Fast and robust active neuron segmentation in two-photon calcium imaging using spatiotemporal deep learning

Calcium imaging records large-scale neuronal activity with cellular resolution in vivo. Automated, fast, and reliable active neuron segmentation is a critical step in the analysis workflow of utilizing neuronal signals in real-time behavioral studies for discovery of neuronal coding properties. Here...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS Vol. 116; no. 17; pp. 8554 - 8563
Main Authors: Soltanian-Zadeh, Somayyeh, Sahingur, Kaan, Blau, Sarah, Gong, Yiyang, Farsiu, Sina
Format: Journal Article
Language:English
Published: United States National Academy of Sciences 23-04-2019
Series:PNAS Plus
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Calcium imaging records large-scale neuronal activity with cellular resolution in vivo. Automated, fast, and reliable active neuron segmentation is a critical step in the analysis workflow of utilizing neuronal signals in real-time behavioral studies for discovery of neuronal coding properties. Here, to exploit the full spatiotemporal information in two-photon calcium imaging movies, we propose a 3D convolutional neural network to identify and segment active neurons. By utilizing a variety of two-photon microscopy datasets, we show that our method outperforms state-of-the-art techniques and is on a par with manual segmentation. Furthermore, we demonstrate that the network trained on data recorded at a specific cortical layer can be used to accurately segment active neurons from another layer with different neuron density. Finally, our work documents significant tabulation flaws in one of the most cited and active online scientific challenges in neuron segmentation. As our computationally fast method is an invaluable tool for a large spectrum of real-time optogenetic experiments, we have made our open-source software and carefully annotated dataset freely available online.
AbstractList Two-photon calcium imaging is a standard technique of neuroscience laboratories that records neural activity from individual neurons over large populations in awake-behaving animals. Automatic and accurate identification of behaviorally relevant neurons from these recordings is a critical step toward complete mapping of brain activity. To this end, we present a fast deep learning framework which significantly outperforms previous methods and is the first to be as accurate as human experts in segmenting active and overlapping neurons. Such neuron detection performance is crucial for precise quantification of population-level and single-cell–level neural coding statistics, which will aid neuroscientists to temporally synchronize dynamic behavioral or neural stimulus to the subjects’ neural activity, opening the door for unprecedented accelerated progress in neuroscientific experiments. Calcium imaging records large-scale neuronal activity with cellular resolution in vivo. Automated, fast, and reliable active neuron segmentation is a critical step in the analysis workflow of utilizing neuronal signals in real-time behavioral studies for discovery of neuronal coding properties. Here, to exploit the full spatiotemporal information in two-photon calcium imaging movies, we propose a 3D convolutional neural network to identify and segment active neurons. By utilizing a variety of two-photon microscopy datasets, we show that our method outperforms state-of-the-art techniques and is on a par with manual segmentation. Furthermore, we demonstrate that the network trained on data recorded at a specific cortical layer can be used to accurately segment active neurons from another layer with different neuron density. Finally, our work documents significant tabulation flaws in one of the most cited and active online scientific challenges in neuron segmentation. As our computationally fast method is an invaluable tool for a large spectrum of real-time optogenetic experiments, we have made our open-source software and carefully annotated dataset freely available online.
Calcium imaging records large-scale neuronal activity with cellular resolution in vivo. Automated, fast, and reliable active neuron segmentation is a critical step in the analysis workflow of utilizing neuronal signals in real-time behavioral studies for discovery of neuronal coding properties. Here, to exploit the full spatiotemporal information in two-photon calcium imaging movies, we propose a 3D convolutional neural network to identify and segment active neurons. By utilizing a variety of two-photon microscopy datasets, we show that our method outperforms state-of-the-art techniques and is on a par with manual segmentation. Furthermore, we demonstrate that the network trained on data recorded at a specific cortical layer can be used to accurately segment active neurons from another layer with different neuron density. Finally, our work documents significant tabulation flaws in one of the most cited and active online scientific challenges in neuron segmentation. As our computationally fast method is an invaluable tool for a large spectrum of real-time optogenetic experiments, we have made our open-source software and carefully annotated dataset freely available online.Calcium imaging records large-scale neuronal activity with cellular resolution in vivo. Automated, fast, and reliable active neuron segmentation is a critical step in the analysis workflow of utilizing neuronal signals in real-time behavioral studies for discovery of neuronal coding properties. Here, to exploit the full spatiotemporal information in two-photon calcium imaging movies, we propose a 3D convolutional neural network to identify and segment active neurons. By utilizing a variety of two-photon microscopy datasets, we show that our method outperforms state-of-the-art techniques and is on a par with manual segmentation. Furthermore, we demonstrate that the network trained on data recorded at a specific cortical layer can be used to accurately segment active neurons from another layer with different neuron density. Finally, our work documents significant tabulation flaws in one of the most cited and active online scientific challenges in neuron segmentation. As our computationally fast method is an invaluable tool for a large spectrum of real-time optogenetic experiments, we have made our open-source software and carefully annotated dataset freely available online.
Calcium imaging records large-scale neuronal activity with cellular resolution in vivo. Automated, fast, and reliable active neuron segmentation is a critical step in the analysis workflow of utilizing neuronal signals in real-time behavioral studies for discovery of neuronal coding properties. Here, to exploit the full spatiotemporal information in two-photon calcium imaging movies, we propose a 3D convolutional neural network to identify and segment active neurons. By utilizing a variety of two-photon microscopy datasets, we show that our method outperforms state-of-the-art techniques and is on a par with manual segmentation. Furthermore, we demonstrate that the network trained on data recorded at a specific cortical layer can be used to accurately segment active neurons from another layer with different neuron density. Finally, our work documents significant tabulation flaws in one of the most cited and active online scientific challenges in neuron segmentation. As our computationally fast method is an invaluable tool for a large spectrum of real-time optogenetic experiments, we have made our open-source software and carefully annotated dataset freely available online.
Author Farsiu, Sina
Sahingur, Kaan
Gong, Yiyang
Soltanian-Zadeh, Somayyeh
Blau, Sarah
Author_xml – sequence: 1
  givenname: Somayyeh
  surname: Soltanian-Zadeh
  fullname: Soltanian-Zadeh, Somayyeh
– sequence: 2
  givenname: Kaan
  surname: Sahingur
  fullname: Sahingur, Kaan
– sequence: 3
  givenname: Sarah
  surname: Blau
  fullname: Blau, Sarah
– sequence: 4
  givenname: Yiyang
  surname: Gong
  fullname: Gong, Yiyang
– sequence: 5
  givenname: Sina
  surname: Farsiu
  fullname: Farsiu, Sina
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30975747$$D View this record in MEDLINE/PubMed
BookMark eNpVkUFv3CAQhVGVqtkkPffUimMvTgZjwFwqVVHTRoqUS3NGmB1vnNrgAk7Ufx-sTbfNBRi9j5kH74Qc-eCRkA8MzhkofjF7m85Zy2qtBWPyDdkw0KySjYYjsgGoVdU2dXNMTlJ6AAAtWnhHjjloJVSjNuTXlU2ZWr-lMXTLenR5eETqcYnB04S7CX22eSjF4Gl-CtV8H3KpnB3dsEx0mOxu8Du6pHVN88pmnOYQ7Ui3iDMd0UZfxDPytrdjwvcv-ym5u_r28_JHdXP7_fry603lmpblynYIomMMapTScSYk9gIbRMttx5BJJhrcQq254wKgt13Xt61kTjmFPQA_JV_2feelm3DrygOKFzPHYjX-McEO5rXih3uzC49GNq1UqikNPr80iOH3gimbaUgOx9F6DEsydV0-UivQuqAXe9TFkFLE_jCGgVkjMmtE5l9E5can_90d-L-ZFODjHnhIOcSDXksFXPCWPwNFdpyX
CitedBy_id crossref_primary_10_1109_TIP_2022_3171414
crossref_primary_10_3389_fnins_2021_620869
crossref_primary_10_1038_s43586_022_00147_1
crossref_primary_10_1186_s40708_022_00166_4
crossref_primary_10_3390_app12146876
crossref_primary_10_3390_cells11121877
crossref_primary_10_1016_j_xpro_2021_101010
crossref_primary_10_1016_j_semcdb_2020_05_024
crossref_primary_10_3389_fbioe_2019_00202
crossref_primary_10_1038_s41593_023_01476_4
crossref_primary_10_3390_ijms21186737
crossref_primary_10_1016_j_neuroscience_2022_03_034
crossref_primary_10_1016_j_eml_2021_101226
crossref_primary_10_1038_s41598_022_09975_3
crossref_primary_10_1093_bib_bbaa355
crossref_primary_10_1038_s42256_021_00342_x
crossref_primary_10_1007_s10506_022_09312_z
crossref_primary_10_1016_j_eswa_2022_118090
crossref_primary_10_2139_ssrn_4016761
crossref_primary_10_1038_s41467_022_29180_0
crossref_primary_10_3389_fncel_2023_1127847
crossref_primary_10_1038_s41598_021_87471_w
crossref_primary_10_1364_BOE_10_003815
crossref_primary_10_1371_journal_pcbi_1008806
crossref_primary_10_3389_fnins_2020_569361
crossref_primary_10_1038_s41592_023_01838_7
crossref_primary_10_3389_fncel_2022_917713
crossref_primary_10_1016_j_compbiomed_2023_107617
crossref_primary_10_1007_s12021_021_09532_9
crossref_primary_10_3389_fncel_2019_00474
crossref_primary_10_3390_bioengineering11020111
crossref_primary_10_1038_s42003_021_02452_z
crossref_primary_10_3390_cells9061528
crossref_primary_10_3390_ijms22052659
crossref_primary_10_1038_s41598_021_04093_y
crossref_primary_10_3389_fnins_2021_630250
crossref_primary_10_3390_app12041877
crossref_primary_10_7554_eLife_58882
crossref_primary_10_1140_epjs_s11734_021_00367_8
crossref_primary_10_1080_01621459_2021_1938083
crossref_primary_10_1038_s41467_021_26255_2
crossref_primary_10_1523_ENEURO_0352_23_2024
crossref_primary_10_1371_journal_pcbi_1008565
crossref_primary_10_1117_1_NPh_10_4_044405
crossref_primary_10_1016_j_jneumeth_2021_109266
crossref_primary_10_1109_TBME_2022_3188173
crossref_primary_10_1364_BOE_521478
crossref_primary_10_1016_j_neuron_2021_10_034
crossref_primary_10_1016_j_neunet_2021_09_018
crossref_primary_10_1111_jnc_15711
crossref_primary_10_1364_BOE_425742
crossref_primary_10_1364_OPTICA_418274
crossref_primary_10_1016_j_ibneur_2023_12_009
crossref_primary_10_1109_TBME_2020_3004548
crossref_primary_10_1016_j_ajo_2020_07_020
crossref_primary_10_3389_fnins_2021_797421
crossref_primary_10_1016_j_neuron_2023_09_006
crossref_primary_10_1364_BOE_399020
crossref_primary_10_3389_fnins_2019_01346
crossref_primary_10_1117_1_NPh_9_4_041402
crossref_primary_10_7554_eLife_85550
crossref_primary_10_1016_j_cub_2020_04_090
crossref_primary_10_1016_j_isci_2022_104277
crossref_primary_10_1111_jmi_12880
crossref_primary_10_3389_fncom_2020_00043
crossref_primary_10_1016_j_cellsig_2021_110225
crossref_primary_10_1038_s41592_023_01789_z
Cites_doi 10.1038/nature12354
10.1109/ICCV.2015.510
10.1152/jn.01073.2009
10.1038/nmeth.4230
10.1016/j.jneumeth.2017.07.031
10.1038/nature14539
10.1038/nn.2648
10.1109/TBME.2018.2812078
10.1162/neco.1995.7.6.1129
10.1523/ENEURO.0012-17.2017
10.1038/nmeth.1694
10.3389/fninf.2014.00080
10.1109/TAU.1968.1161990
10.1109/3DV.2016.79
10.1109/TMI.2018.2806309
10.1016/j.neuron.2015.11.037
10.1523/ENEURO.0304-18.2019
10.1016/j.cmpb.2018.01.025
10.1016/j.neuron.2010.01.033
10.1371/journal.pcbi.1005685
10.1371/journal.pcbi.1005423
10.1038/ncomms12190
10.1016/j.neuron.2012.02.011
10.1016/j.neunet.2014.03.007
10.7554/eLife.38173
10.1007/978-3-319-67558-9_33
10.1101/061507
10.1016/0165-1684(94)90060-4
10.1109/TPAMI.2017.2712608
10.1016/j.neuron.2009.08.009
10.7554/eLife.28728
10.1016/j.bpj.2012.07.058
10.1007/s00429-017-1545-5
10.1016/j.media.2016.10.004
ContentType Journal Article
Copyright 2019
Copyright_xml – notice: 2019
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1073/pnas.1812995116
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 8563
ExternalDocumentID 10_1073_pnas_1812995116
30975747
26703538
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: T32 EB001040
– fundername: NEI NIH HHS
  grantid: P30 EY005722
– fundername: HHS | National Institutes of Health (NIH)
  grantid: P30-EY005722
– fundername: National Science Foundation (NSF)
  grantid: NCS-FO 1533598
– fundername: HHS | National Institutes of Health (NIH)
  grantid: T32-EB001040
– fundername: Arnold and Mabel Beckman Foundation
  grantid: N/A
– fundername: Google
  grantid: N/A
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
79B
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
ASUFR
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F5P
FRP
GX1
HH5
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
~02
~KM
ADACV
CGR
CUY
CVF
ECM
EIF
H13
IPSME
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c481t-abe05b1102e66c3156ef5e4eea3ab1e16154ed0293c3500fabbf8861c7c7ef003
IEDL.DBID RPM
ISSN 0027-8424
1091-6490
IngestDate Tue Sep 17 21:16:49 EDT 2024
Sat Oct 26 04:46:02 EDT 2024
Thu Nov 21 22:19:14 EST 2024
Sat Nov 02 12:29:46 EDT 2024
Fri Feb 02 07:30:20 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords neuron segmentation
deep learning
two-photon microscopy
open source
calcium imaging
Language English
License Published under the PNAS license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c481t-abe05b1102e66c3156ef5e4eea3ab1e16154ed0293c3500fabbf8861c7c7ef003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by Terrence J. Sejnowski, Salk Institute for Biological Studies, La Jolla, CA, and approved March 19, 2019 (received for review July 28, 2018)
Author contributions: S.S.-Z., Y.G., and S.F. designed research; S.S.-Z., Y.G., and S.F. performed research; S.S.-Z., K.S., S.B., Y.G., and S.F. analyzed data; and S.S.-Z., Y.G., and S.F. wrote the paper.
ORCID 0000-0003-2726-8501
0000-0003-4872-2902
OpenAccessLink https://www.pnas.org/content/pnas/116/17/8554.full.pdf
PMID 30975747
PQID 2209597099
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6486774
proquest_miscellaneous_2209597099
crossref_primary_10_1073_pnas_1812995116
pubmed_primary_30975747
jstor_primary_26703538
PublicationCentury 2000
PublicationDate 2019-04-23
PublicationDateYYYYMMDD 2019-04-23
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-23
  day: 23
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationSeriesTitle PNAS Plus
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2019
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References 31147648 - Nat Methods. 2019 Jun;16(6):460. doi: 10.1038/s41592-019-0450-7
Long J (e_1_3_4_21_2) 2015
Giovannucci A (e_1_3_4_19_2) 2019; 8
Pnevmatikakis EA (e_1_3_4_13_2) 2016; 89
Çiçek Ö (e_1_3_4_25_2) 2016
Milletari F (e_1_3_4_27_2) 2016
e_1_3_4_40_2
Srivastava N (e_1_3_4_36_2) 2014; 15
e_1_3_4_46_2
Ioffe S (e_1_3_4_37_2) 2015
Friedrich J (e_1_3_4_35_2) 2017; 13
Pnevmatikakis EA (e_1_3_4_42_2) 2017; 291
Gibson E (e_1_3_4_44_2) 2018; 158
Dombeck DA (e_1_3_4_2_2) 2010; 13
Meyer F (e_1_3_4_47_2) 1994; 38
Tran D (e_1_3_4_23_2) 2015
e_1_3_4_30_2
Friedrich J (e_1_3_4_29_2) 2017; 13
Oppenheim Av (e_1_3_4_43_2) 1968; 16
e_1_3_4_15_2
Klibisz A (e_1_3_4_18_2) 2017
Ronneberger O (e_1_3_4_22_2) 2015
Yosinski J (e_1_3_4_38_2) 2014
Gibson E (e_1_3_4_31_2) 2018; 37
Kaifosh P (e_1_3_4_9_2) 2014; 8
e_1_3_4_41_2
e_1_3_4_6_2
Wilt BA (e_1_3_4_49_2) 2013; 104
Kamnitsas K (e_1_3_4_26_2) 2017; 36
Deneux T (e_1_3_4_34_2) 2016; 7
Varol G (e_1_3_4_24_2) 2018; 40
Ghosh KK (e_1_3_4_3_2) 2011; 8
e_1_3_4_28_2
Guan J (e_1_3_4_8_2) 2018; 223
Soltanian-Zadeh S (e_1_3_4_48_2) 2018; 65
LeCun Y (e_1_3_4_20_2) 2015; 521
Grienberger C (e_1_3_4_4_2) 2012; 73
Huang G (e_1_3_4_45_2) 2017
Vogelstein JT (e_1_3_4_33_2) 2010; 104
Chen T-W (e_1_3_4_1_2) 2013; 499
Giovannucci A (e_1_3_4_7_2) 2017
Mukamel EA (e_1_3_4_11_2) 2009; 63
Apthorpe N (e_1_3_4_17_2) 2016
Bell AJ (e_1_3_4_32_2) 1995; 7
e_1_3_4_12_2
Reynolds S (e_1_3_4_14_2) 2017; 4
Zhou P (e_1_3_4_16_2) 2018; 7
Niell CM (e_1_3_4_50_2) 2010; 65
Yang W (e_1_3_4_5_2) 2017; 14
e_1_3_4_39_2
Maruyama R (e_1_3_4_10_2) 2014; 55
References_xml – start-page: 2261
  volume-title: Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition
  year: 2017
  ident: e_1_3_4_45_2
  contributor:
    fullname: Huang G
– volume: 499
  start-page: 295
  year: 2013
  ident: e_1_3_4_1_2
  article-title: Ultrasensitive fluorescent proteins for imaging neuronal activity
  publication-title: Nature
  doi: 10.1038/nature12354
  contributor:
    fullname: Chen T-W
– start-page: 4489
  volume-title: 2015 IEEE International Conference on Computer Vision (ICCV)
  year: 2015
  ident: e_1_3_4_23_2
  doi: 10.1109/ICCV.2015.510
  contributor:
    fullname: Tran D
– start-page: 3320
  volume-title: Proceedings of the 27th International Conference on Neural Information Processing Systems
  year: 2014
  ident: e_1_3_4_38_2
  contributor:
    fullname: Yosinski J
– volume: 104
  start-page: 3691
  year: 2010
  ident: e_1_3_4_33_2
  article-title: Fast nonnegative deconvolution for spike train inference from population calcium imaging
  publication-title: J Neurophysiol
  doi: 10.1152/jn.01073.2009
  contributor:
    fullname: Vogelstein JT
– volume: 14
  start-page: 349
  year: 2017
  ident: e_1_3_4_5_2
  article-title: In vivo imaging of neural activity
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4230
  contributor:
    fullname: Yang W
– ident: e_1_3_4_6_2
– start-page: 234
  volume-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
  year: 2015
  ident: e_1_3_4_22_2
  contributor:
    fullname: Ronneberger O
– volume: 291
  start-page: 83
  year: 2017
  ident: e_1_3_4_42_2
  article-title: NoRMCorre: An online algorithm for piecewise rigid motion correction of calcium imaging data
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2017.07.031
  contributor:
    fullname: Pnevmatikakis EA
– volume: 521
  start-page: 436
  year: 2015
  ident: e_1_3_4_20_2
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
  contributor:
    fullname: LeCun Y
– volume: 13
  start-page: 1433
  year: 2010
  ident: e_1_3_4_2_2
  article-title: Functional imaging of hippocampal place cells at cellular resolution during virtual navigation
  publication-title: Nat Neurosci
  doi: 10.1038/nn.2648
  contributor:
    fullname: Dombeck DA
– start-page: 3431
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  year: 2015
  ident: e_1_3_4_21_2
  contributor:
    fullname: Long J
– volume: 65
  start-page: 2428
  year: 2018
  ident: e_1_3_4_48_2
  article-title: Information-theoretic approach and fundamental limits of resolving two closely timed neuronal spikes in mouse brain calcium imaging
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2018.2812078
  contributor:
    fullname: Soltanian-Zadeh S
– volume: 7
  start-page: 1129
  year: 1995
  ident: e_1_3_4_32_2
  article-title: An information-maximization approach to blind separation and blind deconvolution
  publication-title: Neural Comput
  doi: 10.1162/neco.1995.7.6.1129
  contributor:
    fullname: Bell AJ
– volume: 4
  start-page: ENEURO.0012-17.
  year: 2017
  ident: e_1_3_4_14_2
  article-title: ABLE: An activity-based level set segmentation algorithm for two-photon calcium imaging data
  publication-title: eNeuro
  doi: 10.1523/ENEURO.0012-17.2017
  contributor:
    fullname: Reynolds S
– volume: 8
  start-page: 871
  year: 2011
  ident: e_1_3_4_3_2
  article-title: Miniaturized integration of a fluorescence microscope
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1694
  contributor:
    fullname: Ghosh KK
– ident: e_1_3_4_41_2
– ident: e_1_3_4_39_2
– volume: 8
  start-page: 80
  year: 2014
  ident: e_1_3_4_9_2
  article-title: SIMA: Python software for analysis of dynamic fluorescence imaging data
  publication-title: Front Neuroinform
  doi: 10.3389/fninf.2014.00080
  contributor:
    fullname: Kaifosh P
– volume: 16
  start-page: 437
  year: 1968
  ident: e_1_3_4_43_2
  article-title: Nonlinear filtering of multiplied and convolved signals
  publication-title: IEEE Trans Audio Electroacoust
  doi: 10.1109/TAU.1968.1161990
  contributor:
    fullname: Oppenheim Av
– volume: 15
  start-page: 1929
  year: 2014
  ident: e_1_3_4_36_2
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
  contributor:
    fullname: Srivastava N
– start-page: 565
  volume-title: 2016 Fourth International Conference on 3D Vision (3DV)
  year: 2016
  ident: e_1_3_4_27_2
  doi: 10.1109/3DV.2016.79
  contributor:
    fullname: Milletari F
– volume: 37
  start-page: 1822
  year: 2018
  ident: e_1_3_4_31_2
  article-title: Automatic multi-organ segmentation on abdominal CT with dense v-networks
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2018.2806309
  contributor:
    fullname: Gibson E
– volume: 89
  start-page: 285
  year: 2016
  ident: e_1_3_4_13_2
  article-title: Simultaneous denoising, deconvolution, and demixing of calcium imaging data
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.11.037
  contributor:
    fullname: Pnevmatikakis EA
– ident: e_1_3_4_15_2
  doi: 10.1523/ENEURO.0304-18.2019
– volume: 158
  start-page: 113
  year: 2018
  ident: e_1_3_4_44_2
  article-title: NiftyNet: A deep-learning platform for medical imaging
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2018.01.025
  contributor:
    fullname: Gibson E
– volume: 65
  start-page: 472
  year: 2010
  ident: e_1_3_4_50_2
  article-title: Modulation of visual responses by behavioral state in mouse visual cortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.01.033
  contributor:
    fullname: Niell CM
– volume: 13
  start-page: e1005685
  year: 2017
  ident: e_1_3_4_29_2
  article-title: Multi-scale approaches for high-speed imaging and analysis of large neural populations
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1005685
  contributor:
    fullname: Friedrich J
– volume: 13
  start-page: e1005423
  year: 2017
  ident: e_1_3_4_35_2
  article-title: Fast online deconvolution of calcium imaging data
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1005423
  contributor:
    fullname: Friedrich J
– ident: e_1_3_4_28_2
– volume: 7
  start-page: 12190
  year: 2016
  ident: e_1_3_4_34_2
  article-title: Accurate spike estimation from noisy calcium signals for ultrafast three-dimensional imaging of large neuronal populations in vivo
  publication-title: Nat Commun
  doi: 10.1038/ncomms12190
  contributor:
    fullname: Deneux T
– ident: e_1_3_4_30_2
– volume: 73
  start-page: 862
  year: 2012
  ident: e_1_3_4_4_2
  article-title: Imaging calcium in neurons
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.02.011
  contributor:
    fullname: Grienberger C
– volume: 55
  start-page: 11
  year: 2014
  ident: e_1_3_4_10_2
  article-title: Detecting cells using non-negative matrix factorization on calcium imaging data
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2014.03.007
  contributor:
    fullname: Maruyama R
– volume: 8
  start-page: e38173
  year: 2019
  ident: e_1_3_4_19_2
  article-title: CaImAn an open source tool for scalable calcium imaging data analysis
  publication-title: eLife
  doi: 10.7554/eLife.38173
  contributor:
    fullname: Giovannucci A
– start-page: 3270
  volume-title: Proceedings of the 30th International Conference on Neural Information Processing Systems
  year: 2016
  ident: e_1_3_4_17_2
  contributor:
    fullname: Apthorpe N
– start-page: 285
  volume-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support
  year: 2017
  ident: e_1_3_4_18_2
  doi: 10.1007/978-3-319-67558-9_33
  contributor:
    fullname: Klibisz A
– start-page: 424
  volume-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
  year: 2016
  ident: e_1_3_4_25_2
  contributor:
    fullname: Çiçek Ö
– ident: e_1_3_4_12_2
  doi: 10.1101/061507
– volume: 38
  start-page: 113
  year: 1994
  ident: e_1_3_4_47_2
  article-title: Topographic distance and watershed lines
  publication-title: Signal Process
  doi: 10.1016/0165-1684(94)90060-4
  contributor:
    fullname: Meyer F
– volume: 40
  start-page: 1510
  year: 2018
  ident: e_1_3_4_24_2
  article-title: Long-term temporal convolutions for action recognition
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2017.2712608
  contributor:
    fullname: Varol G
– volume: 63
  start-page: 747
  year: 2009
  ident: e_1_3_4_11_2
  article-title: Automated analysis of cellular signals from large-scale calcium imaging data
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.08.009
  contributor:
    fullname: Mukamel EA
– volume: 7
  start-page: e28728
  year: 2018
  ident: e_1_3_4_16_2
  article-title: Efficient and accurate extraction of in vivo calcium signals from microendoscopic video data
  publication-title: eLife
  doi: 10.7554/eLife.28728
  contributor:
    fullname: Zhou P
– start-page: 2378
  volume-title: Advances in Neural Information Processing Systems 30
  year: 2017
  ident: e_1_3_4_7_2
  contributor:
    fullname: Giovannucci A
– volume: 104
  start-page: 51
  year: 2013
  ident: e_1_3_4_49_2
  article-title: Photon shot noise limits on optical detection of neuronal spikes and estimation of spike timing
  publication-title: Biophys J
  doi: 10.1016/j.bpj.2012.07.058
  contributor:
    fullname: Wilt BA
– start-page: 448
  volume-title: Proceedings of the 32nd International Conference on Machine Learning
  year: 2015
  ident: e_1_3_4_37_2
  contributor:
    fullname: Ioffe S
– ident: e_1_3_4_40_2
– ident: e_1_3_4_46_2
– volume: 223
  start-page: 519
  year: 2018
  ident: e_1_3_4_8_2
  article-title: NeuroSeg: Automated cell detection and segmentation for in vivo two-photon Ca2+ imaging data
  publication-title: Brain Struct Funct
  doi: 10.1007/s00429-017-1545-5
  contributor:
    fullname: Guan J
– volume: 36
  start-page: 61
  year: 2017
  ident: e_1_3_4_26_2
  article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2016.10.004
  contributor:
    fullname: Kamnitsas K
SSID ssj0009580
Score 2.6088912
Snippet Calcium imaging records large-scale neuronal activity with cellular resolution in vivo. Automated, fast, and reliable active neuron segmentation is a critical...
Two-photon calcium imaging is a standard technique of neuroscience laboratories that records neural activity from individual neurons over large populations in...
SourceID pubmedcentral
proquest
crossref
pubmed
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 8554
SubjectTerms Animals
Biological Sciences
Calcium - metabolism
Deep Learning
Humans
Image Processing, Computer-Assisted - methods
Mice
Mice, Transgenic
Microscopy, Fluorescence, Multiphoton - methods
Neurons - cytology
Neurons - metabolism
Physical Sciences
PNAS Plus
Visual Cortex - cytology
SummonAdditionalLinks – databaseName: JSTOR Health & General Sciences
  dbid: JSG
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbtQwEB2xPXEBChRCCzISSOUQmrWT2Dki6FJx4FKQuEW2M96u2nVWzUb8PmMnWbYIJG6R4kiW34z9nJl5A_DG5pZXXJPxVs6keWlEqty8SrHMuCtVUTVZKE6-uJRff6hP50Em5-1UCxPSKmNeYIziE0EyN3jGS7JL8swZzFT0vi-Xn_eUddVQZ8Jpu815Pun3SHG28bp7H46winhE6Gi-d_QM2Yd_45V_pkfunTeLh_8500fwYCSU7MNgAYdwD_1jOBxdtmOno670uydwvdDdlmnfsNvW9OEx7nUsSlp61uFyPRYiebbybPuzTTdXLXFDRjjaVb9mq3XsacRCsvySdTEZe9S2umEN4oaNTSiWT-H74vzbx4t07LWQ2lzNt6k2mBWGuADHsrSCbnXoCswRtdBmjoEX5thkRA6sKLLMaWOcUuXcSivR0dZwBAe-9fgcGNpcF1oXjdZ010RnGkvgGCGl0lq4IoHTCYZ6M0hq1DEULkUdEKt_I5bAUVzi3bhpfRN4PeFWkz-EIIf22PZdzXn4symJ-CbwbMBx97XIKlnQ_SkBeQfh3YCgtX33jV9dRc3tMigTyvzFvyZ0DPeJSsU4ExcncLC97fElzLqmfxXN9RfMTOq_
  priority: 102
  providerName: JSTOR
Title Fast and robust active neuron segmentation in two-photon calcium imaging using spatiotemporal deep learning
URI https://www.jstor.org/stable/26703538
https://www.ncbi.nlm.nih.gov/pubmed/30975747
https://www.proquest.com/docview/2209597099
https://pubmed.ncbi.nlm.nih.gov/PMC6486774
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtQwELXYnrggChRC25WROJRDdhM7iZNjVboqQiAkQOIW2c54G9E4UbNRf79jJ1laxIlbpNhS5BnPPMdv3hDyXieaFUyi8xZGhUmmeJibuAghi5jJ8rSoIlecfPVdfP2Vf7x0MjnpXAvjSfta1St706xsfe25lV2j1zNPbP3ty0XmZOJEsl6QBWLD-Yi-V9rNx7oThuE3Ycms5yP4urOyX7mUViCuiF33Ih4VIhWut8qDrDQSE_8FOf9mTj5IRZvn5NmEIen5-K2H5AnYF-Rw2qU9PZukpD-8JL83st9RaSt626rBPfrwRr2KpaU9bJup9sjS2tLdXRt21y3CQYqm0_XQ0LrxbYyo48dvae_515Oc1Q2tADo69Z3YviI_N5c_Lq7Cqb1CqJM83oVSQZQqTP8MskxzPMiBSSEBkFyqGBwUTKCKEA9onkaRkUqZPM9iLbQAg9HgiBzY1sIbQkEnMpUyraTE4yUYVWlcf8WFyKXkJg3I2by8ZTeqaJT-9lvw0hml_GOUgBz55d-PYxkGJQzLAXk326PELeDuNaSFduhLxtzPTIFYNyCvR_vsZ88GDoh4ZLn9ACev_fgNep2X2Z687O1_zzwmTxFe-bsnxk_Iwe52gFOy6KthieD90-elJ6AufZeLpXfie_Su9lA
link.rule.ids 230,315,729,782,786,808,811,887,27933,27934,53800,53802,58025,58037,58258,58270
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB3RcoALUKAQoGAkkMohNOuPODlWbVeLKL1QJG6R7Yy3K7rOqtmIv4_tJMsWgcQtUhzJ8puxnzMzbwDeGW5oSZU33tLqlOeapYWdlCnmGbV5Ico6C8XJs6_y4ntxehZkct6PtTAhrTLmBcYovidI-hqPaO7t0nvmDtwVRcZkn7m3pa1b9JUm1G-4nPJRwUeyo5VT7cdwiJWeSYSe5luHT59_-Ddm-WeC5NaJM334n3N9BA8GSkmOexvYgzvoHsPe4LQtORyUpT88gR9T1a6JcjW5aXQXHuNuR6KopSMtzpdDKZIjC0fWP5t0ddV4dkg8kmbRLcliGbsakZAuPydtTMce1K2uSY24IkMbivlT-DY9uzyZpUO3hdTwYrJOlcZMaM8GKOa5Yf5eh1YgR1RM6QkGZsixzjw9MExkmVVa26LIJ0YaidZvDvuw6xqHz4Gg4UooJWql_G0Tra6NB0czKQulmBUJHI4wVKteVKOKwXDJqoBY9RuxBPbjEm_GjeubwNsRt8p7RAhzKIdN11aUhn-b0lPfBJ71OG6-Zlkphb9BJSBvIbwZENS2b79xi6uoup0HbULJX_xrQm_g3uzyy3l1_uni80u474lVjDpR9gp21zcdHsBOW3evo-n-AmEu7iI
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB3RIiEuQIGW8GkkDu0hbNZO4uSIaFdFoAoJkLhFtjPerug6UbMRf5-xkyxbBAdukeJIlt_YfpOZeQPwxqSGl1yR8ZZWx2muRVzYeRljnnCbF1lZJ744-fyLvPhenJ55mZyTqRbGp1WGvMAQxSeCpK9w1tZ2xnOyTdqde3A7I6-mGJoD7OjrFkO1CadDN-XppOIjxax1qnvrL7KS2ITva75zAQ05iH9jl38mSe7cOov7_zHfB3BvpJbs3WALB3AL3UM4GDdvx45HhemTR_BjoboNU65m143u_WM49VgQt3Ssw-V6LElybOXY5mcTt5cNsURGiJpVv2ardehuxHza_JJ1IS17VLm6YjViy8Z2FMvH8G1x9vX9eTx2XYhNWsw3sdKYZJpYAcc8N4L8O7QZpohKKD1HzxBTrBOiCUZkSWKV1rYo8rmRRqKlQ-IQ9l3j8AkwNKnKlMpqpcjrRKtrQwBpIWWhlLBZBMcTFFU7iGtUISguReVRq36jFsFhWObtuGl9I3g9YVfRzvDhDuWw6buKc_-PUxIFjuBowHL7tUhKmZEnFYG8gfJ2gFfdvvnGrS6D-nbuNQpl-vRfE3oFdz6fLqpPHy4-PoO7xK9C8ImL57C_ue7xBex1df8yWO8v8uTwmw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+and+robust+active+neuron+segmentation+in+two-photon+calcium+imaging+using+spatiotemporal+deep+learning&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Soltanian-Zadeh%2C+Somayyeh&rft.au=Sahingur%2C+Kaan&rft.au=Blau%2C+Sarah&rft.au=Gong%2C+Yiyang&rft.date=2019-04-23&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=116&rft.issue=17&rft.spage=8554&rft.epage=8563&rft_id=info:doi/10.1073%2Fpnas.1812995116&rft.externalDocID=26703538
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon