Machine learning approaches to personalize early prediction of asthma exacerbations

Patient telemonitoring results in an aggregation of significant amounts of information about patient disease trajectory. However, the potential use of this information for early prediction of exacerbations in adult asthma patients has not been systematically evaluated. The aim of this study was to e...

Full description

Saved in:
Bibliographic Details
Published in:Annals of the New York Academy of Sciences Vol. 1387; no. 1; pp. 153 - 165
Main Authors: Finkelstein, Joseph, Jeong, In cheol
Format: Journal Article
Language:English
Published: United States Wiley Subscription Services, Inc 01-01-2017
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Patient telemonitoring results in an aggregation of significant amounts of information about patient disease trajectory. However, the potential use of this information for early prediction of exacerbations in adult asthma patients has not been systematically evaluated. The aim of this study was to explore the utility of telemonitoring data for building machine learning algorithms that predict asthma exacerbations before they occur. The study dataset comprised daily self‐monitoring reports consisting of 7001 records submitted by adult asthma patients during home telemonitoring. Predictive modeling included preparation of stratified training datasets, predictive feature selection, and evaluation of resulting classifiers. Using a 7‐day window, a naive Bayesian classifier, adaptive Bayesian network, and support vector machines were able to predict asthma exacerbation occurring on day 8, with sensitivity of 0.80, 1.00, and 0.84; specificity of 0.77, 1.00, and 0.80; and accuracy of 0.77, 1.00, and 0.80, respectively. Our study demonstrated that machine learning techniques have significant potential in developing personalized decision support for chronic disease telemonitoring systems. Future studies may benefit from a comprehensive predictive framework that combines telemonitoring data with other factors affecting the likelihood of developing acute exacerbation. Approaches implemented for advanced asthma exacerbation prediction may be extended to prediction of exacerbations in patients with other chronic health conditions.
AbstractList Patient telemonitoring results in an aggregation of significant amounts of information about patient disease trajectory. However, the potential use of this information for early prediction of exacerbations in adult asthma patients has not been systematically evaluated. The aim of this study was to explore the utility of telemonitoring data for building machine learning algorithms that predict asthma exacerbations before they occur. The study dataset comprised daily self‐monitoring reports consisting of 7001 records submitted by adult asthma patients during home telemonitoring. Predictive modeling included preparation of stratified training datasets, predictive feature selection, and evaluation of resulting classifiers. Using a 7‐day window, a naive Bayesian classifier, adaptive Bayesian network, and support vector machines were able to predict asthma exacerbation occurring on day 8, with sensitivity of 0.80, 1.00, and 0.84; specificity of 0.77, 1.00, and 0.80; and accuracy of 0.77, 1.00, and 0.80, respectively. Our study demonstrated that machine learning techniques have significant potential in developing personalized decision support for chronic disease telemonitoring systems. Future studies may benefit from a comprehensive predictive framework that combines telemonitoring data with other factors affecting the likelihood of developing acute exacerbation. Approaches implemented for advanced asthma exacerbation prediction may be extended to prediction of exacerbations in patients with other chronic health conditions.
Patient telemonitoring results in an aggregation of significant amounts of information about patient disease trajectory. However, the potential use of this information for early prediction of exacerbations in adult asthma patients has not been systematically evaluated. The aim of this study was to explore the utility of telemonitoring data for building machine learning algorithms that predict asthma exacerbations before they occur. The study dataset comprised daily self-monitoring reports consisting of 7001 records submitted by adult asthma patients during home telemonitoring. Predictive modeling included preparation of stratified training data sets, predictive feature selection, and evaluation of resulting classifiers. Using a 7-day window, a naive Bayesian classifier, adaptive Bayesian network, and support vector machines were able to predict asthma exacerbation occurring on day 8, with sensitivity of 0.80, 1.00, and 0.84; specificity of 0.77, 1.00, and 0.80; and accuracy of 0.77, 1.00, and 0.80, respectively. Our study demonstrated that machine learning techniques have significant potential in developing personalized decision support for chronic disease telemonitoring systems. Future studies may benefit from a comprehensive predictive framework that combines telemonitoring data with other factors affecting the likelihood of developing acute exacerbation. Approaches implemented for advanced asthma exacerbation prediction may be extended to prediction of exacerbations in patients with other chronic health conditions.
Author Finkelstein, Joseph
Jeong, In cheol
AuthorAffiliation 1 Department of Biomedical Informatics, Columbia University, New York, New York
2 Chronic Disease Informatics Program, Johns Hopkins University, Baltimore, Maryland
AuthorAffiliation_xml – name: 1 Department of Biomedical Informatics, Columbia University, New York, New York
– name: 2 Chronic Disease Informatics Program, Johns Hopkins University, Baltimore, Maryland
Author_xml – sequence: 1
  givenname: Joseph
  surname: Finkelstein
  fullname: Finkelstein, Joseph
  email: jf193@cumc.columbia.edu
  organization: Columbia University
– sequence: 2
  givenname: In cheol
  surname: Jeong
  fullname: Jeong, In cheol
  organization: Johns Hopkins University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27627195$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1rFTEUhoO02Nvqxh8gATdFmJqPycdshFL8KLS6qC5chUzmpDdlbjImc9Xrrze3ty3qQswm8ObhIee8h2gvpggIPaPkhNbzKm5sOaGcUf0ILahqu0ZKzvbQghClGt0xfoAOS7khhDLdqsfogCnJFO3EAl1dWrcMEfAINscQr7GdppxqCAXPCU-QS4p2DD8BV2Lc4CnDENwcUsTJY1vm5cpi-GEd5N5u4_IE7Xs7Fnh6dx-hz2_ffDp731x8fHd-dnrRuFZT3VDSUaJb16vBOQ7AOuEtc4SDJJ5rKaXwpO976vu2ZYITa1sJg_XgKRkGwY_Q6513WvcrGBzEOdvRTDmsbN6YZIP58yWGpblO34xgVc5JFRzfCXL6uoYym1UoDsbRRkjrYqiWmlMuNP0PlAtBFCO8oi_-Qm_SOtcd3gqpIkR2W-rljnI5lZLBP_ybErOt1WxrNbe1Vvj575M-oPc9VoDugO9hhM0_VObDl9OrnfQXDdWwvw
CODEN ANYAA9
CitedBy_id crossref_primary_10_1007_s10916_024_02061_3
crossref_primary_10_1186_s12874_020_0913_7
crossref_primary_10_1007_s12265_021_10151_7
crossref_primary_10_3390_mps3040077
crossref_primary_10_1109_ACCESS_2021_3073086
crossref_primary_10_1136_thoraxjnl_2020_214556
crossref_primary_10_3389_fpubh_2018_00099
crossref_primary_10_1007_s40747_021_00424_8
crossref_primary_10_1080_02770903_2020_1802746
crossref_primary_10_1159_000481127
crossref_primary_10_1002_clt2_12076
crossref_primary_10_1097_ACI_0000000000000428
crossref_primary_10_3390_a15040130
crossref_primary_10_1016_j_eswa_2023_119799
crossref_primary_10_3233_JIFS_219270
crossref_primary_10_3390_healthcare8030247
crossref_primary_10_1016_j_jaip_2022_01_047
crossref_primary_10_2196_22911
crossref_primary_10_2196_42047
crossref_primary_10_1111_nyas_13309
crossref_primary_10_1007_s10439_024_03459_3
crossref_primary_10_3390_jpm14010020
crossref_primary_10_3390_life12101631
crossref_primary_10_1371_journal_pone_0247784
crossref_primary_10_15690_pf_v16i5_2058
crossref_primary_10_4103_ijaai_ijaai_39_23
crossref_primary_10_1108_IJICC_10_2019_0112
crossref_primary_10_2196_13671
crossref_primary_10_2196_16981
crossref_primary_10_1186_s13104_018_3621_1
crossref_primary_10_2196_57618
crossref_primary_10_1136_bmjresp_2019_000524
crossref_primary_10_1002_adsr_202300100
crossref_primary_10_1186_s12967_024_04866_9
crossref_primary_10_3390_jpm10020021
crossref_primary_10_1016_j_ccm_2018_10_013
crossref_primary_10_1080_1744666X_2019_1541737
crossref_primary_10_1097_ACI_0000000000000430
crossref_primary_10_1016_j_jaip_2021_09_018
crossref_primary_10_2147_JAA_S285742
crossref_primary_10_37648_ijrmst_v11i02_021
crossref_primary_10_1016_S2352_4642_19_30025_2
crossref_primary_10_1016_j_jaip_2021_03_039
crossref_primary_10_3233_AIS_190540
crossref_primary_10_1016_j_ijmedinf_2021_104620
crossref_primary_10_1016_j_phycom_2020_101173
crossref_primary_10_1002_clt2_12201
crossref_primary_10_1093_jamiaopen_ooad091
crossref_primary_10_1136_bmjopen_2018_028375
crossref_primary_10_1016_j_chest_2020_12_051
crossref_primary_10_1016_j_trac_2022_116861
crossref_primary_10_2147_JAA_S377631
crossref_primary_10_1111_all_13856
crossref_primary_10_1109_ACCESS_2019_2960551
crossref_primary_10_1016_j_compbiomed_2023_107544
crossref_primary_10_2196_40364
crossref_primary_10_1016_j_pdpdt_2019_10_011
crossref_primary_10_1186_s12911_022_01847_0
crossref_primary_10_1016_j_jaci_2019_12_898
crossref_primary_10_1007_s10462_023_10561_w
crossref_primary_10_1371_journal_pone_0295427
crossref_primary_10_1186_s12859_022_04870_0
crossref_primary_10_18034_mjmbr_v7i2_517
crossref_primary_10_3389_fgene_2019_00770
crossref_primary_10_1016_j_bbe_2021_06_009
crossref_primary_10_3390_app11135810
crossref_primary_10_1007_s12325_023_02743_3
crossref_primary_10_1183_13993003_00521_2020
crossref_primary_10_1186_s12911_021_01704_6
crossref_primary_10_4168_aair_2021_13_5_697
crossref_primary_10_1097_MPG_0000000000003754
crossref_primary_10_1513_AnnalsATS_201702_101OC
crossref_primary_10_1016_j_arr_2020_101174
crossref_primary_10_1080_10408363_2020_1857681
crossref_primary_10_1093_ije_dyy113
crossref_primary_10_1016_j_nanoen_2022_107711
crossref_primary_10_18034_mjmbr_v7i2_555
crossref_primary_10_1146_annurev_bioeng_110220_030247
crossref_primary_10_1371_journal_pone_0188532
crossref_primary_10_1038_s41598_022_24909_9
Cites_doi 10.1101/gr.186401
10.1111/nyas.12809
10.1097/MCP.0b013e32834db288
10.1136/thoraxjnl-2015-208138
10.1016/j.jbi.2016.03.016
10.1613/jair.953
10.1093/jamia/ocv213
10.1001/jama.2015.3595
10.1159/000441687
10.2147/PGPM.S101474
10.1016/j.artmed.2014.12.003
10.1503/cmaj.080612
10.1007/s10916-016-0439-z
10.1097/ACI.0000000000000259
10.1016/j.jaci.2010.10.020
10.1161/CIRCULATIONAHA.115.001593
10.1097/MCP.0000000000000116
10.1136/bmj.f6070
10.2217/pme.14.51
10.1081/JAS-120033990
10.1017/S0033291711002005
10.1089/tmj.2016.0045
10.1080/02770900902972160
10.1016/j.artmed.2009.07.007
10.1002/ibd.21795
10.1007/978-1-4614-6849-3
10.1164/ajrccm.161.5.9908022
10.1186/1471-2105-13-S15-S14
10.1177/1479972316642365
10.1007/s10115-014-0784-5
10.1016/S1081-1206(10)60226-8
10.4338/ACI-2013-04-RA-0029
10.1037/0278-6133.22.1.12
10.2165/00115677-200008020-00001
10.5213/inj.2014.18.2.50
10.1016/0005-1098(78)90005-5
10.1186/1471-2466-8-27
10.1007/s11517-015-1252-4
10.1016/j.critrevonc.2008.01.013
10.1186/s12911-015-0208-9
10.3389/fpsyt.2015.00037
10.2147/COPD.S6400
10.1161/CIRCOUTCOMES.109.849968
10.1093/ije/31.4.776
10.1016/j.jaci.2016.03.006
10.3414/ME15-06-1001
10.1097/MCG.0b013e31802f19af
10.1056/NEJMp1500523
10.1109/TCBB.2016.2591539
10.1056/NEJMoa1010029
10.1039/c2em30430a
10.1016/j.anai.2015.11.011
10.1007/s13142-011-0016-4
10.1186/1471-2350-12-90
ContentType Journal Article
Copyright 2016 New York Academy of Sciences.
2017 The New York Academy of Sciences
Copyright_xml – notice: 2016 New York Academy of Sciences.
– notice: 2017 The New York Academy of Sciences
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7ST
7T5
7T7
7TK
7TM
7TO
7U7
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
SOI
7X8
5PM
DOI 10.1111/nyas.13218
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Toxicology Abstracts
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Calcium & Calcified Tissue Abstracts
Environment Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
AIDS and Cancer Research Abstracts
Virology and AIDS Abstracts
MEDLINE


Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1749-6632
EndPage 165
ExternalDocumentID 4307921511
10_1111_nyas_13218
27627195
NYAS13218
Genre article
Journal Article
Comparative Study
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Heart, Lung, and Blood Institute
  funderid: R01HL065355; R01HL071690
– fundername: NHLBI NIH HHS
  grantid: R01 HL071690
– fundername: NHLBI NIH HHS
  grantid: R01 HL065355
– fundername: NCATS NIH HHS
  grantid: UL1 TR001433
– fundername: NHLBI NIH HHS
  grantid: R01 HL078579
GroupedDBID ---
--Z
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1CY
1OB
1OC
23M
31~
33P
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
692
6J9
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAMDK
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOJD
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AELAQ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFSWV
AFZJQ
AHBTC
AHEFC
AHMBA
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
CO8
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EJD
EMOBN
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IH2
IX1
J0M
K48
L7B
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
O66
O9-
OHT
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RAG
RIWAO
RJQFR
ROL
RX1
S10
SAMSI
SJN
SUPJJ
SV3
TEORI
TUS
UB1
UPT
V8K
VH1
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIK
WOHZO
WQJ
WRC
WUP
WVDHM
WXSBR
X7M
XG1
YBU
YOC
YSK
ZGI
ZKB
ZXP
ZZTAW
~02
~IA
~KM
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
CITATION
7QG
7QL
7QP
7QR
7ST
7T5
7T7
7TK
7TM
7TO
7U7
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
SOI
7X8
5PM
ID FETCH-LOGICAL-c4818-1091084cb7dcc3ee295fa2c03e60f386665f0bbb1fb442530aa46edafef10dd53
IEDL.DBID 33P
ISSN 0077-8923
IngestDate Tue Sep 17 21:12:07 EDT 2024
Fri Aug 16 06:19:03 EDT 2024
Fri Aug 16 21:06:54 EDT 2024
Thu Oct 10 22:09:36 EDT 2024
Fri Nov 22 12:12:01 EST 2024
Sat Sep 28 08:28:16 EDT 2024
Sat Aug 24 00:54:12 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords prediction
asthma exacerbation
machine learning
personalized medicine
Language English
License 2016 New York Academy of Sciences.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4818-1091084cb7dcc3ee295fa2c03e60f386665f0bbb1fb442530aa46edafef10dd53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://europepmc.org/articles/pmc5266630?pdf=render
PMID 27627195
PQID 1861700693
PQPubID 946344
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5266630
proquest_miscellaneous_1868313581
proquest_miscellaneous_1835507203
proquest_journals_1861700693
crossref_primary_10_1111_nyas_13218
pubmed_primary_27627195
wiley_primary_10_1111_nyas_13218_NYAS13218
PublicationCentury 2000
PublicationDate January 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: January 2017
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Annals of the New York Academy of Sciences
PublicationTitleAlternate Ann N Y Acad Sci
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2002; 16
2009; 46
2013; 4
2013; 2
2011; 60
2000; 8
2008; 8
2012; 18
2011; 12
2016; 71
2009; 151
2008; 6
2008; 101
2012; 14
2012; 13
2005; 2005
2015; 372
2011; 127
2015; 45
2014; 205
2015; 132
2000; 161
2008; 67
2016; 40
2015; 1346
2016; 116
2014; 18
2001; 11
2014; 11
2004; 41
2015; 15
2015; 6
2001; 120
2004; 103
2011; 1
2012
2002; 31
2015; 168
2009; 181
2013; 347
2015; 53
2015; 54
2010; 363
1997
2006
2015; 208
2004
1978; 14
2003
2010; 160
2007; 11
2016; 16
2016; 13
1999
2016; 4
2010; 48
2015; 313
2015; 63
2015; 21
2000; 84
2016
2016; 61
2015
2016; 137
2008; 42
2013
2009; 4
2009; 2
2016; 9
2012; 42
2016; 23
2003; 22
2016; 22
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
Finkelstein J. (e_1_2_9_53_1) 2000; 84
e_1_2_9_73_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_33_1
Berberidis C. (e_1_2_9_55_1) 2004
Finkelstein J. (e_1_2_9_15_1) 2010; 160
Cha E. (e_1_2_9_16_1) 2007; 11
e_1_2_9_71_1
Soler‐Flores F. (e_1_2_9_60_1) 2013; 2
e_1_2_9_14_1
Price D. (e_1_2_9_34_1) 2016; 9
e_1_2_9_39_1
e_1_2_9_37_1
Kukafka R. (e_1_2_9_77_1) 2015; 208
Finkelstein J. (e_1_2_9_17_1) 2001; 120
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
Vapnik V. (e_1_2_9_59_1) 2013
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
Lapshin O.V. (e_1_2_9_18_1) 2005; 2005
e_1_2_9_4_1
e_1_2_9_2_1
Finkelstein J. (e_1_2_9_21_1) 2012
e_1_2_9_26_1
e_1_2_9_28_1
e_1_2_9_47_1
Kopec D. (e_1_2_9_50_1) 2004; 103
Platt J.C. (e_1_2_9_58_1) 1999
e_1_2_9_30_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_76_1
e_1_2_9_70_1
Joshi A. (e_1_2_9_12_1) 2005; 2005
e_1_2_9_38_1
Lee J. (e_1_2_9_24_1) 2014; 205
e_1_2_9_36_1
National institutes of Health, National Heart, Lung, and Blood Institute (e_1_2_9_54_1) 1997
e_1_2_9_19_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_5_1
e_1_2_9_3_1
der Meer V. (e_1_2_9_42_1) 2009; 151
Amarasingham R. (e_1_2_9_7_1) 2016; 4
Russo C.A. (e_1_2_9_9_1) 2006
Pamer C. (e_1_2_9_49_1) 2008; 6
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 13
  start-page: S14
  issue: Suppl. 15
  year: 2012
  article-title: Empirical evaluation of scoring functions for Bayesian network model selection
  publication-title: BMC Bioinformatics
– volume: 84
  start-page: 810
  year: 2000
  end-page: 814
  article-title: Development and implementation of the home asthma telemonitoring (HAT) system to facilitate asthma self‐care
  publication-title: Stud. Health Technol. Inform.
– volume: 60
  start-page: 2001
  year: 2011
  end-page: 2009
– volume: 6
  start-page: 37
  year: 2015
  article-title: Needed relapse‐prevention research on novel framework (ASPIRE model) for substance use disorders treatment
  publication-title: Front. Psychiatry
– volume: 347
  start-page: f6070
  year: 2013
  article-title: Effectiveness of telemonitoring integrated into existing clinical services on hospital admission for exacerbation of chronic obstructive pulmonary disease: researcher blind, multicentre, randomised controlled trial
  publication-title: BMJ
– volume: 42
  start-page: 1037
  year: 2012
  end-page: 1047
  article-title: Individualized prediction of illness course at the first psychotic episode: a support vector machine MRI study
  publication-title: Psychol. Med.
– volume: 132
  start-page: 1920
  year: 2015
  end-page: 1930
  article-title: Machine learning in medicine
  publication-title: Circulation
– volume: 9
  start-page: 1
  year: 2016
  end-page: 12
  article-title: Predicting frequent asthma exacerbations using blood eosinophil count and other patient data routinely available in clinical practice
  publication-title: J. Asthma Allergy
– volume: 12
  start-page: 90
  year: 2011
  article-title: Genome wide association study to predict severe asthma exacerbations in children using random forests classifiers
  publication-title: BMC Med. Genet.
– volume: 363
  start-page: 2301
  year: 2010
  end-page: 2309
  article-title: Telemonitoring in patients with heart failure
  publication-title: N. Engl. J. Med.
– volume: 372
  start-page: 793
  year: 2015
  end-page: 795
  article-title: A new initiative on precision medicine
  publication-title: N. Engl. J. Med.
– volume: 151
  start-page: 110
  year: 2009
  end-page: 120
  article-title: SMASHING (Self‐Management in Asthma Supported by Hospitals, ICT, Nurses and General Practitioners) Study Group
  publication-title: Ann. Intern. Med.
– volume: 48
  start-page: 71
  year: 2010
  end-page: 73
  article-title: Artificial intelligence in biomedical engineering and informatics: an introduction and review
  publication-title: Artif. Intell. Med.
– volume: 71
  start-page: 838
  year: 2016
  end-page: 846
  article-title: Identifying patients at risk for severe exacerbations of asthma: development and external validation of a multivariable prediction model
  publication-title: Thorax
– volume: 208
  start-page: 226
  year: 2015
  end-page: 231
  article-title: Determinants of health behavior choices in patients using computer‐mediated decision aid
  publication-title: Stud. Health Technol. Inform.
– volume: 120
  start-page: 253S
  year: 2001
  article-title: Feasibility of internet‐based home automated telemanagement in patients with chronic obstructive pulmonary disease
  publication-title: Chest
– volume: 53
  start-page: 441
  year: 2015
  end-page: 451
  article-title: Detecting COPD exacerbations early using daily telemonitoring of symptoms and k‐means clustering: a pilot study
  publication-title: Med. Biol. Eng. Comput.
– volume: 45
  start-page: 35
  year: 2015
  end-page: 74
– volume: 11
  start-page: 1404
  year: 2001
  end-page: 1409
  article-title: Capturing whole‐genome characteristics in short sequences using a naïve Bayesian classifier
  publication-title: Genome Res
– volume: 31
  start-page: 776
  year: 2002
  end-page: 781
  article-title: Population ageing in the United States of America: implications for public programmes
  publication-title: Int. J. Epidemiol.
– volume: 13
  start-page: 264
  year: 2016
  end-page: 283
  article-title: Use of predictive algorithms in‐home monitoring of chronic obstructive pulmonary disease and asthma: a systematic review
  publication-title: Chron. Respir. Dis.
– volume: 6
  start-page: 550
  year: 2008
  end-page: 554
  article-title: Analysis of Maryland poisoning deaths using classification and regression tree (CART) analysis
  publication-title: AMIA Annu. Symp. Proc.
– volume: 40
  start-page: 77
  year: 2016
  article-title: Introducing contactless blood pressure assessment using a high speed video camera
  publication-title: J. Med. Syst.
– volume: 313
  start-page: 2119
  year: 2015
  end-page: 2120
  article-title: The precision medicine initiative: a new national effort
  publication-title: JAMA
– volume: 18
  start-page: 1018
  year: 2012
  end-page: 1025
  article-title: Randomized, controlled trial of home telemanagement in patients with ulcerative colitis (UC HAT)
  publication-title: Inflamm. Bowel Dis.
– year: 1997
– volume: 9
  start-page: 31
  year: 2016
  end-page: 45
  article-title: Potential utility of precision medicine for older adults with polypharmacy: a case series study
  publication-title: Pharmgenomics Pers. Med.
– year: 2004
  article-title: Inter‐transaction association rules mining for rare events prediction
  publication-title: Proceedings of the 3rd Hellenic Conference on Artificial Intelligence
– volume: 4
  start-page: 337
  year: 2009
  end-page: 349
  article-title: Chronic obstructive pulmonary disease as an independent risk factor for cardiovascular morbidity
  publication-title: Int. J. Chron. Obstruct. Pulmon. Dis.
– volume: 23
  start-page: 791
  year: 2016
  end-page: 795
  article-title: An informatics research agenda to support precision medicine: seven key areas
  publication-title: J. Am. Med. Inform. Assoc.
– volume: 205
  start-page: 558
  year: 2014
  end-page: 562
  article-title: Activity trackers: a critical review
  publication-title: Stud. Health Technol. Inform.
– volume: 46
  start-page: 677
  year: 2009
  end-page: 682
  article-title: The strategy for predicting future exacerbation of asthma using a combination of the Asthma Control Test and lung function test
  publication-title: J. Asthma
– volume: 22
  start-page: 12
  year: 2003
  end-page: 18
  article-title: Predictors of repeat hospitalizations in children with asthma: the role of psychosocial and socioenvironmental factors
  publication-title: Health Psychol.
– year: 2015
– volume: 61
  start-page: 44
  year: 2016
  end-page: 54
  article-title: Improving condition severity classification with an efficient active learning based framework
  publication-title: J. Biomed. Inform.
– start-page: 185
  year: 1999
  end-page: 208
– volume: 18
  start-page: 63
  year: 2012
  end-page: 69
  article-title: Predicting asthma exacerbations in children
  publication-title: Curr. Opin. Pulm. Med.
– volume: 103
  start-page: 70
  year: 2004
  end-page: 80
  article-title: Development of a clinical pathways analysis system with adaptive Bayesian nets and data mining techniques
  publication-title: Stud. Health Technol. Inform.
– volume: 1
  start-page: 72
  year: 2011
  end-page: 82
  article-title: Consumer health informatics: results of a systematic evidence review and evidence based recommendations
  publication-title: Transl. Behav. Med.
– volume: 101
  start-page: 626
  year: 2008
  end-page: 630
  article-title: Predicting an asthma exacerbation in children 2 to 5 years of age
  publication-title: Ann. Allergy Asthma Immunol.
– volume: 168
  start-page: 71
  year: 2015
  end-page: 78
  article-title: Asthma: hospitalization trends and predictors of in‐hospital mortality and hospitalization costs in the USA (2001–2010)
  publication-title: Arch. Allergy Immunol.
– volume: 14
  start-page: 3202
  year: 2012
  end-page: 3210
  article-title: Air pollution indicators predict outbreaks of asthma exacerbations among elementary school children: integration of daily environmental and school health surveillance systems in Pennsylvania
  publication-title: J. Environ. Monit.
– volume: 2
  start-page: 459
  year: 2013
  end-page: 462
  article-title: Methodology for rare events prediction
  publication-title: Advanced Research in Scientific Areas
– volume: 2005
  start-page: 1017
  year: 2005
  article-title: Depression education for primary care patients using a web‐based program
  publication-title: AMIA Annu. Symp. Proc.
– volume: 4
  start-page: 1163
  year: 2016
  article-title: Consensus statement on electronic health predictive analytics: a guiding framework to address challenges
  publication-title: EGEMS (Wash. DC)
– volume: 2005
  start-page: 1000
  year: 2005
  article-title: Clinical impact of home automated telemanagement in asthma
  publication-title: AMIA Annu. Symp. Proc.
– year: 2003
– volume: 160
  start-page: 535
  year: 2010
  end-page: 539
  article-title: Exploring feasibility of home telemanagement in African Americans with congestive heart failure
  publication-title: Stud. Health Technol. Inform
– volume: 11
  start-page: 669
  year: 2014
  end-page: 679
  article-title: Personalized medicine for chronic, complex diseases: chronic obstructive pulmonary disease as an example
  publication-title: Persona. Med
– volume: 21
  start-page: 8
  year: 2015
  end-page: 15
  article-title: Managing severe asthma in adults: lessons from the ERS/ATS guidelines
  publication-title: Curr. Opin. Pulm. Med.
– volume: 14
  start-page: 465
  year: 1978
  end-page: 471
  article-title: Modeling by shortest data description
  publication-title: Automatica
– volume: 11
  start-page: 893
  year: 2007
  article-title: Acceptance of home telemanagement is high in patients with multiple sclerosis
  publication-title: AMIA Annu. Symp. Proc.
– start-page: 1
  year: 2012
  end-page: 1531
  article-title: Enabling patient‐centered care through health information technology
  publication-title: Evid. Rep. Technol. Assess. (Full Rep.)
– volume: 4
  start-page: 376
  year: 2013
  end-page: 391
  article-title: Comparing predictions made by a prediction model, clinical score, and physicians: pediatric asthma exacerbations in the emergency department
  publication-title: Appl. Clin. Inform.
– volume: 15
  start-page: 84
  year: 2015
  article-title: Predicting asthma control deterioration in children
  publication-title: BMC Med. Inform. Decis. Mak.
– year: 2016
  article-title: Prognosis of clinical outcomes with temporal patterns and experiences with one class feature selection
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
– volume: 67
  start-page: 124
  year: 2008
  end-page: 132
  article-title: The changing prevalence of comorbidity across the age spectrum
  publication-title: Crit. Rev. Oncol. Hematol.
– volume: 1346
  start-page: 18
  year: 2015
  end-page: 32
  article-title: Biomarkers for precision medicine in airways disease
  publication-title: Ann. N.Y. Acad. Sci.
– volume: 63
  start-page: 51
  year: 2015
  end-page: 59
  article-title: Predicting the risk of exacerbation in patients with chronic obstructive pulmonary disease using home telehealth measurement data
  publication-title: Artif. Intell. Med.
– volume: 41
  start-page: 471
  year: 2004
  end-page: 476
  article-title: Exhaled nitric oxide predicts asthma exacerbation
  publication-title: J. Asthma
– volume: 18
  start-page: 50
  year: 2014
  end-page: 57
  article-title: Big data analysis using modern statistical and machine learning methods in medicine
  publication-title: Int. Neurourol. J.
– volume: 22
  start-page: 342
  year: 2016
  end-page: 375
  article-title: The empirical foundations of telemedicine interventions in primary care
  publication-title: Telemed. J. E. Health
– volume: 181
  start-page: E181
  year: 2009
  end-page: E190
  article-title: Asthma: epidemiology, etiology and risk factors
  publication-title: CMAJ
– volume: 161
  start-page: 1608
  year: 2000
  end-page: 1613
  article-title: Time course and recovery of exacerbations in patients with chronic obstructive pulmonary disease
  publication-title: Am. J. Respir. Crit. Care Med.
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  article-title: SMOTE: synthetic minority over‐sampling technique
  publication-title: J. Artif. Intell. Res.
– year: 2006
– volume: 16
  start-page: 201
  year: 2016
  end-page: 209
  article-title: The asthma prediction rule to decrease hospitalizations for children with asthma
  publication-title: Curr. Opin. Allergy Clin. Immunol.
– volume: 137
  start-page: 1289
  year: 2016
  end-page: 1300
  article-title: Toward precision medicine and health: opportunities and challenges in allergic diseases
  publication-title: J. Allergy Clin. Immunol.
– volume: 116
  start-page: 112
  year: 2016
  end-page: 117
  article-title: Predictors of asthma exacerbation among patients with poorly controlled asthma despite inhaled corticosteroid treatment
  publication-title: Ann. Allergy Asthma Immunol.
– volume: 42
  start-page: 244
  year: 2008
  end-page: 251
  article-title: Patient subjective assessment of drug side effects in inflammatory bowel disease
  publication-title: J. Clin. Gastroenterol.
– volume: 127
  start-page: 145
  year: 2011
  end-page: 152
  article-title: Costs of asthma in the United States: 2002–2007
  publication-title: J. Allergy Clin. Immunol.
– volume: 8
  start-page: 57
  year: 2000
  end-page: 63
  article-title: Potential role of telecommunication technologies in the management of chronic health conditions
  publication-title: Dis. Manag. Health Outcomes
– volume: 2
  start-page: 272
  year: 2009
  end-page: 278
  article-title: Hypertension telemanagement in blacks
  publication-title: Circ. Cardiovasc. Qual. Outcomes
– volume: 54
  start-page: 546
  year: 2015
  end-page: 547
  article-title: Big data and analytics in healthcare
  publication-title: Methods Inf. Med.
– volume: 8
  start-page: 27
  year: 2008
  article-title: Identification and management of adults with asthma prone to exacerbations: can we do better
  publication-title: BMC Pulm. Med.
– year: 2013
– ident: e_1_2_9_51_1
  doi: 10.1101/gr.186401
– ident: e_1_2_9_73_1
  doi: 10.1111/nyas.12809
– ident: e_1_2_9_75_1
  doi: 10.1097/MCP.0b013e32834db288
– volume: 160
  start-page: 535
  year: 2010
  ident: e_1_2_9_15_1
  article-title: Exploring feasibility of home telemanagement in African Americans with congestive heart failure
  publication-title: Stud. Health Technol. Inform
  contributor:
    fullname: Finkelstein J.
– ident: e_1_2_9_36_1
  doi: 10.1136/thoraxjnl-2015-208138
– ident: e_1_2_9_71_1
  doi: 10.1016/j.jbi.2016.03.016
– ident: e_1_2_9_67_1
  doi: 10.1613/jair.953
– ident: e_1_2_9_4_1
  doi: 10.1093/jamia/ocv213
– ident: e_1_2_9_5_1
  doi: 10.1001/jama.2015.3595
– ident: e_1_2_9_27_1
  doi: 10.1159/000441687
– ident: e_1_2_9_72_1
  doi: 10.2147/PGPM.S101474
– ident: e_1_2_9_64_1
  doi: 10.1016/j.artmed.2014.12.003
– ident: e_1_2_9_29_1
  doi: 10.1503/cmaj.080612
– ident: e_1_2_9_25_1
  doi: 10.1007/s10916-016-0439-z
– ident: e_1_2_9_39_1
  doi: 10.1097/ACI.0000000000000259
– ident: e_1_2_9_28_1
  doi: 10.1016/j.jaci.2010.10.020
– ident: e_1_2_9_46_1
  doi: 10.1161/CIRCULATIONAHA.115.001593
– ident: e_1_2_9_2_1
– ident: e_1_2_9_32_1
  doi: 10.1097/MCP.0000000000000116
– ident: e_1_2_9_43_1
  doi: 10.1136/bmj.f6070
– ident: e_1_2_9_19_1
  doi: 10.2217/pme.14.51
– ident: e_1_2_9_35_1
  doi: 10.1081/JAS-120033990
– volume: 4
  start-page: 1163
  year: 2016
  ident: e_1_2_9_7_1
  article-title: Consensus statement on electronic health predictive analytics: a guiding framework to address challenges
  publication-title: EGEMS (Wash. DC)
  contributor:
    fullname: Amarasingham R.
– volume: 2005
  start-page: 1017
  year: 2005
  ident: e_1_2_9_18_1
  article-title: Depression education for primary care patients using a web‐based program
  publication-title: AMIA Annu. Symp. Proc.
  contributor:
    fullname: Lapshin O.V.
– ident: e_1_2_9_57_1
– ident: e_1_2_9_30_1
– volume: 11
  start-page: 893
  year: 2007
  ident: e_1_2_9_16_1
  article-title: Acceptance of home telemanagement is high in patients with multiple sclerosis
  publication-title: AMIA Annu. Symp. Proc.
  contributor:
    fullname: Cha E.
– volume: 151
  start-page: 110
  year: 2009
  ident: e_1_2_9_42_1
  article-title: SMASHING (Self‐Management in Asthma Supported by Hospitals, ICT, Nurses and General Practitioners) Study Group
  publication-title: Ann. Intern. Med.
  contributor:
    fullname: der Meer V.
– ident: e_1_2_9_52_1
  doi: 10.1017/S0033291711002005
– ident: e_1_2_9_26_1
  doi: 10.1089/tmj.2016.0045
– ident: e_1_2_9_37_1
  doi: 10.1080/02770900902972160
– ident: e_1_2_9_48_1
  doi: 10.1016/j.artmed.2009.07.007
– ident: e_1_2_9_14_1
  doi: 10.1002/ibd.21795
– ident: e_1_2_9_66_1
  doi: 10.1007/978-1-4614-6849-3
– volume: 9
  start-page: 1
  year: 2016
  ident: e_1_2_9_34_1
  article-title: Predicting frequent asthma exacerbations using blood eosinophil count and other patient data routinely available in clinical practice
  publication-title: J. Asthma Allergy
  contributor:
    fullname: Price D.
– ident: e_1_2_9_61_1
  doi: 10.1164/ajrccm.161.5.9908022
– volume: 84
  start-page: 810
  year: 2000
  ident: e_1_2_9_53_1
  article-title: Development and implementation of the home asthma telemonitoring (HAT) system to facilitate asthma self‐care
  publication-title: Stud. Health Technol. Inform.
  contributor:
    fullname: Finkelstein J.
– ident: e_1_2_9_69_1
  doi: 10.1186/1471-2105-13-S15-S14
– volume-title: The Nature of Statistical Learning Theory
  year: 2013
  ident: e_1_2_9_59_1
  contributor:
    fullname: Vapnik V.
– volume: 6
  start-page: 550
  year: 2008
  ident: e_1_2_9_49_1
  article-title: Analysis of Maryland poisoning deaths using classification and regression tree (CART) analysis
  publication-title: AMIA Annu. Symp. Proc.
  contributor:
    fullname: Pamer C.
– volume: 120
  start-page: 253S
  year: 2001
  ident: e_1_2_9_17_1
  article-title: Feasibility of internet‐based home automated telemanagement in patients with chronic obstructive pulmonary disease
  publication-title: Chest
  contributor:
    fullname: Finkelstein J.
– volume: 205
  start-page: 558
  year: 2014
  ident: e_1_2_9_24_1
  article-title: Activity trackers: a critical review
  publication-title: Stud. Health Technol. Inform.
  contributor:
    fullname: Lee J.
– start-page: 1
  year: 2012
  ident: e_1_2_9_21_1
  article-title: Enabling patient‐centered care through health information technology
  publication-title: Evid. Rep. Technol. Assess. (Full Rep.)
  contributor:
    fullname: Finkelstein J.
– ident: e_1_2_9_62_1
  doi: 10.1177/1479972316642365
– ident: e_1_2_9_68_1
  doi: 10.1007/s10115-014-0784-5
– start-page: 185
  volume-title: Advances in Kernel Methods: Support Vector Learning
  year: 1999
  ident: e_1_2_9_58_1
  contributor:
    fullname: Platt J.C.
– ident: e_1_2_9_38_1
  doi: 10.1016/S1081-1206(10)60226-8
– volume: 208
  start-page: 226
  year: 2015
  ident: e_1_2_9_77_1
  article-title: Determinants of health behavior choices in patients using computer‐mediated decision aid
  publication-title: Stud. Health Technol. Inform.
  contributor:
    fullname: Kukafka R.
– ident: e_1_2_9_40_1
  doi: 10.4338/ACI-2013-04-RA-0029
– year: 2004
  ident: e_1_2_9_55_1
  article-title: Inter‐transaction association rules mining for rare events prediction
  publication-title: Proceedings of the 3rd Hellenic Conference on Artificial Intelligence
  contributor:
    fullname: Berberidis C.
– ident: e_1_2_9_76_1
  doi: 10.1037/0278-6133.22.1.12
– ident: e_1_2_9_11_1
  doi: 10.2165/00115677-200008020-00001
– ident: e_1_2_9_47_1
  doi: 10.5213/inj.2014.18.2.50
– volume-title: Healthcare cost and utilization project (HCUP) statistical briefs
  year: 2006
  ident: e_1_2_9_9_1
  contributor:
    fullname: Russo C.A.
– ident: e_1_2_9_56_1
  doi: 10.1016/0005-1098(78)90005-5
– ident: e_1_2_9_31_1
  doi: 10.1186/1471-2466-8-27
– ident: e_1_2_9_65_1
  doi: 10.1007/s11517-015-1252-4
– ident: e_1_2_9_8_1
  doi: 10.1016/j.critrevonc.2008.01.013
– volume: 2
  start-page: 459
  year: 2013
  ident: e_1_2_9_60_1
  article-title: Methodology for rare events prediction
  publication-title: Advanced Research in Scientific Areas
  contributor:
    fullname: Soler‐Flores F.
– ident: e_1_2_9_63_1
  doi: 10.1186/s12911-015-0208-9
– ident: e_1_2_9_20_1
  doi: 10.3389/fpsyt.2015.00037
– ident: e_1_2_9_74_1
  doi: 10.2147/COPD.S6400
– ident: e_1_2_9_13_1
  doi: 10.1161/CIRCOUTCOMES.109.849968
– volume: 2005
  start-page: 1000
  year: 2005
  ident: e_1_2_9_12_1
  article-title: Clinical impact of home automated telemanagement in asthma
  publication-title: AMIA Annu. Symp. Proc.
  contributor:
    fullname: Joshi A.
– ident: e_1_2_9_10_1
  doi: 10.1093/ije/31.4.776
– ident: e_1_2_9_45_1
  doi: 10.1016/j.jaci.2016.03.006
– ident: e_1_2_9_6_1
  doi: 10.3414/ME15-06-1001
– volume-title: Expert panel report 2: guidelines for the diagnosis and management of asthma
  year: 1997
  ident: e_1_2_9_54_1
  contributor:
    fullname: National institutes of Health, National Heart, Lung, and Blood Institute
– ident: e_1_2_9_22_1
  doi: 10.1097/MCG.0b013e31802f19af
– ident: e_1_2_9_3_1
  doi: 10.1056/NEJMp1500523
– ident: e_1_2_9_70_1
  doi: 10.1109/TCBB.2016.2591539
– volume: 103
  start-page: 70
  year: 2004
  ident: e_1_2_9_50_1
  article-title: Development of a clinical pathways analysis system with adaptive Bayesian nets and data mining techniques
  publication-title: Stud. Health Technol. Inform.
  contributor:
    fullname: Kopec D.
– ident: e_1_2_9_44_1
  doi: 10.1056/NEJMoa1010029
– ident: e_1_2_9_41_1
  doi: 10.1039/c2em30430a
– ident: e_1_2_9_78_1
  doi: 10.1016/j.anai.2015.11.011
– ident: e_1_2_9_23_1
  doi: 10.1007/s13142-011-0016-4
– ident: e_1_2_9_33_1
  doi: 10.1186/1471-2350-12-90
SSID ssj0012847
Score 2.5815992
Snippet Patient telemonitoring results in an aggregation of significant amounts of information about patient disease trajectory. However, the potential use of this...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 153
SubjectTerms Adult
Algorithms
Asthma
Asthma - diagnosis
Asthma - physiopathology
Asthma - therapy
asthma exacerbation
Bayes Theorem
Chronic illnesses
Combined Modality Therapy
Computational Biology
Decision Support Systems, Clinical
Disease Progression
Electronic Health Records
Humans
Internet
Machine Learning
Models, Biological
Monitoring, Physiologic
Patients
personalized medicine
Precision Medicine
prediction
Prognosis
ROC Curve
Self Care
Severity of Illness Index
Telemedicine - methods
Title Machine learning approaches to personalize early prediction of asthma exacerbations
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnyas.13218
https://www.ncbi.nlm.nih.gov/pubmed/27627195
https://www.proquest.com/docview/1861700693
https://search.proquest.com/docview/1835507203
https://search.proquest.com/docview/1868313581
https://pubmed.ncbi.nlm.nih.gov/PMC5266630
Volume 1387
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-UwFD6MguDG1zysOkNkXIxChzyaPmA2MqO4GRGugq5Kkibqwt6LvRfUX29O-hgvgjC4K-QU0p5855WcLwB73m1oZxLl0xJm4iSRJi6EkrHUGeNWaJsY7EY-GWWnl_mfI6TJ-dX3wrT8EEPBDZER7DUCXOnmBcjrR9X89LkUw05fnyaE_g1xNmwhoN0NZjjzZtiHMR03KR7j-ffqvDd6FWK-Pin5MoINLuh49X2TX4OVLvQkh-1aWYcPtt6ApfYyyscNWO9g3pAfHRf1_kcY_Q2HLS3pbpe4Jj0JuZebjsmkj-WfLLHIlUwm97j1g-omY0dUM725U8Q-KOP111YHP8HF8dH575O4u4chNon35zFyh9LcKy2rjBHW8kI6xQ0VNqVO5D4Bko5qrZnTiTcBgiqVpLZSzjpGq0qKz7BYj2u7CSRPC82ZKqTF4lPlCs4Vo2gKUmryKonge6-PctLSbZR9moL_rAz_LIKdXlVlBzk_kiO3PE0LEcHuMOzBgjsgqrbjGcoI5G_j9E2ZNBcMaeEi-NJqf5gK964jY4WMIJtbF4MAknXPj9S3N4G0W_pIKBU0goOwLt74uvL06nAUnrb-R3gbljmGHKE8tAOL0_uZ_QoLTTX7FoDxDPEYEfs
link.rule.ids 230,315,782,786,887,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ja9wwFH5kITSXZunmJmkV2kMbcNHq5ZBDaBKmNBkKk0J7MrIsNTnUM2RmoOmvj568NEMgUHIz6Blkv_e9TdIngPc-bJTOSO3LEmZiKZWJc6FVrMqUcStKKw2eRh6M0uGP7PgEaXIOu7MwDT9E33BDZAR_jQDHhvQdlNc3evrJF1MsW4ZVmXhLxBMc4lu_iICeNzji1Dtin8i07KS4keffu4vx6F6SeX-v5N0cNgSh041HTn8TnrbZJzlqzGULlmy9DWvNfZQ327DVIn1KPrR01B-fweg87Le0pL1g4hfpeMi93GxMJl06_9cSi3TJZHKNqz-ocTJ2RE9nl781sX-08SpsGoTP4fvpycXnQdxexRAb6UN6jPShNPN6SytjhLU8V05zQ4VNqBOZr4GUo2VZMldK7wUE1VomttLOOkarSokXsFKPa_sKSJbkJWc6Vxb7T5XLOdeMojdIqMkqGcG7TiHFpGHcKLpKBf9ZEf5ZBLudrooWdX4kQ3p5muQigv1-2OMFF0F0bcdzlBFI4cbpgzJJJhgyw0XwslF_PxXuo0fKchVBumAYvQDydS-O1FeXgbdb-WQoETSCg2AYD3xdMfx5NApPr_9H-C08GVycnxVnX4Zfd2CdYwYSukW7sDK7nts9WJ5W8zcBJbcmrxYj
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB9sxdKXar9Xa43oQ1tYyed-gC_F9qioR-EstE9LNptYH9w7endg_evNZD_sUShI3xYygWwmM_ObSfILwHsfNkpnpPZpCTOxlMrEudAqVmXKuBWllQZvI5-N0uFldnKKNDkfu7swDT9EX3BDywj-Gg18Urk7Rl7f6ukHn0uxbAmeSo_DkTlfiPN-DwEdb_DDqffDHse05KR4judf38VwdA9j3j8qeRfChhg0eP640b-AtRZ7kuNmsazDE1tvwLPmNcrbDVhv7XxKDloy6sNNGH0Lpy0taZ-X-EE6FnIvNxuTSQfm_1hikSyZTG5w7wf1TcaO6Ons-pcm9rc2XoFNeXALLgan3z-dxe1DDLGRPqDHSB5KM6-1tDJGWMtz5TQ3VNiEOpH5DEg5WpYlc6X0PkBQrWViK-2sY7SqlNiG5Xpc210gWZKXnOlcWaw-VS7nXDOKviChJqtkBO86fRSThm-j6PIUnLMizFkEe52qitbmfEuG5PI0yUUEb_tmby24BaJrO56jjEACN04flEkywZAXLoKdRvv9ULiPHSnLVQTpwrroBZCte7Gl_nkdWLuVh0KJoBEchXXxwN8Vw6vjUfh6-T_Cb2Dl_GRQfP08_PIKVjnCj1Aq2oPl2c3cvoalaTXfDzbyF7uWFMk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+approaches+to+personalize+early+prediction+of+asthma+exacerbations&rft.jtitle=Annals+of+the+New+York+Academy+of+Sciences&rft.au=Finkelstein%2C+Joseph&rft.au=Jeong%2C+In+cheol&rft.date=2017-01-01&rft.issn=0077-8923&rft.eissn=1749-6632&rft.volume=1387&rft.issue=1&rft.spage=153&rft.epage=165&rft_id=info:doi/10.1111%2Fnyas.13218&rft.externalDBID=10.1111%252Fnyas.13218&rft.externalDocID=NYAS13218
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0077-8923&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0077-8923&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0077-8923&client=summon