Equilibrium Shape of Internal Cavities in Sapphire
The equilibrium shape of internal cavities in sapphire was determined through the study of submicrometer internal cavities in single crystals. Cavities formed from indentation cracks during annealing at 1600°C. Equilibrium could be reached only for cavities that were smaller than is approximately100...
Saved in:
Published in: | Journal of the American Ceramic Society Vol. 80; no. 1; pp. 62 - 68 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Westerville, Ohio
American Ceramics Society
01-01-1997
Blackwell |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The equilibrium shape of internal cavities in sapphire was determined through the study of submicrometer internal cavities in single crystals. Cavities formed from indentation cracks during annealing at 1600°C. Equilibrium could be reached only for cavities that were smaller than is approximately100 nm. Excessive times were required to achieve equilibrium for cavities larger than is approximately 1μm. Five equilibrium facet planes were observed to bound the cavities: the basal (C) {0001}, rhombohedral (R) {1¯012}, prismatic (A) {12¯10}, pyramidal (P) {112¯3}, and structural rhombohedral (S) {101¯1}. The surface energies for these planes relative to the surface energy of the basal plane were γR = 1.05, γA = 1.12, γP = 1.06, γS = 1.07. These energies were compared with the most recent theoretical calculations of the surface energy of sapphire. The comparison was not within experimental scatter for any of the surfaces, with the measured relative surface energies being lower than the calculated energies. Although the prismatic (M) {101¯0} planes are predicted to be a low‐energy surface, facets of this orientation were not observed. |
---|---|
AbstractList | The equilibrium shape of internal cavities in sapphire was determined through the study of submicrometer internal cavities in single crystals. Cavities formed from indentation cracks during annealing at 1600°C. Equilibrium could be reached only for cavities that were smaller than is approximately100 nm. Excessive times were required to achieve equilibrium for cavities larger than is approximately 1μm. Five equilibrium facet planes were observed to bound the cavities: the basal (C) {0001}, rhombohedral (R) {1¯012}, prismatic (A) {12¯10}, pyramidal (P) {112¯3}, and structural rhombohedral (S) {101¯1}. The surface energies for these planes relative to the surface energy of the basal plane were γR = 1.05, γA = 1.12, γP = 1.06, γS = 1.07. These energies were compared with the most recent theoretical calculations of the surface energy of sapphire. The comparison was not within experimental scatter for any of the surfaces, with the measured relative surface energies being lower than the calculated energies. Although the prismatic (M) {101¯0} planes are predicted to be a low‐energy surface, facets of this orientation were not observed. The equilibrium shape of internal cavities in sapphire was determined through the study of submicrometer internal cavities in single crystals. Cavities formed from indentation cracks during annealing at 1600C. Equilibrium could be reached only for cavities that were smaller than is approximately100 nm. Excessive times were required to achieve equilibrium for cavities larger than is approximately 1km. Five equilibrium facet planes were observed to bound the cavities: the basal (C) {0001}, rhombohedral (R) {1[macr]012}, prismatic (A) {12[macr]10}, pyramidal (P) {112[macr]3}, and structural rhombohedral (S) {101[macr]1}. The surface energies for these planes relative to the surface energy of the basal plane were gR = 1.05, gA = 1.12, gP = 1.06, gS = 1.07. These energies were compared with the most recent theoretical calculations of the surface energy of sapphire. The comparison was not within experimental scatter for any of the surfaces, with the measured relative surface energies being lower than the calculated energies. Although the prismatic (M) {101[macr]0} planes are predicted to be a low-energy surface, facets of this orientation were not observed. |
Author | Hockey, Bernard J. Kim, Doh-Yeon Handwerker, Carol A. Wiederhorn, Sheldon M. Choi, Jung-Hae Carter, W. Craig Blendell, John E. Roosen, Andrew R. |
Author_xml | – sequence: 1 givenname: Jung-Hae surname: Choi fullname: Choi, Jung-Hae organization: Department of Inorganic Materials Engineering, Seoul National University, Seoul, 151-742, Korea – sequence: 2 givenname: Doh-Yeon surname: Kim fullname: Kim, Doh-Yeon organization: Department of Inorganic Materials Engineering, Seoul National University, Seoul, 151-742, Korea – sequence: 3 givenname: Bernard J. surname: Hockey fullname: Hockey, Bernard J. organization: National Institute of Standards and Technology, Gaithersburg, Maryland 20899 – sequence: 4 givenname: Sheldon M. surname: Wiederhorn fullname: Wiederhorn, Sheldon M. organization: National Institute of Standards and Technology, Gaithersburg, Maryland 20899 – sequence: 5 givenname: Carol A. surname: Handwerker fullname: Handwerker, Carol A. organization: National Institute of Standards and Technology, Gaithersburg, Maryland 20899 – sequence: 6 givenname: John E. surname: Blendell fullname: Blendell, John E. organization: National Institute of Standards and Technology, Gaithersburg, Maryland 20899 – sequence: 7 givenname: W. Craig surname: Carter fullname: Carter, W. Craig organization: National Institute of Standards and Technology, Gaithersburg, Maryland 20899 – sequence: 8 givenname: Andrew R. surname: Roosen fullname: Roosen, Andrew R. organization: National Institute of Standards and Technology, Gaithersburg, Maryland 20899 |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2553439$$DView record in Pascal Francis |
BookMark | eNqVkFtPwjAYhhuDiYD-h8V44c2wh3VrvTBBAggSD8FD4k3TjTYUxzbaofDvLYFwb2--NN_zvW_ytECjKAsFwCWCHeTfzcIPikLMUdxBnCedOoU44aizOQFNRA-rBmhCCHGYMAzPQMu5hf8izqImwP3V2uQmtWa9DKZzWamg1MGoqJUtZB705I-pjXKBKYKprKq5seocnGqZO3VxmG3wPui_9R7CyfNw1OtOwixi2JfBCErC4iRFESRSMp1ySnUqsZ5RjXTCKIoizDOZoAzPGFOEs5TM0hmElKYxaYPrfW5ly9VauVosjctUnstClWsnEPQ1EMYx9OjtHs1s6ZxVWlTWLKXdekjsRImF2IkSOxtiJ0ocRImNP7469EiXyVxbWWTGHRMwpSQi3GN3e-zX5Gr7jwIx7vb6MfYB4T7AuFptjgHSfos4IQkVn09DMb7_enkdkEfxQf4AzZCMTQ |
CODEN | JACTAW |
CitedBy_id | crossref_primary_10_1016_j_matchemphys_2022_126187 crossref_primary_10_1021_jp303301q crossref_primary_10_1051_epjap_1999247 crossref_primary_10_4028_www_scientific_net_KEM_334_335_293 crossref_primary_10_1016_j_surfcoat_2011_09_018 crossref_primary_10_1063_1_3527899 crossref_primary_10_1016_j_scriptamat_2006_07_026 crossref_primary_10_1016_j_gca_2005_03_044 crossref_primary_10_1088_0953_8984_16_27_010 crossref_primary_10_1016_j_susc_2005_11_038 crossref_primary_10_1111_j_1551_2916_2012_05241_x crossref_primary_10_1002_chem_201400006 crossref_primary_10_1016_j_actamat_2011_04_012 crossref_primary_10_2497_jjspm_66_266 crossref_primary_10_1016_S0955_2219_03_00261_9 crossref_primary_10_1557_JMR_2002_0016 crossref_primary_10_1016_j_jcrysgro_2018_11_024 crossref_primary_10_1557_PROC_581_467 crossref_primary_10_1016_j_cattod_2014_07_009 crossref_primary_10_1146_annurev_matsci_33_013102_094710 crossref_primary_10_1016_j_ceramint_2024_04_096 crossref_primary_10_1103_PhysRevB_69_115409 crossref_primary_10_1016_S0955_2219_03_00290_5 crossref_primary_10_1021_jp408126e crossref_primary_10_1007_s10853_006_6482_2 crossref_primary_10_1111_j_1151_2916_2002_tb00362_x crossref_primary_10_1111_j_1151_2916_2003_tb03584_x crossref_primary_10_1007_s10853_005_2675_3 crossref_primary_10_1111_j_1151_2916_2001_tb00965_x crossref_primary_10_1002_cctc_201500436 crossref_primary_10_1063_1_4833240 crossref_primary_10_1016_j_jsb_2005_04_001 crossref_primary_10_1111_j_1151_2916_2000_tb01592_x crossref_primary_10_1557_JMR_2005_0127 crossref_primary_10_1016_j_tsf_2010_01_011 crossref_primary_10_1021_acs_jpcc_8b10782 crossref_primary_10_1016_j_susc_2008_11_015 crossref_primary_10_3390_nano11030624 crossref_primary_10_1021_acs_jpcc_8b04063 crossref_primary_10_1088_0022_3727_42_12_125302 crossref_primary_10_1111_j_1151_2916_2004_tb06328_x crossref_primary_10_1007_s10853_013_7925_1 crossref_primary_10_1016_j_actamat_2007_12_054 crossref_primary_10_1016_j_actamat_2010_06_008 crossref_primary_10_1016_j_commatsci_2015_09_017 crossref_primary_10_1021_acsnano_2c07480 crossref_primary_10_3139_146_110253 crossref_primary_10_1007_s10853_006_6565_0 crossref_primary_10_1126_science_1208455 crossref_primary_10_2109_jcersj_114_290 crossref_primary_10_7567_1347_4065_ab55c6 crossref_primary_10_1016_S0955_2219_99_00102_8 crossref_primary_10_1111_j_1151_2916_2000_tb01358_x crossref_primary_10_1111_j_1151_2916_2001_tb01092_x crossref_primary_10_4191_KCERS_2002_39_10_907 crossref_primary_10_1016_j_tsf_2011_06_041 crossref_primary_10_1111_j_1151_2916_2002_tb00558_x crossref_primary_10_1039_c2cp22712f crossref_primary_10_1111_j_1551_2916_2005_00560_x crossref_primary_10_1016_S1359_6454_03_00084_3 crossref_primary_10_1111_j_1151_2916_2002_tb00531_x crossref_primary_10_1016_S0921_5093_97_00439_5 crossref_primary_10_1134_S0018143919030093 crossref_primary_10_1111_j_1551_2916_2008_02619_x crossref_primary_10_1016_S1359_6454_01_00082_9 crossref_primary_10_1063_1_4947193 crossref_primary_10_1063_5_0188559 crossref_primary_10_1111_j_1151_2916_2000_tb01591_x crossref_primary_10_1111_j_1151_2916_2002_tb00199_x crossref_primary_10_1016_j_susc_2012_07_024 crossref_primary_10_1016_j_actamat_2013_10_041 crossref_primary_10_1016_j_ceramint_2022_02_052 crossref_primary_10_1111_j_1151_2916_2000_tb01173_x crossref_primary_10_1016_S1359_6454_99_00279_7 crossref_primary_10_1016_j_susc_2009_07_004 crossref_primary_10_1111_j_1551_2916_2005_00604_x crossref_primary_10_1039_C6CE00642F crossref_primary_10_1021_acsomega_1c03771 crossref_primary_10_3740_MRSK_2008_18_1_018 crossref_primary_10_1007_s10853_006_0407_y crossref_primary_10_1021_acs_jpcc_6b05191 crossref_primary_10_1016_j_jcrysgro_2020_125926 crossref_primary_10_1103_PhysRevB_82_155319 crossref_primary_10_1016_S0370_1573_03_00273_4 crossref_primary_10_1016_j_actamat_2014_09_045 crossref_primary_10_1111_j_1151_2916_2001_tb00678_x crossref_primary_10_1021_nn3020695 crossref_primary_10_1111_j_1151_2916_2003_tb03348_x crossref_primary_10_1002_1521_4095_200012_12_24_1952__AID_ADMA1952_3_0_CO_2 crossref_primary_10_1016_j_scriptamat_2016_09_017 crossref_primary_10_1016_j_susc_2021_121805 crossref_primary_10_1016_j_engfracmech_2012_08_005 crossref_primary_10_1088_0957_4484_27_47_475701 crossref_primary_10_1111_j_1151_2916_1998_tb02498_x crossref_primary_10_1111_j_1151_2916_2001_tb01119_x crossref_primary_10_1080_14786430903164598 crossref_primary_10_1039_C7CE01506B crossref_primary_10_1111_j_1151_2916_1999_tb02013_x crossref_primary_10_1039_D2NR01625G crossref_primary_10_1021_acsnano_8b02484 crossref_primary_10_1016_j_jeurceramsoc_2011_07_010 crossref_primary_10_1103_PhysRevB_74_125409 crossref_primary_10_1016_S0955_2219_03_00286_3 crossref_primary_10_1016_j_actamat_2013_06_005 crossref_primary_10_1007_s10853_012_7080_0 crossref_primary_10_1016_S0169_4332_01_00205_7 crossref_primary_10_1016_j_ijhydene_2020_11_130 crossref_primary_10_1146_annurev_matsci_38_060407_130210 crossref_primary_10_1016_j_jeurceramsoc_2005_04_006 crossref_primary_10_1021_ja052759m crossref_primary_10_1111_j_1151_2916_2002_tb00140_x crossref_primary_10_1103_PhysRevB_81_125423 crossref_primary_10_1016_S1359_6454_01_00345_7 crossref_primary_10_1007_s10853_005_1954_3 crossref_primary_10_1111_j_1551_2916_2006_01194_x crossref_primary_10_1021_acsami_3c15797 crossref_primary_10_1016_j_actamat_2013_11_055 crossref_primary_10_1002_adma_200601625 crossref_primary_10_1021_acsami_1c22029 crossref_primary_10_1016_S0927_0256_97_00167_5 crossref_primary_10_1016_j_phpro_2012_03_611 |
Cites_doi | 10.1111/j.1151-2916.1992.tb05610.x 10.1111/j.1151-2916.1972.tb13417.x 10.1111/j.1151-2916.1978.tb09276.x 10.1111/j.1151-2916.1993.tb07758.x 10.1016/0167-577X(88)90121-8 10.1111/j.1151-2916.1994.tb07000.x 10.1063/1.1714360 10.1080/14786436508211927 10.1007/BF01343861 10.1111/j.1151-2916.1990.tb06558.x 10.1111/j.1151-2916.1990.tb04274.x 10.1524/zkri.1901.34.1.449 10.1016/0956-7151(95)00134-H 10.1016/0039-6028(95)00896-9 |
ContentType | Journal Article |
Copyright | 1997 INIST-CNRS |
Copyright_xml | – notice: 1997 INIST-CNRS |
DBID | BSCLL IQODW AAYXX CITATION 7QF 7QQ 7SR 8FD JG9 |
DOI | 10.1111/j.1151-2916.1997.tb02791.x |
DatabaseName | Istex Pascal-Francis CrossRef Aluminium Industry Abstracts Ceramic Abstracts Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Aluminium Industry Abstracts Ceramic Abstracts Technology Research Database |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Visual Arts Engineering Physics |
EISSN | 1551-2916 |
EndPage | 68 |
ExternalDocumentID | 10_1111_j_1151_2916_1997_tb02791_x 2553439 JACE62 ark_67375_WNG_JBZPQF3K_V |
Genre | article |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 1OB 1OC 29L 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABDPE ABEFU ABEML ABJNI ABPVW ABTAH ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACKIV ACNCT ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMHG ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AHEFC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG CO8 COF CS3 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBO EBS EDO EJD EMK ESX F00 F01 F04 FEDTE FOJGT FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ H~9 I-F IRD ITF ITG ITH IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NDZJH NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QF4 QM1 QN7 QO4 R.K RAX RIWAO RJQFR ROL RX1 SAMSI SJN SUPJJ TAE TH9 TN5 TUS UB1 UPT V8K VH1 W8V W99 WBKPD WFSAM WH7 WIH WIK WOHZO WQJ WRC WTY WXSBR WYISQ XG1 YQT ZCG ZE2 ZY4 ZZTAW ~02 ~IA ~WT G8K 08R AAJUZ ABCVL ABHUG ABPTK ACSMX ACXME ADAWD ADDAD AFVGU AGJLS IQODW PK8 AAMNL AAYXX CITATION 7QF 7QQ 7SR 8FD JG9 |
ID | FETCH-LOGICAL-c4822-7040a3867b1403aa8fb955fba2fd5f1f78514429ca71c2d88e398b3dbd0055b63 |
IEDL.DBID | 33P |
ISSN | 0002-7820 |
IngestDate | Fri Oct 25 07:22:29 EDT 2024 Thu Nov 21 20:58:58 EST 2024 Sun Oct 29 17:08:23 EDT 2023 Sat Aug 24 00:53:00 EDT 2024 Wed Oct 30 09:55:21 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Crystal defects Inorganic compounds Equilibrium shape Theoretical study Binary compounds Computerized simulation High temperature Experimental study Indentation Faceting Cavities Cracks Sapphire Thermal annealing TEM Surface energy Aluminium oxides |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4822-7040a3867b1403aa8fb955fba2fd5f1f78514429ca71c2d88e398b3dbd0055b63 |
Notes | ArticleID:JACE62 ark:/67375/WNG-JBZPQF3K-V istex:47DAC2C07232D83166783B8F40FE6DBDFEFB73C7 The relationship γ i D. R. Clarke—contributing editor l constant is generally true for crystals that are convex and possess a center of symmetry. Sapphire, the subject of this study, is such a crystal. ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 1082200660 |
PQPubID | 23500 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1082200660 crossref_primary_10_1111_j_1151_2916_1997_tb02791_x pascalfrancis_primary_2553439 wiley_primary_10_1111_j_1151_2916_1997_tb02791_x_JACE62 istex_primary_ark_67375_WNG_JBZPQF3K_V |
PublicationCentury | 1900 |
PublicationDate | 1997-01 January 1997 1997 1997-01-00 19970101 |
PublicationDateYYYYMMDD | 1997-01-01 |
PublicationDate_xml | – month: 01 year: 1997 text: 1997-01 |
PublicationDecade | 1990 |
PublicationPlace | Westerville, Ohio |
PublicationPlace_xml | – name: Westerville, Ohio – name: Malden,MA |
PublicationTitle | Journal of the American Ceramic Society |
PublicationYear | 1997 |
Publisher | American Ceramics Society Blackwell |
Publisher_xml | – name: American Ceramics Society – name: Blackwell |
References | J. D. Powers and A. M. Glaeser, "High-Temperature Healing of Cracklike Flaws in Titanium Ion-Implanted Sapphire," J. Am. Ceram. Soc., 76 [9] 2225-34 (1993). J. W. Gibbs, The Scientific Papers of J. Willard Gibbs, Vol. I, Thermodynamics; p. 322. Dover Publications, New York , 1961. H. G. Muller, "Zur Natur der Rekristallisationsvorgange. II. Untersuchungen an Rekristallisations-Einkristallen," Z. Phys., 96, 307-20 (1935). J. Rodel and A. M. Glaeser, "A Technique for Investigating the Elimination and Coarsening of Model Pore Arrays," Mater. Lett., 6 [10] 351-55 (1988). G. Wulff, "Zur Frage der Geschwindigkeit desWachstums und der Auflosung der Krystallflachen," Z. Kristallogr., 34, 449-530 (1901). J. R. Heffelfinger, M. W. Bench, and C. B. Carter, "On the Faceting of Ceramic Surfaces," Surf. Sci., 343, L1161-66 (1995). J. Rodel and A. M. Glaeser, "High-Temperature Healing of Lithographically Introduced Cracks in Sapphire," J. Am. Ceram. Soc., 73 [3] 592-601 (1990). I. Manassidis and M. J. Gillan, "Structure and Energetics of Alumina Surfaces Calculated from First Principles," J. Am. Ceram. Soc., 77 [2] 335-38 (1994). W. C. Carter, A. R. Roosen, J. W. Cahn, and J. E. Taylor, "Shape Evolution by Surface Diffusion and Surface Attachment Limited Kinetics on Completely Faceted Surfaces," Acta Metall. Mater., 43 [12] 4309-23 (1995). Geomview, public domain software, available via anonymous ftp from geom.umn.edu. Geomview Manual by Mark Phillips, The NSF Geometry Center, Minneapolis , MN , 1993. C. F. Yen and R. L. Coble, "Spheroidization of Tubular Voids in Al2O3 Crystals at High Temperatures," J. Am. Ceram. Soc., 55 [10] 507-509 (1972). R. S. Nelson, D. J. Mazey, and R. S. Barnes, "The Thermal Equilibrium Shape and Size of Holes in Solids," Philos. Mag., 11, 91-111 (1965). F. A. Nichols and W. W. Mullins, "Morphological Changes of a Surface of Revolution Due to Capillarity-Induced Surface Diffusion," J. Appl. Phys., 36 [6] 1826-35 (1965). T. K. Gupta, "Instability of Cylindrical Voids in Alumina," J. Am. Ceram. Soc., 61 [5-6] 191-95 (1978). C. A. Powell-Dogan and A. H. Heuer, "Microstructure of 96% Alumina Ceramics: I, Characterization of the As-Sintered Materials," J. Am. Ceram. Soc., 73 [12] 3670-76 (1990). J. D. Powers and A. M. Glaeser, "High-Temperature Healing of Cracklike Flaws in Mg- and Ca-Ion-Implanted Sapphire," J. Am. Ceram. Soc., 75 [9] 2547-58 (1992). 1990; 73 1965; 11 1935; 96 1965; 36 1988; 6 1983; 6 1993; 76 1978; 61 1995; 43 1987 1953 1994; 77 1961; Vol. I 1993 1982 1995; 343 1992; 75 1972; 55 1901; 34 Kern R. (e_1_2_1_5_2) 1987 e_1_2_1_6_2 e_1_2_1_7_2 e_1_2_1_11_2 e_1_2_1_22_2 e_1_2_1_3_2 e_1_2_1_12_2 e_1_2_1_20_2 e_1_2_1_10_2 e_1_2_1_21_2 e_1_2_1_15_2 Hockey B. J. (e_1_2_1_16_2) 1983 e_1_2_1_13_2 Herring C. (e_1_2_1_4_2) 1953 e_1_2_1_14_2 Geomview, public domain software, available via anonymous ftp from geom.umn.edu (e_1_2_1_19_2) 1993 Gibbs J. W. (e_1_2_1_2_2) 1961 e_1_2_1_8_2 e_1_2_1_17_2 e_1_2_1_9_2 e_1_2_1_18_2 |
References_xml | – volume: 55 start-page: 507 issue: 10 year: 1972 end-page: 509 article-title: Spheroidization of Tubular Voids in Al O Crystals at High Temperatures publication-title: J. Am. Ceram. Soc. – volume: 36 start-page: 1826 issue: 6 year: 1965 end-page: 35 article-title: Morphological Changes of a Surface of Revolution Due to Capillarity‐Induced Surface Diffusion publication-title: J. Appl. Phys. – start-page: 92 year: 1987 end-page: 98 – volume: 43 start-page: 4309 issue: 12 year: 1995 end-page: 23 article-title: Shape Evolution by Surface Diffusion and Surface Attachment Limited Kinetics on Completely Faceted Surfaces publication-title: Acta Metall. Mater. – year: 1982 – volume: 6 start-page: 637 year: 1983 end-page: 58 – volume: 77 start-page: 335 issue: 2 year: 1994 end-page: 38 article-title: Structure and Energetics of Alumina Surfaces Calculated from First Principles publication-title: J. Am. Ceram. Soc. – volume: 61 start-page: 191 issue: 5–6 year: 1978 end-page: 95 article-title: Instability of Cylindrical Voids in Alumina publication-title: J. Am. Ceram. Soc. – volume: 11 start-page: 91 year: 1965 end-page: 111 article-title: The Thermal Equilibrium Shape and Size of Holes in Solids publication-title: Philos. Mag. – volume: 76 start-page: 2225 issue: 9 year: 1993 end-page: 34 article-title: High‐Temperature Healing of Cracklike Flaws in Titanium Ion‐Implanted Sapphire publication-title: J. Am. Ceram. Soc. – start-page: 5 year: 1953 end-page: 81 – volume: 96 start-page: 307 year: 1935 end-page: 20 article-title: Zur Natur der Rekristallisationsvorgange. II. Untersuchungen an Rekristallisations‐Einkristallen publication-title: Z. Phys. – volume: 343 start-page: L1161 year: 1995 end-page: 66 article-title: On the Faceting of Ceramic Surfaces publication-title: Surf. Sci. – volume: 34 start-page: 449 year: 1901 end-page: 530 article-title: Zur Frage der Geschwindigkeit desWachstums und der Auflosung der Krystallflachen publication-title: Z. Kristallogr. – volume: 73 start-page: 592 issue: 3 year: 1990 end-page: 601 article-title: High‐Temperature Healing of Lithographically Introduced Cracks in Sapphire publication-title: J. Am. Ceram. Soc. – year: 1993 – volume: Vol. I start-page: 322 year: 1961 – volume: 73 start-page: 3670 issue: 12 year: 1990 end-page: 76 article-title: Microstructure of 96% Alumina Ceramics: I, Characterization of the As‐Sintered Materials publication-title: J. Am. Ceram. Soc. – volume: 75 start-page: 2547 issue: 9 year: 1992 end-page: 58 article-title: High‐Temperature Healing of Cracklike Flaws in Mg‐ and Ca‐Ion‐Implanted Sapphire publication-title: J. Am. Ceram. Soc. – volume: 6 start-page: 351 issue: 10 year: 1988 end-page: 55 article-title: A Technique for Investigating the Elimination and Coarsening of Model Pore Arrays publication-title: Mater. Lett. – start-page: 637 volume-title: Fracture Mechanics of Ceramics year: 1983 ident: e_1_2_1_16_2 contributor: fullname: Hockey B. J. – ident: e_1_2_1_14_2 doi: 10.1111/j.1151-2916.1992.tb05610.x – ident: e_1_2_1_10_2 doi: 10.1111/j.1151-2916.1972.tb13417.x – ident: e_1_2_1_11_2 doi: 10.1111/j.1151-2916.1978.tb09276.x – ident: e_1_2_1_17_2 – volume-title: Geomview Manual by Mark Phillips, The NSF Geometry Center year: 1993 ident: e_1_2_1_19_2 contributor: fullname: Geomview, public domain software, available via anonymous ftp from geom.umn.edu – ident: e_1_2_1_15_2 doi: 10.1111/j.1151-2916.1993.tb07758.x – ident: e_1_2_1_12_2 doi: 10.1016/0167-577X(88)90121-8 – ident: e_1_2_1_18_2 doi: 10.1111/j.1151-2916.1994.tb07000.x – ident: e_1_2_1_20_2 – ident: e_1_2_1_21_2 doi: 10.1063/1.1714360 – start-page: 5 volume-title: Structure and Properties of Solid Surfaces year: 1953 ident: e_1_2_1_4_2 contributor: fullname: Herring C. – start-page: 322 volume-title: The Scientific Papers of J. Willard Gibbs year: 1961 ident: e_1_2_1_2_2 contributor: fullname: Gibbs J. W. – ident: e_1_2_1_7_2 doi: 10.1080/14786436508211927 – ident: e_1_2_1_8_2 doi: 10.1007/BF01343861 – ident: e_1_2_1_13_2 doi: 10.1111/j.1151-2916.1990.tb06558.x – start-page: 92 volume-title: Morphology of Crystals, Part A: Fundamentals year: 1987 ident: e_1_2_1_5_2 contributor: fullname: Kern R. – ident: e_1_2_1_9_2 doi: 10.1111/j.1151-2916.1990.tb04274.x – ident: e_1_2_1_3_2 doi: 10.1524/zkri.1901.34.1.449 – ident: e_1_2_1_6_2 doi: 10.1016/0956-7151(95)00134-H – ident: e_1_2_1_22_2 doi: 10.1016/0039-6028(95)00896-9 |
SSID | ssj0001984 |
Score | 1.9489117 |
Snippet | The equilibrium shape of internal cavities in sapphire was determined through the study of submicrometer internal cavities in single crystals. Cavities formed... |
SourceID | proquest crossref pascalfrancis wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 62 |
SubjectTerms | Approximation Condensed matter: structure, mechanical and thermal properties Defects and impurities in crystals; microstructure Exact sciences and technology Gallium Holes Indentation Mathematical analysis Microscopic defects (voids, inclusions, etc.) Physics Planes Sapphire Structure of solids and liquids; crystallography Surface energy |
Title | Equilibrium Shape of Internal Cavities in Sapphire |
URI | https://api.istex.fr/ark:/67375/WNG-JBZPQF3K-V/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1151-2916.1997.tb02791.x https://search.proquest.com/docview/1082200660 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED6x8rI9sPFLhFEUJMRbptZOYuexdC1TQVVRoZv2YtlJrFVAGhqC-udz56RV-7AHEI-R4ij5zpf77uz7DPBW2FQkmU4DaWQShMzowFjDgiziAsObTcKQ-p2v5mJ6Iy9HJJPzadsL0-hD7Apu5Bnuf00Ork116OQYrQKG_IZa7gTVOJlI-hfEKDFtcP0cfLb7LWN2HW65MInEtQqk7baeex51EK0eEvAb2j2pKwTQNidfHFDTfYLrItT49P9-2xk8apmqP2im1mN4kBdP4GRPvxCvFsuqbu6pngIb_ayXroWg_uHP73SZ-yvrtyXH7_5Q_3bqrf6y8Oe6LKkq_gy-jkdfhldBeyRDkIZIJQKBPq-5jIUhnT-tpTUJWtRoZrPI9q1AAhdiiEu16KcskzLniTQ8MxmJfZmYP4dOsSryF-CLqJ-KNMp7PMxDG2FUTCKt6fSTJI4yGXvAt9CrslHeUHsZC-KjCB9F-KgWH7Xx4J2z0m6IXn-jvWsiUtfTD2ry_nb2ecw_qoUH3QMz7gZgjsWRpXnwZmtWhR5Hyyi6yFd1RZKqzC1Z9TwQzop_8X5qMhiOYvbyn0eew3GjoEtVoFfQ-bWu8y4cVVn92s33P9we-7Q |
link.rule.ids | 315,782,786,1408,4028,27932,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9swFH4acNh2YGMDLTBGkBC3IGo7sXNkXbuOHxWoDBAXy05iUQFpIWTiz997SVq1Bw6bOEaKreR7fn6fn_0-A-xIl8g4NUmgrIoDwawJrLMsSEMuMby5WAiqd-4NZP9K_eiQTM7JpBam1oeYJtzIM6r5mhycEtLzXo7hKmBIcKjmTlKSk8m4tYeUcklEODKpooOfTidmXF-LCRsmmbhGg7Q52PNCX3Pxaomgf6bzk6ZACF1998UcOZ2luFWM6n545b_7CMsNWfUP6tG1Am-y_BO8n5EwxKeLYVHW7xSfgXUeymFVRVDe-4MbM878kfObrOOd3zZ_KgFXf5j7AzMeU2J8FX53O-ftXtDcyhAkAtlEINHtDVeRtCT1Z4xyNkajWsNcGrqWk8jhBEa5xMhWwlKlMh4ry1Obkt6XjfgaLOajPPsCvgxbiUzCbJ-LTLgQA2McGkMXoMRRmKrIAz7BXo9r8Q09s2hBfDThowkf3eCjnz3Yrcw0bWIeb-n4mgz1Zf-nPvx-fXrW5Uf6woPNOTtOG-AyiyNR82B7YleNTkc7KSbPRmVBqqqs2rXa90BWZvyH79OHB-1OxNb_u-UWvO2dnxzr41_9ow14VwvqUlLoKyw-PZbZJiwUafmtGvx_Ad47_9w |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fT9swED4xkKbxAOyXCBtbJk17y0RtJ3YeWWnHAFWdurFpL5Ydx1oFpIEQxJ-_uySt2gceNu0xUmwl3_l8n8--zwDvpc9k6kwWKavSSDBrIusti1zMJYY3nwpB9c7HEzn6qY4GJJNzNq-FafUhFgk38oxmviYHL51fdXKMVhFDfkMld5JynEymvY_IKDcE8nJS0ud8vJiXcXkt5mSYVOI6CdLuXM8Dfa2Eqw1C_p6OT5oKEfTt1Rcr3HSZ4TYharj9f39uB7Y6qhoetmPrKazlxTPYXBIwxKfzaVW371TPgQ2u62lTQ1BfhZPfpszDmQ-7nONl2Dd3jXxrOC3CiSlLSou_gO_Dwbf-cdTdyRBlArlEJNHpDVeJtCT0Z4zyNkWTWsO8i33PS2RwAmNcZmQvY06pnKfKcmcdqX3ZhL-E9WJW5LsQyriXySzOD7jIhY8xLKaxMXT9SZrETiUB8Dn0umylN_TSkgXx0YSPJnx0h4--D-BDY6VFE3NzQYfXZKx_jD7rk0-_xl-H_FSfB7C_YsZFA1xkcaRpAbybm1Wjy9E-iinyWV2Rpipr9qwOApCNFf_i-_TJYX-QsL1_bvkWHo-Phvrsy-j0FTxp1XQpI_Qa1m9v6nwfHlWuftMM_T-qz_6C |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Equilibrium+shape+of+internal+cavities+in+sapphire&rft.jtitle=Journal+of+the+American+Ceramic+Society&rft.au=CHOI%2C+J.-H&rft.au=KIM%2C+D.-Y&rft.au=HOCKEY%2C+B.+J&rft.au=WIEDERHORN%2C+S.+M&rft.date=1997&rft.pub=Blackwell&rft.issn=0002-7820&rft.eissn=1551-2916&rft.volume=80&rft.issue=1&rft.spage=62&rft.epage=68&rft_id=info:doi/10.1111%2Fj.1151-2916.1997.tb02791.x&rft.externalDBID=n%2Fa&rft.externalDocID=2553439 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7820&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7820&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7820&client=summon |