Modulation of HDL metabolism by probucol in complete cholesteryl ester transfer protein deficiency
Probucol, an antioxidative and hypolipidemic agent, has been postulated to increase reverse cholesterol transport by enhancing cholesteryl ester transfer protein (CETP) activity. However, its clinical implication in CETP deficient patients has not been fully defined. To characterize the effects of p...
Saved in:
Published in: | Atherosclerosis Vol. 171; no. 1; pp. 131 - 136 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Amsterdam
Elsevier Ireland Ltd
01-11-2003
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Probucol, an antioxidative and hypolipidemic agent, has been postulated to increase reverse cholesterol transport by enhancing cholesteryl ester transfer protein (CETP) activity. However, its clinical implication in CETP deficient patients has not been fully defined. To characterize the effects of probucol in the absence of CETP, we evaluated the changes in lipid profile, lipid peroxidation, and paraoxonase 1 (PON1) activity in two complete CETP deficient patients, caused by treatment with probucol.
When the patients were not receiving probucol, low-density lipoprotein (LDL) particles were smaller and high-density lipoprotein (HDL) particles were larger in these patients than in controls. Treatment with probucol (500
mg/day) resulted in the decrease in the levels of HDL-C and apolipoprotein (apo) A-I up to 22%. The size of HDL particles became smaller. LDL cholesterol concentration did not change in one patient, while it decreased by 47% in the other. PON1 activity/HDL-C, which was about 40% lower in the patients before treatment than in controls with the matching PON1 genotype, increased by 30% during the treatment. Lag time for LDL and HDL in both cases became prolonged more than 1.8 times after administration of probucol.
This study demonstrated for the first time that probucol reduces HDL-C even in humans with complete CETP deficiency. Probucol treatment in these patients was also associated with protection of lipoproteins against oxidative stress, suggesting a clinical benefit of this drug even in such a state. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0021-9150 1879-1484 |
DOI: | 10.1016/j.atherosclerosis.2003.08.005 |