514429ca71c2d88e398b3dbd0055b63
Notes ArticleID:JACE62
ark:/67375/WNG-JBZPQF3K-V
istex:47DAC2C07232D83166783B8F40FE6DBDFEFB73C7
The relationship γ
i
D. R. Clarke—contributing editor
l
constant is generally true for crystals that are convex and possess a center of symmetry. Sapphire, the subject of this study, is such a crystal.
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1082200660
PQPubID 23500
PageCount 7
ParticipantIDs proquest_miscellaneous_1082200660
crossref_primary_10_1111_j_1151_2916_1997_tb02791_x
pascalfrancis_primary_2553439
wiley_primary_10_1111_j_1151_2916_1997_tb02791_x_JACE62
istex_primary_ark_67375_WNG_JBZPQF3K_V
PublicationCentury 1900
PublicationDate 1997-01
January 1997
1997
1997-01-00
19970101
PublicationDateYYYYMMDD 1997-01-01
PublicationDate_xml – month: 01
  year: 1997
  text: 1997-01
PublicationDecade 1990
PublicationPlace Westerville, Ohio
PublicationPlace_xml – name: Westerville, Ohio
– name: Malden,MA
PublicationTitle Journal of the American Ceramic Society
PublicationYear 1997
Publisher American Ceramics Society
Blackwell
Publisher_xml – name: American Ceramics Society
– name: Blackwell
References J. D. Powers and A. M. Glaeser, "High-Temperature Healing of Cracklike Flaws in Titanium Ion-Implanted Sapphire," J. Am. Ceram. Soc., 76 [9] 2225-34 (1993).
J. W. Gibbs, The Scientific Papers of J. Willard Gibbs, Vol. I, Thermodynamics; p. 322. Dover Publications, New York , 1961.
H. G. Muller, "Zur Natur der Rekristallisationsvorgange. II. Untersuchungen an Rekristallisations-Einkristallen," Z. Phys., 96, 307-20 (1935).
J. Rodel and A. M. Glaeser, "A Technique for Investigating the Elimination and Coarsening of Model Pore Arrays," Mater. Lett., 6 [10] 351-55 (1988).
G. Wulff, "Zur Frage der Geschwindigkeit desWachstums und der Auflosung der Krystallflachen," Z. Kristallogr., 34, 449-530 (1901).
J. R. Heffelfinger, M. W. Bench, and C. B. Carter, "On the Faceting of Ceramic Surfaces," Surf. Sci., 343, L1161-66 (1995).
J. Rodel and A. M. Glaeser, "High-Temperature Healing of Lithographically Introduced Cracks in Sapphire," J. Am. Ceram. Soc., 73 [3] 592-601 (1990).
I. Manassidis and M. J. Gillan, "Structure and Energetics of Alumina Surfaces Calculated from First Principles," J. Am. Ceram. Soc., 77 [2] 335-38 (1994).
W. C. Carter, A. R. Roosen, J. W. Cahn, and J. E. Taylor, "Shape Evolution by Surface Diffusion and Surface Attachment Limited Kinetics on Completely Faceted Surfaces," Acta Metall. Mater., 43 [12] 4309-23 (1995).
Geomview, public domain software, available via anonymous ftp from geom.umn.edu. Geomview Manual by Mark Phillips, The NSF Geometry Center, Minneapolis , MN , 1993.
C. F. Yen and R. L. Coble, "Spheroidization of Tubular Voids in Al2O3 Crystals at High Temperatures," J. Am. Ceram. Soc., 55 [10] 507-509 (1972).
R. S. Nelson, D. J. Mazey, and R. S. Barnes, "The Thermal Equilibrium Shape and Size of Holes in Solids," Philos. Mag., 11, 91-111 (1965).
F. A. Nichols and W. W. Mullins, "Morphological Changes of a Surface of Revolution Due to Capillarity-Induced Surface Diffusion," J. Appl. Phys., 36 [6] 1826-35 (1965).
T. K. Gupta, "Instability of Cylindrical Voids in Alumina," J. Am. Ceram. Soc., 61 [5-6] 191-95 (1978).
C. A. Powell-Dogan and A. H. Heuer, "Microstructure of 96% Alumina Ceramics: I, Characterization of the As-Sintered Materials," J. Am. Ceram. Soc., 73 [12] 3670-76 (1990).
J. D. Powers and A. M. Glaeser, "High-Temperature Healing of Cracklike Flaws in Mg- and Ca-Ion-Implanted Sapphire," J. Am. Ceram. Soc., 75 [9] 2547-58 (1992).
1990; 73
1965; 11
1935; 96
1965; 36
1988; 6
1983; 6
1993; 76
1978; 61
1995; 43
1987
1953
1994; 77
1961; Vol. I
1993
1982
1995; 343
1992; 75
1972; 55
1901; 34
Kern R. (e_1_2_1_5_2) 1987
e_1_2_1_6_2
e_1_2_1_7_2
e_1_2_1_11_2
e_1_2_1_22_2
e_1_2_1_3_2
e_1_2_1_12_2
e_1_2_1_20_2
e_1_2_1_10_2
e_1_2_1_21_2
e_1_2_1_15_2
Hockey B. J. (e_1_2_1_16_2) 1983
e_1_2_1_13_2
Herring C. (e_1_2_1_4_2) 1953
e_1_2_1_14_2
Geomview, public domain software, available via anonymous ftp from geom.umn.edu (e_1_2_1_19_2) 1993
Gibbs J. W. (e_1_2_1_2_2) 1961
e_1_2_1_8_2
e_1_2_1_17_2
e_1_2_1_9_2
e_1_2_1_18_2
References_xml – volume: 55
  start-page: 507
  issue: 10
  year: 1972
  end-page: 509
  article-title: Spheroidization of Tubular Voids in Al O Crystals at High Temperatures
  publication-title: J. Am. Ceram. Soc.
– volume: 36
  start-page: 1826
  issue: 6
  year: 1965
  end-page: 35
  article-title: Morphological Changes of a Surface of Revolution Due to Capillarity‐Induced Surface Diffusion
  publication-title: J. Appl. Phys.
– start-page: 92
  year: 1987
  end-page: 98
– volume: 43
  start-page: 4309
  issue: 12
  year: 1995
  end-page: 23
  article-title: Shape Evolution by Surface Diffusion and Surface Attachment Limited Kinetics on Completely Faceted Surfaces
  publication-title: Acta Metall. Mater.
– year: 1982
– volume: 6
  start-page: 637
  year: 1983
  end-page: 58
– volume: 77
  start-page: 335
  issue: 2
  year: 1994
  end-page: 38
  article-title: Structure and Energetics of Alumina Surfaces Calculated from First Principles
  publication-title: J. Am. Ceram. Soc.
– volume: 61
  start-page: 191
  issue: 5–6
  year: 1978
  end-page: 95
  article-title: Instability of Cylindrical Voids in Alumina
  publication-title: J. Am. Ceram. Soc.
– volume: 11
  start-page: 91
  year: 1965
  end-page: 111
  article-title: The Thermal Equilibrium Shape and Size of Holes in Solids
  publication-title: Philos. Mag.
– volume: 76
  start-page: 2225
  issue: 9
  year: 1993
  end-page: 34
  article-title: High‐Temperature Healing of Cracklike Flaws in Titanium Ion‐Implanted Sapphire
  publication-title: J. Am. Ceram. Soc.
– start-page: 5
  year: 1953
  end-page: 81
– volume: 96
  start-page: 307
  year: 1935
  end-page: 20
  article-title: Zur Natur der Rekristallisationsvorgange. II. Untersuchungen an Rekristallisations‐Einkristallen
  publication-title: Z. Phys.
– volume: 343
  start-page: L1161
  year: 1995
  end-page: 66
  article-title: On the Faceting of Ceramic Surfaces
  publication-title: Surf. Sci.
– volume: 34
  start-page: 449
  year: 1901
  end-page: 530
  article-title: Zur Frage der Geschwindigkeit desWachstums und der Auflosung der Krystallflachen
  publication-title: Z. Kristallogr.
– volume: 73
  start-page: 592
  issue: 3
  year: 1990
  end-page: 601
  article-title: High‐Temperature Healing of Lithographically Introduced Cracks in Sapphire
  publication-title: J. Am. Ceram. Soc.
– year: 1993
– volume: Vol. I
  start-page: 322
  year: 1961
– volume: 73
  start-page: 3670
  issue: 12
  year: 1990
  end-page: 76
  article-title: Microstructure of 96% Alumina Ceramics: I, Characterization of the As‐Sintered Materials
  publication-title: J. Am. Ceram. Soc.
– volume: 75
  start-page: 2547
  issue: 9
  year: 1992
  end-page: 58
  article-title: High‐Temperature Healing of Cracklike Flaws in Mg‐ and Ca‐Ion‐Implanted Sapphire
  publication-title: J. Am. Ceram. Soc.
– volume: 6
  start-page: 351
  issue: 10
  year: 1988
  end-page: 55
  article-title: A Technique for Investigating the Elimination and Coarsening of Model Pore Arrays
  publication-title: Mater. Lett.
– start-page: 637
  volume-title: Fracture Mechanics of Ceramics
  year: 1983
  ident: e_1_2_1_16_2
  contributor:
    fullname: Hockey B. J.
– ident: e_1_2_1_14_2
  doi: 10.1111/j.1151-2916.1992.tb05610.x
– ident: e_1_2_1_10_2
  doi: 10.1111/j.1151-2916.1972.tb13417.x
– ident: e_1_2_1_11_2
  doi: 10.1111/j.1151-2916.1978.tb09276.x
– ident: e_1_2_1_17_2
– volume-title: Geomview Manual by Mark Phillips, The NSF Geometry Center
  year: 1993
  ident: e_1_2_1_19_2
  contributor:
    fullname: Geomview, public domain software, available via anonymous ftp from geom.umn.edu
– ident: e_1_2_1_15_2
  doi: 10.1111/j.1151-2916.1993.tb07758.x
– ident: e_1_2_1_12_2
  doi: 10.1016/0167-577X(88)90121-8
– ident: e_1_2_1_18_2
  doi: 10.1111/j.1151-2916.1994.tb07000.x
– ident: e_1_2_1_20_2
– ident: e_1_2_1_21_2
  doi: 10.1063/1.1714360
– start-page: 5
  volume-title: Structure and Properties of Solid Surfaces
  year: 1953
  ident: e_1_2_1_4_2
  contributor:
    fullname: Herring C.
– start-page: 322
  volume-title: The Scientific Papers of J. Willard Gibbs
  year: 1961
  ident: e_1_2_1_2_2
  contributor:
    fullname: Gibbs J. W.
– ident: e_1_2_1_7_2
  doi: 10.1080/14786436508211927
– ident: e_1_2_1_8_2
  doi: 10.1007/BF01343861
– ident: e_1_2_1_13_2
  doi: 10.1111/j.1151-2916.1990.tb06558.x
– start-page: 92
  volume-title: Morphology of Crystals, Part A: Fundamentals
  year: 1987
  ident: e_1_2_1_5_2
  contributor:
    fullname: Kern R.
– ident: e_1_2_1_9_2
  doi: 10.1111/j.1151-2916.1990.tb04274.x
– ident: e_1_2_1_3_2
  doi: 10.1524/zkri.1901.34.1.449
– ident: e_1_2_1_6_2
  doi: 10.1016/0956-7151(95)00134-H
– ident: e_1_2_1_22_2
  doi: 10.1016/0039-6028(95)00896-9
SSID ssj0001984
Score 1.9489117
Snippet The equilibrium shape of internal cavities in sapphire was determined through the study of submicrometer internal cavities in single crystals. Cavities formed...
SourceID proquest
crossref
pascalfrancis
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 62
SubjectTerms Approximation
Condensed matter: structure, mechanical and thermal properties
Defects and impurities in crystals; microstructure
Exact sciences and technology
Gallium
Holes
Indentation
Mathematical analysis
Microscopic defects (voids, inclusions, etc.)
Physics
Planes
Sapphire
Structure of solids and liquids; crystallography
Surface energy
Title Equilibrium Shape of Internal Cavities in Sapphire
URI https://api.istex.fr/ark:/67375/WNG-JBZPQF3K-V/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1151-2916.1997.tb02791.x
https://search.proquest.com/docview/1082200660
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED6x8rI9sPFLhFEUJMRbptZOYuexdC1TQVVRoZv2YtlJrFVAGhqC-udz56RV-7AHEI-R4ij5zpf77uz7DPBW2FQkmU4DaWQShMzowFjDgiziAsObTcKQ-p2v5mJ6Iy9HJJPzadsL0-hD7Apu5Bnuf00Ork116OQYrQKG_IZa7gTVOJlI-hfEKDFtcP0cfLb7LWN2HW65MInEtQqk7baeex51EK0eEvAb2j2pKwTQNidfHFDTfYLrItT49P9-2xk8apmqP2im1mN4kBdP4GRPvxCvFsuqbu6pngIb_ayXroWg_uHP73SZ-yvrtyXH7_5Q_3bqrf6y8Oe6LKkq_gy-jkdfhldBeyRDkIZIJQKBPq-5jIUhnT-tpTUJWtRoZrPI9q1AAhdiiEu16KcskzLniTQ8MxmJfZmYP4dOsSryF-CLqJ-KNMp7PMxDG2FUTCKt6fSTJI4yGXvAt9CrslHeUHsZC-KjCB9F-KgWH7Xx4J2z0m6IXn-jvWsiUtfTD2ry_nb2ecw_qoUH3QMz7gZgjsWRpXnwZmtWhR5Hyyi6yFd1RZKqzC1Z9TwQzop_8X5qMhiOYvbyn0eew3GjoEtVoFfQ-bWu8y4cVVn92s33P9we-7Q
link.rule.ids 315,782,786,1408,4028,27932,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9swFH4acNh2YGMDLTBGkBC3IGo7sXNkXbuOHxWoDBAXy05iUQFpIWTiz997SVq1Bw6bOEaKreR7fn6fn_0-A-xIl8g4NUmgrIoDwawJrLMsSEMuMby5WAiqd-4NZP9K_eiQTM7JpBam1oeYJtzIM6r5mhycEtLzXo7hKmBIcKjmTlKSk8m4tYeUcklEODKpooOfTidmXF-LCRsmmbhGg7Q52PNCX3Pxaomgf6bzk6ZACF1998UcOZ2luFWM6n545b_7CMsNWfUP6tG1Am-y_BO8n5EwxKeLYVHW7xSfgXUeymFVRVDe-4MbM878kfObrOOd3zZ_KgFXf5j7AzMeU2J8FX53O-ftXtDcyhAkAtlEINHtDVeRtCT1Z4xyNkajWsNcGrqWk8jhBEa5xMhWwlKlMh4ry1Obkt6XjfgaLOajPPsCvgxbiUzCbJ-LTLgQA2McGkMXoMRRmKrIAz7BXo9r8Q09s2hBfDThowkf3eCjnz3Yrcw0bWIeb-n4mgz1Zf-nPvx-fXrW5Uf6woPNOTtOG-AyiyNR82B7YleNTkc7KSbPRmVBqqqs2rXa90BWZvyH79OHB-1OxNb_u-UWvO2dnxzr41_9ow14VwvqUlLoKyw-PZbZJiwUafmtGvx_Ad47_9w
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fT9swED4xkKbxAOyXCBtbJk17y0RtJ3YeWWnHAFWdurFpL5Ydx1oFpIEQxJ-_uySt2gceNu0xUmwl3_l8n8--zwDvpc9k6kwWKavSSDBrIusti1zMJYY3nwpB9c7HEzn6qY4GJJNzNq-FafUhFgk38oxmviYHL51fdXKMVhFDfkMld5JynEymvY_IKDcE8nJS0ud8vJiXcXkt5mSYVOI6CdLuXM8Dfa2Eqw1C_p6OT5oKEfTt1Rcr3HSZ4TYharj9f39uB7Y6qhoetmPrKazlxTPYXBIwxKfzaVW371TPgQ2u62lTQ1BfhZPfpszDmQ-7nONl2Dd3jXxrOC3CiSlLSou_gO_Dwbf-cdTdyRBlArlEJNHpDVeJtCT0Z4zyNkWTWsO8i33PS2RwAmNcZmQvY06pnKfKcmcdqX3ZhL-E9WJW5LsQyriXySzOD7jIhY8xLKaxMXT9SZrETiUB8Dn0umylN_TSkgXx0YSPJnx0h4--D-BDY6VFE3NzQYfXZKx_jD7rk0-_xl-H_FSfB7C_YsZFA1xkcaRpAbybm1Wjy9E-iinyWV2Rpipr9qwOApCNFf_i-_TJYX-QsL1_bvkWHo-Phvrsy-j0FTxp1XQpI_Qa1m9v6nwfHlWuftMM_T-qz_6C
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Equilibrium+shape+of+internal+cavities+in+sapphire&rft.jtitle=Journal+of+the+American+Ceramic+Society&rft.au=CHOI%2C+J.-H&rft.au=KIM%2C+D.-Y&rft.au=HOCKEY%2C+B.+J&rft.au=WIEDERHORN%2C+S.+M&rft.date=1997&rft.pub=Blackwell&rft.issn=0002-7820&rft.eissn=1551-2916&rft.volume=80&rft.issue=1&rft.spage=62&rft.epage=68&rft_id=info:doi/10.1111%2Fj.1151-2916.1997.tb02791.x&rft.externalDBID=n%2Fa&rft.externalDocID=2553439
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7820&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7820&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7820&client=summon