Neuroanatomical characterization of the Nmu-Cre knock-in mice reveals an interconnected network of unique neuropeptidergic cells
Neuromedin U (NMU) is an evolutionary conserved neuropeptide that has been implicated in multiple processes, such as circadian regulation, energy homeostasis, reward processing and stress coping. Although the central expression of NMU has been addressed previously, the lack of specific and sensitive...
Saved in:
Published in: | Open biology Vol. 13; no. 6; p. 220353 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Royal Society
01-06-2023
The Royal Society |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Neuromedin U (NMU) is an evolutionary conserved neuropeptide that has been implicated in multiple processes, such as circadian regulation, energy homeostasis, reward processing and stress coping. Although the central expression of NMU has been addressed previously, the lack of specific and sensitive tools has prevented a comprehensive characterization of NMU-expressing neurons in the brain. We have generated a knock-in mouse model constitutively expressing Cre recombinase under the
promoter. We have validated the model using a multi-level approach based on quantitative reverse-transcription polymerase chain reactions,
hybridization, a reporter mouse line and an adenoviral vector driving Cre-dependent expression of a fluorescent protein. Using the Nmu-Cre mouse, we performed a complete characterization of NMU expression in adult mouse brain, unveiling a potential midline NMU modulatory circuit with the ventromedial hypothalamic nucleus (VMH) as a key node. Moreover, immunohistochemical analysis suggested that NMU neurons in the VMH mainly constitute a unique population of hypothalamic cells. Taken together, our results suggest that Cre expression in the Nmu-Cre mouse model largely reflects NMU expression in the adult mouse brain, without altering endogenous NMU expression. Thus, the Nmu-Cre mouse model is a powerful and sensitive tool to explore the role of NMU neurons in mice. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 PMCID: PMC10264104 Equally contributing authors. Electronic supplementary material is available online at https://doi.org/10.6084/m9.figshare.c.6662875. |
ISSN: | 2046-2441 2046-2441 |
DOI: | 10.1098/rsob.220353 |