Fast and robust active neuron segmentation in two-photon calcium imaging using spatiotemporal deep learning
Calcium imaging records large-scale neuronal activity with cellular resolution in vivo. Automated, fast, and reliable active neuron segmentation is a critical step in the analysis workflow of utilizing neuronal signals in real-time behavioral studies for discovery of neuronal coding properties. Here...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS Vol. 116; no. 17; pp. 8554 - 8563 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
National Academy of Sciences
23-04-2019
|
Series: | PNAS Plus |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Calcium imaging records large-scale neuronal activity with cellular resolution in vivo. Automated, fast, and reliable active neuron segmentation is a critical step in the analysis workflow of utilizing neuronal signals in real-time behavioral studies for discovery of neuronal coding properties. Here, to exploit the full spatiotemporal information in two-photon calcium imaging movies, we propose a 3D convolutional neural network to identify and segment active neurons. By utilizing a variety of two-photon microscopy datasets, we show that our method outperforms state-of-the-art techniques and is on a par with manual segmentation. Furthermore, we demonstrate that the network trained on data recorded at a specific cortical layer can be used to accurately segment active neurons from another layer with different neuron density. Finally, our work documents significant tabulation flaws in one of the most cited and active online scientific challenges in neuron segmentation. As our computationally fast method is an invaluable tool for a large spectrum of real-time optogenetic experiments, we have made our open-source software and carefully annotated dataset freely available online. |
---|---|
AbstractList | Two-photon calcium imaging is a standard technique of neuroscience laboratories that records neural activity from individual neurons over large populations in awake-behaving animals. Automatic and accurate identification of behaviorally relevant neurons from these recordings is a critical step toward complete mapping of brain activity. To this end, we present a fast deep learning framework which significantly outperforms previous methods and is the first to be as accurate as human experts in segmenting active and overlapping neurons. Such neuron detection performance is crucial for precise quantification of population-level and single-cell–level neural coding statistics, which will aid neuroscientists to temporally synchronize dynamic behavioral or neural stimulus to the subjects’ neural activity, opening the door for unprecedented accelerated progress in neuroscientific experiments.
Calcium imaging records large-scale neuronal activity with cellular resolution in vivo. Automated, fast, and reliable active neuron segmentation is a critical step in the analysis workflow of utilizing neuronal signals in real-time behavioral studies for discovery of neuronal coding properties. Here, to exploit the full spatiotemporal information in two-photon calcium imaging movies, we propose a 3D convolutional neural network to identify and segment active neurons. By utilizing a variety of two-photon microscopy datasets, we show that our method outperforms state-of-the-art techniques and is on a par with manual segmentation. Furthermore, we demonstrate that the network trained on data recorded at a specific cortical layer can be used to accurately segment active neurons from another layer with different neuron density. Finally, our work documents significant tabulation flaws in one of the most cited and active online scientific challenges in neuron segmentation. As our computationally fast method is an invaluable tool for a large spectrum of real-time optogenetic experiments, we have made our open-source software and carefully annotated dataset freely available online. Calcium imaging records large-scale neuronal activity with cellular resolution in vivo. Automated, fast, and reliable active neuron segmentation is a critical step in the analysis workflow of utilizing neuronal signals in real-time behavioral studies for discovery of neuronal coding properties. Here, to exploit the full spatiotemporal information in two-photon calcium imaging movies, we propose a 3D convolutional neural network to identify and segment active neurons. By utilizing a variety of two-photon microscopy datasets, we show that our method outperforms state-of-the-art techniques and is on a par with manual segmentation. Furthermore, we demonstrate that the network trained on data recorded at a specific cortical layer can be used to accurately segment active neurons from another layer with different neuron density. Finally, our work documents significant tabulation flaws in one of the most cited and active online scientific challenges in neuron segmentation. As our computationally fast method is an invaluable tool for a large spectrum of real-time optogenetic experiments, we have made our open-source software and carefully annotated dataset freely available online.Calcium imaging records large-scale neuronal activity with cellular resolution in vivo. Automated, fast, and reliable active neuron segmentation is a critical step in the analysis workflow of utilizing neuronal signals in real-time behavioral studies for discovery of neuronal coding properties. Here, to exploit the full spatiotemporal information in two-photon calcium imaging movies, we propose a 3D convolutional neural network to identify and segment active neurons. By utilizing a variety of two-photon microscopy datasets, we show that our method outperforms state-of-the-art techniques and is on a par with manual segmentation. Furthermore, we demonstrate that the network trained on data recorded at a specific cortical layer can be used to accurately segment active neurons from another layer with different neuron density. Finally, our work documents significant tabulation flaws in one of the most cited and active online scientific challenges in neuron segmentation. As our computationally fast method is an invaluable tool for a large spectrum of real-time optogenetic experiments, we have made our open-source software and carefully annotated dataset freely available online. Calcium imaging records large-scale neuronal activity with cellular resolution in vivo. Automated, fast, and reliable active neuron segmentation is a critical step in the analysis workflow of utilizing neuronal signals in real-time behavioral studies for discovery of neuronal coding properties. Here, to exploit the full spatiotemporal information in two-photon calcium imaging movies, we propose a 3D convolutional neural network to identify and segment active neurons. By utilizing a variety of two-photon microscopy datasets, we show that our method outperforms state-of-the-art techniques and is on a par with manual segmentation. Furthermore, we demonstrate that the network trained on data recorded at a specific cortical layer can be used to accurately segment active neurons from another layer with different neuron density. Finally, our work documents significant tabulation flaws in one of the most cited and active online scientific challenges in neuron segmentation. As our computationally fast method is an invaluable tool for a large spectrum of real-time optogenetic experiments, we have made our open-source software and carefully annotated dataset freely available online. |
Author | Farsiu, Sina Sahingur, Kaan Gong, Yiyang Soltanian-Zadeh, Somayyeh Blau, Sarah |
Author_xml | – sequence: 1 givenname: Somayyeh surname: Soltanian-Zadeh fullname: Soltanian-Zadeh, Somayyeh – sequence: 2 givenname: Kaan surname: Sahingur fullname: Sahingur, Kaan – sequence: 3 givenname: Sarah surname: Blau fullname: Blau, Sarah – sequence: 4 givenname: Yiyang surname: Gong fullname: Gong, Yiyang – sequence: 5 givenname: Sina surname: Farsiu fullname: Farsiu, Sina |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30975747$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkUFv3CAQhVGVqtkkPffUimMvTgZjwFwqVVHTRoqUS3NGmB1vnNrgAk7Ufx-sTbfNBRi9j5kH74Qc-eCRkA8MzhkofjF7m85Zy2qtBWPyDdkw0KySjYYjsgGoVdU2dXNMTlJ6AAAtWnhHjjloJVSjNuTXlU2ZWr-lMXTLenR5eETqcYnB04S7CX22eSjF4Gl-CtV8H3KpnB3dsEx0mOxu8Du6pHVN88pmnOYQ7Ui3iDMd0UZfxDPytrdjwvcv-ym5u_r28_JHdXP7_fry603lmpblynYIomMMapTScSYk9gIbRMttx5BJJhrcQq254wKgt13Xt61kTjmFPQA_JV_2feelm3DrygOKFzPHYjX-McEO5rXih3uzC49GNq1UqikNPr80iOH3gimbaUgOx9F6DEsydV0-UivQuqAXe9TFkFLE_jCGgVkjMmtE5l9E5can_90d-L-ZFODjHnhIOcSDXksFXPCWPwNFdpyX |
CitedBy_id | crossref_primary_10_1109_TIP_2022_3171414 crossref_primary_10_3389_fnins_2021_620869 crossref_primary_10_1038_s43586_022_00147_1 crossref_primary_10_1186_s40708_022_00166_4 crossref_primary_10_3390_app12146876 crossref_primary_10_3390_cells11121877 crossref_primary_10_1016_j_xpro_2021_101010 crossref_primary_10_1016_j_semcdb_2020_05_024 crossref_primary_10_3389_fbioe_2019_00202 crossref_primary_10_1038_s41593_023_01476_4 crossref_primary_10_3390_ijms21186737 crossref_primary_10_1016_j_neuroscience_2022_03_034 crossref_primary_10_1016_j_eml_2021_101226 crossref_primary_10_1038_s41598_022_09975_3 crossref_primary_10_1093_bib_bbaa355 crossref_primary_10_1038_s42256_021_00342_x crossref_primary_10_1007_s10506_022_09312_z crossref_primary_10_1016_j_eswa_2022_118090 crossref_primary_10_2139_ssrn_4016761 crossref_primary_10_1038_s41467_022_29180_0 crossref_primary_10_3389_fncel_2023_1127847 crossref_primary_10_1038_s41598_021_87471_w crossref_primary_10_1364_BOE_10_003815 crossref_primary_10_1371_journal_pcbi_1008806 crossref_primary_10_3389_fnins_2020_569361 crossref_primary_10_1038_s41592_023_01838_7 crossref_primary_10_3389_fncel_2022_917713 crossref_primary_10_1016_j_compbiomed_2023_107617 crossref_primary_10_1007_s12021_021_09532_9 crossref_primary_10_3389_fncel_2019_00474 crossref_primary_10_3390_bioengineering11020111 crossref_primary_10_1038_s42003_021_02452_z crossref_primary_10_3390_cells9061528 crossref_primary_10_3390_ijms22052659 crossref_primary_10_1038_s41598_021_04093_y crossref_primary_10_3389_fnins_2021_630250 crossref_primary_10_3390_app12041877 crossref_primary_10_7554_eLife_58882 crossref_primary_10_1140_epjs_s11734_021_00367_8 crossref_primary_10_1080_01621459_2021_1938083 crossref_primary_10_1038_s41467_021_26255_2 crossref_primary_10_1523_ENEURO_0352_23_2024 crossref_primary_10_1371_journal_pcbi_1008565 crossref_primary_10_1117_1_NPh_10_4_044405 crossref_primary_10_1016_j_jneumeth_2021_109266 crossref_primary_10_1109_TBME_2022_3188173 crossref_primary_10_1364_BOE_521478 crossref_primary_10_1016_j_neuron_2021_10_034 crossref_primary_10_1016_j_neunet_2021_09_018 crossref_primary_10_1111_jnc_15711 crossref_primary_10_1364_BOE_425742 crossref_primary_10_1364_OPTICA_418274 crossref_primary_10_1016_j_ibneur_2023_12_009 crossref_primary_10_1109_TBME_2020_3004548 crossref_primary_10_1016_j_ajo_2020_07_020 crossref_primary_10_3389_fnins_2021_797421 crossref_primary_10_1016_j_neuron_2023_09_006 crossref_primary_10_1364_BOE_399020 crossref_primary_10_3389_fnins_2019_01346 crossref_primary_10_1117_1_NPh_9_4_041402 crossref_primary_10_7554_eLife_85550 crossref_primary_10_1016_j_cub_2020_04_090 crossref_primary_10_1016_j_isci_2022_104277 crossref_primary_10_1111_jmi_12880 crossref_primary_10_3389_fncom_2020_00043 crossref_primary_10_1016_j_cellsig_2021_110225 crossref_primary_10_1038_s41592_023_01789_z |
Cites_doi | 10.1038/nature12354 10.1109/ICCV.2015.510 10.1152/jn.01073.2009 10.1038/nmeth.4230 10.1016/j.jneumeth.2017.07.031 10.1038/nature14539 10.1038/nn.2648 10.1109/TBME.2018.2812078 10.1162/neco.1995.7.6.1129 10.1523/ENEURO.0012-17.2017 10.1038/nmeth.1694 10.3389/fninf.2014.00080 10.1109/TAU.1968.1161990 10.1109/3DV.2016.79 10.1109/TMI.2018.2806309 10.1016/j.neuron.2015.11.037 10.1523/ENEURO.0304-18.2019 10.1016/j.cmpb.2018.01.025 10.1016/j.neuron.2010.01.033 10.1371/journal.pcbi.1005685 10.1371/journal.pcbi.1005423 10.1038/ncomms12190 10.1016/j.neuron.2012.02.011 10.1016/j.neunet.2014.03.007 10.7554/eLife.38173 10.1007/978-3-319-67558-9_33 10.1101/061507 10.1016/0165-1684(94)90060-4 10.1109/TPAMI.2017.2712608 10.1016/j.neuron.2009.08.009 10.7554/eLife.28728 10.1016/j.bpj.2012.07.058 10.1007/s00429-017-1545-5 10.1016/j.media.2016.10.004 |
ContentType | Journal Article |
Copyright | 2019 |
Copyright_xml | – notice: 2019 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1073/pnas.1812995116 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 8563 |
ExternalDocumentID | 10_1073_pnas_1812995116 30975747 26703538 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: T32 EB001040 – fundername: NEI NIH HHS grantid: P30 EY005722 – fundername: HHS | National Institutes of Health (NIH) grantid: P30-EY005722 – fundername: National Science Foundation (NSF) grantid: NCS-FO 1533598 – fundername: HHS | National Institutes of Health (NIH) grantid: T32-EB001040 – fundername: Arnold and Mabel Beckman Foundation grantid: N/A – fundername: Google grantid: N/A |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 79B 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACIWK ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM ASUFR BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F5P FRP GX1 HH5 HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VQA W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZA5 ZCA ~02 ~KM ADACV CGR CUY CVF ECM EIF H13 IPSME NPM AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c481t-abe05b1102e66c3156ef5e4eea3ab1e16154ed0293c3500fabbf8861c7c7ef003 |
IEDL.DBID | RPM |
ISSN | 0027-8424 1091-6490 |
IngestDate | Tue Sep 17 21:16:49 EDT 2024 Sat Oct 26 04:46:02 EDT 2024 Thu Nov 21 22:19:14 EST 2024 Sat Nov 02 12:29:46 EDT 2024 Fri Feb 02 07:30:20 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | neuron segmentation deep learning two-photon microscopy open source calcium imaging |
Language | English |
License | Published under the PNAS license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c481t-abe05b1102e66c3156ef5e4eea3ab1e16154ed0293c3500fabbf8861c7c7ef003 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by Terrence J. Sejnowski, Salk Institute for Biological Studies, La Jolla, CA, and approved March 19, 2019 (received for review July 28, 2018) Author contributions: S.S.-Z., Y.G., and S.F. designed research; S.S.-Z., Y.G., and S.F. performed research; S.S.-Z., K.S., S.B., Y.G., and S.F. analyzed data; and S.S.-Z., Y.G., and S.F. wrote the paper. |
ORCID | 0000-0003-2726-8501 0000-0003-4872-2902 |
OpenAccessLink | https://www.pnas.org/content/pnas/116/17/8554.full.pdf |
PMID | 30975747 |
PQID | 2209597099 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6486774 proquest_miscellaneous_2209597099 crossref_primary_10_1073_pnas_1812995116 pubmed_primary_30975747 jstor_primary_26703538 |
PublicationCentury | 2000 |
PublicationDate | 2019-04-23 |
PublicationDateYYYYMMDD | 2019-04-23 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationSeriesTitle | PNAS Plus |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2019 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | 31147648 - Nat Methods. 2019 Jun;16(6):460. doi: 10.1038/s41592-019-0450-7 Long J (e_1_3_4_21_2) 2015 Giovannucci A (e_1_3_4_19_2) 2019; 8 Pnevmatikakis EA (e_1_3_4_13_2) 2016; 89 Çiçek Ö (e_1_3_4_25_2) 2016 Milletari F (e_1_3_4_27_2) 2016 e_1_3_4_40_2 Srivastava N (e_1_3_4_36_2) 2014; 15 e_1_3_4_46_2 Ioffe S (e_1_3_4_37_2) 2015 Friedrich J (e_1_3_4_35_2) 2017; 13 Pnevmatikakis EA (e_1_3_4_42_2) 2017; 291 Gibson E (e_1_3_4_44_2) 2018; 158 Dombeck DA (e_1_3_4_2_2) 2010; 13 Meyer F (e_1_3_4_47_2) 1994; 38 Tran D (e_1_3_4_23_2) 2015 e_1_3_4_30_2 Friedrich J (e_1_3_4_29_2) 2017; 13 Oppenheim Av (e_1_3_4_43_2) 1968; 16 e_1_3_4_15_2 Klibisz A (e_1_3_4_18_2) 2017 Ronneberger O (e_1_3_4_22_2) 2015 Yosinski J (e_1_3_4_38_2) 2014 Gibson E (e_1_3_4_31_2) 2018; 37 Kaifosh P (e_1_3_4_9_2) 2014; 8 e_1_3_4_41_2 e_1_3_4_6_2 Wilt BA (e_1_3_4_49_2) 2013; 104 Kamnitsas K (e_1_3_4_26_2) 2017; 36 Deneux T (e_1_3_4_34_2) 2016; 7 Varol G (e_1_3_4_24_2) 2018; 40 Ghosh KK (e_1_3_4_3_2) 2011; 8 e_1_3_4_28_2 Guan J (e_1_3_4_8_2) 2018; 223 Soltanian-Zadeh S (e_1_3_4_48_2) 2018; 65 LeCun Y (e_1_3_4_20_2) 2015; 521 Grienberger C (e_1_3_4_4_2) 2012; 73 Huang G (e_1_3_4_45_2) 2017 Vogelstein JT (e_1_3_4_33_2) 2010; 104 Chen T-W (e_1_3_4_1_2) 2013; 499 Giovannucci A (e_1_3_4_7_2) 2017 Mukamel EA (e_1_3_4_11_2) 2009; 63 Apthorpe N (e_1_3_4_17_2) 2016 Bell AJ (e_1_3_4_32_2) 1995; 7 e_1_3_4_12_2 Reynolds S (e_1_3_4_14_2) 2017; 4 Zhou P (e_1_3_4_16_2) 2018; 7 Niell CM (e_1_3_4_50_2) 2010; 65 Yang W (e_1_3_4_5_2) 2017; 14 e_1_3_4_39_2 Maruyama R (e_1_3_4_10_2) 2014; 55 |
References_xml | – start-page: 2261 volume-title: Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition year: 2017 ident: e_1_3_4_45_2 contributor: fullname: Huang G – volume: 499 start-page: 295 year: 2013 ident: e_1_3_4_1_2 article-title: Ultrasensitive fluorescent proteins for imaging neuronal activity publication-title: Nature doi: 10.1038/nature12354 contributor: fullname: Chen T-W – start-page: 4489 volume-title: 2015 IEEE International Conference on Computer Vision (ICCV) year: 2015 ident: e_1_3_4_23_2 doi: 10.1109/ICCV.2015.510 contributor: fullname: Tran D – start-page: 3320 volume-title: Proceedings of the 27th International Conference on Neural Information Processing Systems year: 2014 ident: e_1_3_4_38_2 contributor: fullname: Yosinski J – volume: 104 start-page: 3691 year: 2010 ident: e_1_3_4_33_2 article-title: Fast nonnegative deconvolution for spike train inference from population calcium imaging publication-title: J Neurophysiol doi: 10.1152/jn.01073.2009 contributor: fullname: Vogelstein JT – volume: 14 start-page: 349 year: 2017 ident: e_1_3_4_5_2 article-title: In vivo imaging of neural activity publication-title: Nat Methods doi: 10.1038/nmeth.4230 contributor: fullname: Yang W – ident: e_1_3_4_6_2 – start-page: 234 volume-title: International Conference on Medical Image Computing and Computer-Assisted Intervention year: 2015 ident: e_1_3_4_22_2 contributor: fullname: Ronneberger O – volume: 291 start-page: 83 year: 2017 ident: e_1_3_4_42_2 article-title: NoRMCorre: An online algorithm for piecewise rigid motion correction of calcium imaging data publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2017.07.031 contributor: fullname: Pnevmatikakis EA – volume: 521 start-page: 436 year: 2015 ident: e_1_3_4_20_2 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 contributor: fullname: LeCun Y – volume: 13 start-page: 1433 year: 2010 ident: e_1_3_4_2_2 article-title: Functional imaging of hippocampal place cells at cellular resolution during virtual navigation publication-title: Nat Neurosci doi: 10.1038/nn.2648 contributor: fullname: Dombeck DA – start-page: 3431 volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition year: 2015 ident: e_1_3_4_21_2 contributor: fullname: Long J – volume: 65 start-page: 2428 year: 2018 ident: e_1_3_4_48_2 article-title: Information-theoretic approach and fundamental limits of resolving two closely timed neuronal spikes in mouse brain calcium imaging publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2018.2812078 contributor: fullname: Soltanian-Zadeh S – volume: 7 start-page: 1129 year: 1995 ident: e_1_3_4_32_2 article-title: An information-maximization approach to blind separation and blind deconvolution publication-title: Neural Comput doi: 10.1162/neco.1995.7.6.1129 contributor: fullname: Bell AJ – volume: 4 start-page: ENEURO.0012-17. year: 2017 ident: e_1_3_4_14_2 article-title: ABLE: An activity-based level set segmentation algorithm for two-photon calcium imaging data publication-title: eNeuro doi: 10.1523/ENEURO.0012-17.2017 contributor: fullname: Reynolds S – volume: 8 start-page: 871 year: 2011 ident: e_1_3_4_3_2 article-title: Miniaturized integration of a fluorescence microscope publication-title: Nat Methods doi: 10.1038/nmeth.1694 contributor: fullname: Ghosh KK – ident: e_1_3_4_41_2 – ident: e_1_3_4_39_2 – volume: 8 start-page: 80 year: 2014 ident: e_1_3_4_9_2 article-title: SIMA: Python software for analysis of dynamic fluorescence imaging data publication-title: Front Neuroinform doi: 10.3389/fninf.2014.00080 contributor: fullname: Kaifosh P – volume: 16 start-page: 437 year: 1968 ident: e_1_3_4_43_2 article-title: Nonlinear filtering of multiplied and convolved signals publication-title: IEEE Trans Audio Electroacoust doi: 10.1109/TAU.1968.1161990 contributor: fullname: Oppenheim Av – volume: 15 start-page: 1929 year: 2014 ident: e_1_3_4_36_2 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J Mach Learn Res contributor: fullname: Srivastava N – start-page: 565 volume-title: 2016 Fourth International Conference on 3D Vision (3DV) year: 2016 ident: e_1_3_4_27_2 doi: 10.1109/3DV.2016.79 contributor: fullname: Milletari F – volume: 37 start-page: 1822 year: 2018 ident: e_1_3_4_31_2 article-title: Automatic multi-organ segmentation on abdominal CT with dense v-networks publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2018.2806309 contributor: fullname: Gibson E – volume: 89 start-page: 285 year: 2016 ident: e_1_3_4_13_2 article-title: Simultaneous denoising, deconvolution, and demixing of calcium imaging data publication-title: Neuron doi: 10.1016/j.neuron.2015.11.037 contributor: fullname: Pnevmatikakis EA – ident: e_1_3_4_15_2 doi: 10.1523/ENEURO.0304-18.2019 – volume: 158 start-page: 113 year: 2018 ident: e_1_3_4_44_2 article-title: NiftyNet: A deep-learning platform for medical imaging publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2018.01.025 contributor: fullname: Gibson E – volume: 65 start-page: 472 year: 2010 ident: e_1_3_4_50_2 article-title: Modulation of visual responses by behavioral state in mouse visual cortex publication-title: Neuron doi: 10.1016/j.neuron.2010.01.033 contributor: fullname: Niell CM – volume: 13 start-page: e1005685 year: 2017 ident: e_1_3_4_29_2 article-title: Multi-scale approaches for high-speed imaging and analysis of large neural populations publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1005685 contributor: fullname: Friedrich J – volume: 13 start-page: e1005423 year: 2017 ident: e_1_3_4_35_2 article-title: Fast online deconvolution of calcium imaging data publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1005423 contributor: fullname: Friedrich J – ident: e_1_3_4_28_2 – volume: 7 start-page: 12190 year: 2016 ident: e_1_3_4_34_2 article-title: Accurate spike estimation from noisy calcium signals for ultrafast three-dimensional imaging of large neuronal populations in vivo publication-title: Nat Commun doi: 10.1038/ncomms12190 contributor: fullname: Deneux T – ident: e_1_3_4_30_2 – volume: 73 start-page: 862 year: 2012 ident: e_1_3_4_4_2 article-title: Imaging calcium in neurons publication-title: Neuron doi: 10.1016/j.neuron.2012.02.011 contributor: fullname: Grienberger C – volume: 55 start-page: 11 year: 2014 ident: e_1_3_4_10_2 article-title: Detecting cells using non-negative matrix factorization on calcium imaging data publication-title: Neural Netw doi: 10.1016/j.neunet.2014.03.007 contributor: fullname: Maruyama R – volume: 8 start-page: e38173 year: 2019 ident: e_1_3_4_19_2 article-title: CaImAn an open source tool for scalable calcium imaging data analysis publication-title: eLife doi: 10.7554/eLife.38173 contributor: fullname: Giovannucci A – start-page: 3270 volume-title: Proceedings of the 30th International Conference on Neural Information Processing Systems year: 2016 ident: e_1_3_4_17_2 contributor: fullname: Apthorpe N – start-page: 285 volume-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support year: 2017 ident: e_1_3_4_18_2 doi: 10.1007/978-3-319-67558-9_33 contributor: fullname: Klibisz A – start-page: 424 volume-title: International Conference on Medical Image Computing and Computer-Assisted Intervention year: 2016 ident: e_1_3_4_25_2 contributor: fullname: Çiçek Ö – ident: e_1_3_4_12_2 doi: 10.1101/061507 – volume: 38 start-page: 113 year: 1994 ident: e_1_3_4_47_2 article-title: Topographic distance and watershed lines publication-title: Signal Process doi: 10.1016/0165-1684(94)90060-4 contributor: fullname: Meyer F – volume: 40 start-page: 1510 year: 2018 ident: e_1_3_4_24_2 article-title: Long-term temporal convolutions for action recognition publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2017.2712608 contributor: fullname: Varol G – volume: 63 start-page: 747 year: 2009 ident: e_1_3_4_11_2 article-title: Automated analysis of cellular signals from large-scale calcium imaging data publication-title: Neuron doi: 10.1016/j.neuron.2009.08.009 contributor: fullname: Mukamel EA – volume: 7 start-page: e28728 year: 2018 ident: e_1_3_4_16_2 article-title: Efficient and accurate extraction of in vivo calcium signals from microendoscopic video data publication-title: eLife doi: 10.7554/eLife.28728 contributor: fullname: Zhou P – start-page: 2378 volume-title: Advances in Neural Information Processing Systems 30 year: 2017 ident: e_1_3_4_7_2 contributor: fullname: Giovannucci A – volume: 104 start-page: 51 year: 2013 ident: e_1_3_4_49_2 article-title: Photon shot noise limits on optical detection of neuronal spikes and estimation of spike timing publication-title: Biophys J doi: 10.1016/j.bpj.2012.07.058 contributor: fullname: Wilt BA – start-page: 448 volume-title: Proceedings of the 32nd International Conference on Machine Learning year: 2015 ident: e_1_3_4_37_2 contributor: fullname: Ioffe S – ident: e_1_3_4_40_2 – ident: e_1_3_4_46_2 – volume: 223 start-page: 519 year: 2018 ident: e_1_3_4_8_2 article-title: NeuroSeg: Automated cell detection and segmentation for in vivo two-photon Ca2+ imaging data publication-title: Brain Struct Funct doi: 10.1007/s00429-017-1545-5 contributor: fullname: Guan J – volume: 36 start-page: 61 year: 2017 ident: e_1_3_4_26_2 article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation publication-title: Med Image Anal doi: 10.1016/j.media.2016.10.004 contributor: fullname: Kamnitsas K |
SSID | ssj0009580 |
Score | 2.6088912 |
Snippet | Calcium imaging records large-scale neuronal activity with cellular resolution in vivo. Automated, fast, and reliable active neuron segmentation is a critical... Two-photon calcium imaging is a standard technique of neuroscience laboratories that records neural activity from individual neurons over large populations in... |
SourceID | pubmedcentral proquest crossref pubmed jstor |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 8554 |
SubjectTerms | Animals Biological Sciences Calcium - metabolism Deep Learning Humans Image Processing, Computer-Assisted - methods Mice Mice, Transgenic Microscopy, Fluorescence, Multiphoton - methods Neurons - cytology Neurons - metabolism Physical Sciences PNAS Plus Visual Cortex - cytology |
SummonAdditionalLinks | – databaseName: JSTOR Health & General Sciences dbid: JSG link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbtQwEB2xPXEBChRCCzISSOUQmrWT2Dki6FJx4FKQuEW2M96u2nVWzUb8PmMnWbYIJG6R4kiW34z9nJl5A_DG5pZXXJPxVs6keWlEqty8SrHMuCtVUTVZKE6-uJRff6hP50Em5-1UCxPSKmNeYIziE0EyN3jGS7JL8swZzFT0vi-Xn_eUddVQZ8Jpu815Pun3SHG28bp7H46winhE6Gi-d_QM2Yd_45V_pkfunTeLh_8500fwYCSU7MNgAYdwD_1jOBxdtmOno670uydwvdDdlmnfsNvW9OEx7nUsSlp61uFyPRYiebbybPuzTTdXLXFDRjjaVb9mq3XsacRCsvySdTEZe9S2umEN4oaNTSiWT-H74vzbx4t07LWQ2lzNt6k2mBWGuADHsrSCbnXoCswRtdBmjoEX5thkRA6sKLLMaWOcUuXcSivR0dZwBAe-9fgcGNpcF1oXjdZ010RnGkvgGCGl0lq4IoHTCYZ6M0hq1DEULkUdEKt_I5bAUVzi3bhpfRN4PeFWkz-EIIf22PZdzXn4symJ-CbwbMBx97XIKlnQ_SkBeQfh3YCgtX33jV9dRc3tMigTyvzFvyZ0DPeJSsU4ExcncLC97fElzLqmfxXN9RfMTOq_ priority: 102 providerName: JSTOR |
Title | Fast and robust active neuron segmentation in two-photon calcium imaging using spatiotemporal deep learning |
URI | https://www.jstor.org/stable/26703538 https://www.ncbi.nlm.nih.gov/pubmed/30975747 https://www.proquest.com/docview/2209597099 https://pubmed.ncbi.nlm.nih.gov/PMC6486774 |
Volume | 116 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtQwELXYnrggChRC25WROJRDdhM7iZNjVboqQiAkQOIW2c54G9E4UbNRf79jJ1laxIlbpNhS5BnPPMdv3hDyXieaFUyi8xZGhUmmeJibuAghi5jJ8rSoIlecfPVdfP2Vf7x0MjnpXAvjSfta1St706xsfe25lV2j1zNPbP3ty0XmZOJEsl6QBWLD-Yi-V9rNx7oThuE3Ycms5yP4urOyX7mUViCuiF33Ih4VIhWut8qDrDQSE_8FOf9mTj5IRZvn5NmEIen5-K2H5AnYF-Rw2qU9PZukpD-8JL83st9RaSt626rBPfrwRr2KpaU9bJup9sjS2tLdXRt21y3CQYqm0_XQ0LrxbYyo48dvae_515Oc1Q2tADo69Z3YviI_N5c_Lq7Cqb1CqJM83oVSQZQqTP8MskxzPMiBSSEBkFyqGBwUTKCKEA9onkaRkUqZPM9iLbQAg9HgiBzY1sIbQkEnMpUyraTE4yUYVWlcf8WFyKXkJg3I2by8ZTeqaJT-9lvw0hml_GOUgBz55d-PYxkGJQzLAXk326PELeDuNaSFduhLxtzPTIFYNyCvR_vsZ88GDoh4ZLn9ACev_fgNep2X2Z687O1_zzwmTxFe-bsnxk_Iwe52gFOy6KthieD90-elJ6AufZeLpXfie_Su9lA |
link.rule.ids | 230,315,729,782,786,808,811,887,27933,27934,53800,53802,58025,58037,58258,58270 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB3RcoALUKAQoGAkkMohNOuPODlWbVeLKL1QJG6R7Yy3K7rOqtmIv4_tJMsWgcQtUhzJ8puxnzMzbwDeGW5oSZU33tLqlOeapYWdlCnmGbV5Ico6C8XJs6_y4ntxehZkct6PtTAhrTLmBcYovidI-hqPaO7t0nvmDtwVRcZkn7m3pa1b9JUm1G-4nPJRwUeyo5VT7cdwiJWeSYSe5luHT59_-Ddm-WeC5NaJM334n3N9BA8GSkmOexvYgzvoHsPe4LQtORyUpT88gR9T1a6JcjW5aXQXHuNuR6KopSMtzpdDKZIjC0fWP5t0ddV4dkg8kmbRLcliGbsakZAuPydtTMce1K2uSY24IkMbivlT-DY9uzyZpUO3hdTwYrJOlcZMaM8GKOa5Yf5eh1YgR1RM6QkGZsixzjw9MExkmVVa26LIJ0YaidZvDvuw6xqHz4Gg4UooJWql_G0Tra6NB0czKQulmBUJHI4wVKteVKOKwXDJqoBY9RuxBPbjEm_GjeubwNsRt8p7RAhzKIdN11aUhn-b0lPfBJ71OG6-Zlkphb9BJSBvIbwZENS2b79xi6uoup0HbULJX_xrQm_g3uzyy3l1_uni80u474lVjDpR9gp21zcdHsBOW3evo-n-AmEu7iI |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB3RIiEuQIGW8GkkDu0hbNZO4uSIaFdFoAoJkLhFtjPerug6UbMRf5-xkyxbBAdukeJIlt_YfpOZeQPwxqSGl1yR8ZZWx2muRVzYeRljnnCbF1lZJ744-fyLvPhenJ55mZyTqRbGp1WGvMAQxSeCpK9w1tZ2xnOyTdqde3A7I6-mGJoD7OjrFkO1CadDN-XppOIjxax1qnvrL7KS2ITva75zAQ05iH9jl38mSe7cOov7_zHfB3BvpJbs3WALB3AL3UM4GDdvx45HhemTR_BjoboNU65m143u_WM49VgQt3Ssw-V6LElybOXY5mcTt5cNsURGiJpVv2ardehuxHza_JJ1IS17VLm6YjViy8Z2FMvH8G1x9vX9eTx2XYhNWsw3sdKYZJpYAcc8N4L8O7QZpohKKD1HzxBTrBOiCUZkSWKV1rYo8rmRRqKlQ-IQ9l3j8AkwNKnKlMpqpcjrRKtrQwBpIWWhlLBZBMcTFFU7iGtUISguReVRq36jFsFhWObtuGl9I3g9YVfRzvDhDuWw6buKc_-PUxIFjuBowHL7tUhKmZEnFYG8gfJ2gFfdvvnGrS6D-nbuNQpl-vRfE3oFdz6fLqpPHy4-PoO7xK9C8ImL57C_ue7xBex1df8yWO8v8uTwmw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+and+robust+active+neuron+segmentation+in+two-photon+calcium+imaging+using+spatiotemporal+deep+learning&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Soltanian-Zadeh%2C+Somayyeh&rft.au=Sahingur%2C+Kaan&rft.au=Blau%2C+Sarah&rft.au=Gong%2C+Yiyang&rft.date=2019-04-23&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=116&rft.issue=17&rft.spage=8554&rft.epage=8563&rft_id=info:doi/10.1073%2Fpnas.1812995116&rft.externalDocID=26703538 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |