Machine learning approaches to personalize early prediction of asthma exacerbations
Patient telemonitoring results in an aggregation of significant amounts of information about patient disease trajectory. However, the potential use of this information for early prediction of exacerbations in adult asthma patients has not been systematically evaluated. The aim of this study was to e...
Saved in:
Published in: | Annals of the New York Academy of Sciences Vol. 1387; no. 1; pp. 153 - 165 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Wiley Subscription Services, Inc
01-01-2017
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Patient telemonitoring results in an aggregation of significant amounts of information about patient disease trajectory. However, the potential use of this information for early prediction of exacerbations in adult asthma patients has not been systematically evaluated. The aim of this study was to explore the utility of telemonitoring data for building machine learning algorithms that predict asthma exacerbations before they occur. The study dataset comprised daily self‐monitoring reports consisting of 7001 records submitted by adult asthma patients during home telemonitoring. Predictive modeling included preparation of stratified training datasets, predictive feature selection, and evaluation of resulting classifiers. Using a 7‐day window, a naive Bayesian classifier, adaptive Bayesian network, and support vector machines were able to predict asthma exacerbation occurring on day 8, with sensitivity of 0.80, 1.00, and 0.84; specificity of 0.77, 1.00, and 0.80; and accuracy of 0.77, 1.00, and 0.80, respectively. Our study demonstrated that machine learning techniques have significant potential in developing personalized decision support for chronic disease telemonitoring systems. Future studies may benefit from a comprehensive predictive framework that combines telemonitoring data with other factors affecting the likelihood of developing acute exacerbation. Approaches implemented for advanced asthma exacerbation prediction may be extended to prediction of exacerbations in patients with other chronic health conditions. |
---|---|
AbstractList | Patient telemonitoring results in an aggregation of significant amounts of information about patient disease trajectory. However, the potential use of this information for early prediction of exacerbations in adult asthma patients has not been systematically evaluated. The aim of this study was to explore the utility of telemonitoring data for building machine learning algorithms that predict asthma exacerbations before they occur. The study dataset comprised daily self‐monitoring reports consisting of 7001 records submitted by adult asthma patients during home telemonitoring. Predictive modeling included preparation of stratified training datasets, predictive feature selection, and evaluation of resulting classifiers. Using a 7‐day window, a naive Bayesian classifier, adaptive Bayesian network, and support vector machines were able to predict asthma exacerbation occurring on day 8, with sensitivity of 0.80, 1.00, and 0.84; specificity of 0.77, 1.00, and 0.80; and accuracy of 0.77, 1.00, and 0.80, respectively. Our study demonstrated that machine learning techniques have significant potential in developing personalized decision support for chronic disease telemonitoring systems. Future studies may benefit from a comprehensive predictive framework that combines telemonitoring data with other factors affecting the likelihood of developing acute exacerbation. Approaches implemented for advanced asthma exacerbation prediction may be extended to prediction of exacerbations in patients with other chronic health conditions. Patient telemonitoring results in an aggregation of significant amounts of information about patient disease trajectory. However, the potential use of this information for early prediction of exacerbations in adult asthma patients has not been systematically evaluated. The aim of this study was to explore the utility of telemonitoring data for building machine learning algorithms that predict asthma exacerbations before they occur. The study dataset comprised daily self-monitoring reports consisting of 7001 records submitted by adult asthma patients during home telemonitoring. Predictive modeling included preparation of stratified training data sets, predictive feature selection, and evaluation of resulting classifiers. Using a 7-day window, a naive Bayesian classifier, adaptive Bayesian network, and support vector machines were able to predict asthma exacerbation occurring on day 8, with sensitivity of 0.80, 1.00, and 0.84; specificity of 0.77, 1.00, and 0.80; and accuracy of 0.77, 1.00, and 0.80, respectively. Our study demonstrated that machine learning techniques have significant potential in developing personalized decision support for chronic disease telemonitoring systems. Future studies may benefit from a comprehensive predictive framework that combines telemonitoring data with other factors affecting the likelihood of developing acute exacerbation. Approaches implemented for advanced asthma exacerbation prediction may be extended to prediction of exacerbations in patients with other chronic health conditions. |
Author | Finkelstein, Joseph Jeong, In cheol |
AuthorAffiliation | 1 Department of Biomedical Informatics, Columbia University, New York, New York 2 Chronic Disease Informatics Program, Johns Hopkins University, Baltimore, Maryland |
AuthorAffiliation_xml | – name: 1 Department of Biomedical Informatics, Columbia University, New York, New York – name: 2 Chronic Disease Informatics Program, Johns Hopkins University, Baltimore, Maryland |
Author_xml | – sequence: 1 givenname: Joseph surname: Finkelstein fullname: Finkelstein, Joseph email: jf193@cumc.columbia.edu organization: Columbia University – sequence: 2 givenname: In cheol surname: Jeong fullname: Jeong, In cheol organization: Johns Hopkins University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27627195$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1rFTEUhoO02Nvqxh8gATdFmJqPycdshFL8KLS6qC5chUzmpDdlbjImc9Xrrze3ty3qQswm8ObhIee8h2gvpggIPaPkhNbzKm5sOaGcUf0ILahqu0ZKzvbQghClGt0xfoAOS7khhDLdqsfogCnJFO3EAl1dWrcMEfAINscQr7GdppxqCAXPCU-QS4p2DD8BV2Lc4CnDENwcUsTJY1vm5cpi-GEd5N5u4_IE7Xs7Fnh6dx-hz2_ffDp731x8fHd-dnrRuFZT3VDSUaJb16vBOQ7AOuEtc4SDJJ5rKaXwpO976vu2ZYITa1sJg_XgKRkGwY_Q6513WvcrGBzEOdvRTDmsbN6YZIP58yWGpblO34xgVc5JFRzfCXL6uoYym1UoDsbRRkjrYqiWmlMuNP0PlAtBFCO8oi_-Qm_SOtcd3gqpIkR2W-rljnI5lZLBP_ybErOt1WxrNbe1Vvj575M-oPc9VoDugO9hhM0_VObDl9OrnfQXDdWwvw |
CODEN | ANYAA9 |
CitedBy_id | crossref_primary_10_1007_s10916_024_02061_3 crossref_primary_10_1186_s12874_020_0913_7 crossref_primary_10_1007_s12265_021_10151_7 crossref_primary_10_3390_mps3040077 crossref_primary_10_1109_ACCESS_2021_3073086 crossref_primary_10_1136_thoraxjnl_2020_214556 crossref_primary_10_3389_fpubh_2018_00099 crossref_primary_10_1007_s40747_021_00424_8 crossref_primary_10_1080_02770903_2020_1802746 crossref_primary_10_1159_000481127 crossref_primary_10_1002_clt2_12076 crossref_primary_10_1097_ACI_0000000000000428 crossref_primary_10_3390_a15040130 crossref_primary_10_1016_j_eswa_2023_119799 crossref_primary_10_3233_JIFS_219270 crossref_primary_10_3390_healthcare8030247 crossref_primary_10_1016_j_jaip_2022_01_047 crossref_primary_10_2196_22911 crossref_primary_10_2196_42047 crossref_primary_10_1111_nyas_13309 crossref_primary_10_1007_s10439_024_03459_3 crossref_primary_10_3390_jpm14010020 crossref_primary_10_3390_life12101631 crossref_primary_10_1371_journal_pone_0247784 crossref_primary_10_15690_pf_v16i5_2058 crossref_primary_10_4103_ijaai_ijaai_39_23 crossref_primary_10_1108_IJICC_10_2019_0112 crossref_primary_10_2196_13671 crossref_primary_10_2196_16981 crossref_primary_10_1186_s13104_018_3621_1 crossref_primary_10_2196_57618 crossref_primary_10_1136_bmjresp_2019_000524 crossref_primary_10_1002_adsr_202300100 crossref_primary_10_1186_s12967_024_04866_9 crossref_primary_10_3390_jpm10020021 crossref_primary_10_1016_j_ccm_2018_10_013 crossref_primary_10_1080_1744666X_2019_1541737 crossref_primary_10_1097_ACI_0000000000000430 crossref_primary_10_1016_j_jaip_2021_09_018 crossref_primary_10_2147_JAA_S285742 crossref_primary_10_37648_ijrmst_v11i02_021 crossref_primary_10_1016_S2352_4642_19_30025_2 crossref_primary_10_1016_j_jaip_2021_03_039 crossref_primary_10_3233_AIS_190540 crossref_primary_10_1016_j_ijmedinf_2021_104620 crossref_primary_10_1016_j_phycom_2020_101173 crossref_primary_10_1002_clt2_12201 crossref_primary_10_1093_jamiaopen_ooad091 crossref_primary_10_1136_bmjopen_2018_028375 crossref_primary_10_1016_j_chest_2020_12_051 crossref_primary_10_1016_j_trac_2022_116861 crossref_primary_10_2147_JAA_S377631 crossref_primary_10_1111_all_13856 crossref_primary_10_1109_ACCESS_2019_2960551 crossref_primary_10_1016_j_compbiomed_2023_107544 crossref_primary_10_2196_40364 crossref_primary_10_1016_j_pdpdt_2019_10_011 crossref_primary_10_1186_s12911_022_01847_0 crossref_primary_10_1016_j_jaci_2019_12_898 crossref_primary_10_1007_s10462_023_10561_w crossref_primary_10_1371_journal_pone_0295427 crossref_primary_10_1186_s12859_022_04870_0 crossref_primary_10_18034_mjmbr_v7i2_517 crossref_primary_10_3389_fgene_2019_00770 crossref_primary_10_1016_j_bbe_2021_06_009 crossref_primary_10_3390_app11135810 crossref_primary_10_1007_s12325_023_02743_3 crossref_primary_10_1183_13993003_00521_2020 crossref_primary_10_1186_s12911_021_01704_6 crossref_primary_10_4168_aair_2021_13_5_697 crossref_primary_10_1097_MPG_0000000000003754 crossref_primary_10_1513_AnnalsATS_201702_101OC crossref_primary_10_1016_j_arr_2020_101174 crossref_primary_10_1080_10408363_2020_1857681 crossref_primary_10_1093_ije_dyy113 crossref_primary_10_1016_j_nanoen_2022_107711 crossref_primary_10_18034_mjmbr_v7i2_555 crossref_primary_10_1146_annurev_bioeng_110220_030247 crossref_primary_10_1371_journal_pone_0188532 crossref_primary_10_1038_s41598_022_24909_9 |
Cites_doi | 10.1101/gr.186401 10.1111/nyas.12809 10.1097/MCP.0b013e32834db288 10.1136/thoraxjnl-2015-208138 10.1016/j.jbi.2016.03.016 10.1613/jair.953 10.1093/jamia/ocv213 10.1001/jama.2015.3595 10.1159/000441687 10.2147/PGPM.S101474 10.1016/j.artmed.2014.12.003 10.1503/cmaj.080612 10.1007/s10916-016-0439-z 10.1097/ACI.0000000000000259 10.1016/j.jaci.2010.10.020 10.1161/CIRCULATIONAHA.115.001593 10.1097/MCP.0000000000000116 10.1136/bmj.f6070 10.2217/pme.14.51 10.1081/JAS-120033990 10.1017/S0033291711002005 10.1089/tmj.2016.0045 10.1080/02770900902972160 10.1016/j.artmed.2009.07.007 10.1002/ibd.21795 10.1007/978-1-4614-6849-3 10.1164/ajrccm.161.5.9908022 10.1186/1471-2105-13-S15-S14 10.1177/1479972316642365 10.1007/s10115-014-0784-5 10.1016/S1081-1206(10)60226-8 10.4338/ACI-2013-04-RA-0029 10.1037/0278-6133.22.1.12 10.2165/00115677-200008020-00001 10.5213/inj.2014.18.2.50 10.1016/0005-1098(78)90005-5 10.1186/1471-2466-8-27 10.1007/s11517-015-1252-4 10.1016/j.critrevonc.2008.01.013 10.1186/s12911-015-0208-9 10.3389/fpsyt.2015.00037 10.2147/COPD.S6400 10.1161/CIRCOUTCOMES.109.849968 10.1093/ije/31.4.776 10.1016/j.jaci.2016.03.006 10.3414/ME15-06-1001 10.1097/MCG.0b013e31802f19af 10.1056/NEJMp1500523 10.1109/TCBB.2016.2591539 10.1056/NEJMoa1010029 10.1039/c2em30430a 10.1016/j.anai.2015.11.011 10.1007/s13142-011-0016-4 10.1186/1471-2350-12-90 |
ContentType | Journal Article |
Copyright | 2016 New York Academy of Sciences. 2017 The New York Academy of Sciences |
Copyright_xml | – notice: 2016 New York Academy of Sciences. – notice: 2017 The New York Academy of Sciences |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7ST 7T5 7T7 7TK 7TM 7TO 7U7 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 SOI 7X8 5PM |
DOI | 10.1111/nyas.13218 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Toxicology Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Toxicology Abstracts Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Calcium & Calcified Tissue Abstracts Environment Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef AIDS and Cancer Research Abstracts Virology and AIDS Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1749-6632 |
EndPage | 165 |
ExternalDocumentID | 4307921511 10_1111_nyas_13218 27627195 NYAS13218 |
Genre | article Journal Article Comparative Study Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Heart, Lung, and Blood Institute funderid: R01HL065355; R01HL071690 – fundername: NHLBI NIH HHS grantid: R01 HL071690 – fundername: NHLBI NIH HHS grantid: R01 HL065355 – fundername: NCATS NIH HHS grantid: UL1 TR001433 – fundername: NHLBI NIH HHS grantid: R01 HL078579 |
GroupedDBID | --- --Z -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1CY 1OB 1OC 23M 31~ 33P 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 692 6J9 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAMDK AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOJD ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AELAQ AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFSWV AFZJQ AHBTC AHEFC AHMBA AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG CO8 COF CS3 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS EJD EMOBN ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IH2 IX1 J0M K48 L7B LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NHB O66 O9- OHT OIG OK1 OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RAG RIWAO RJQFR ROL RX1 S10 SAMSI SJN SUPJJ SV3 TEORI TUS UB1 UPT V8K VH1 W8V W99 WBKPD WH7 WHWMO WIH WIK WOHZO WQJ WRC WUP WVDHM WXSBR X7M XG1 YBU YOC YSK ZGI ZKB ZXP ZZTAW ~02 ~IA ~KM ~WT CGR CUY CVF ECM EIF NPM AAMNL AAYXX CITATION 7QG 7QL 7QP 7QR 7ST 7T5 7T7 7TK 7TM 7TO 7U7 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 SOI 7X8 5PM |
ID | FETCH-LOGICAL-c4818-1091084cb7dcc3ee295fa2c03e60f386665f0bbb1fb442530aa46edafef10dd53 |
IEDL.DBID | 33P |
ISSN | 0077-8923 |
IngestDate | Tue Sep 17 21:12:07 EDT 2024 Fri Aug 16 06:19:03 EDT 2024 Fri Aug 16 21:06:54 EDT 2024 Thu Oct 10 22:09:36 EDT 2024 Fri Nov 22 12:12:01 EST 2024 Sat Sep 28 08:28:16 EDT 2024 Sat Aug 24 00:54:12 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | prediction asthma exacerbation machine learning personalized medicine |
Language | English |
License | 2016 New York Academy of Sciences. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4818-1091084cb7dcc3ee295fa2c03e60f386665f0bbb1fb442530aa46edafef10dd53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://europepmc.org/articles/pmc5266630?pdf=render |
PMID | 27627195 |
PQID | 1861700693 |
PQPubID | 946344 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5266630 proquest_miscellaneous_1868313581 proquest_miscellaneous_1835507203 proquest_journals_1861700693 crossref_primary_10_1111_nyas_13218 pubmed_primary_27627195 wiley_primary_10_1111_nyas_13218_NYAS13218 |
PublicationCentury | 2000 |
PublicationDate | January 2017 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: January 2017 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | Annals of the New York Academy of Sciences |
PublicationTitleAlternate | Ann N Y Acad Sci |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2002; 16 2009; 46 2013; 4 2013; 2 2011; 60 2000; 8 2008; 8 2012; 18 2011; 12 2016; 71 2009; 151 2008; 6 2008; 101 2012; 14 2012; 13 2005; 2005 2015; 372 2011; 127 2015; 45 2014; 205 2015; 132 2000; 161 2008; 67 2016; 40 2015; 1346 2016; 116 2014; 18 2001; 11 2014; 11 2004; 41 2015; 15 2015; 6 2001; 120 2004; 103 2011; 1 2012 2002; 31 2015; 168 2009; 181 2013; 347 2015; 53 2015; 54 2010; 363 1997 2006 2015; 208 2004 1978; 14 2003 2010; 160 2007; 11 2016; 16 2016; 13 1999 2016; 4 2010; 48 2015; 313 2015; 63 2015; 21 2000; 84 2016 2016; 61 2015 2016; 137 2008; 42 2013 2009; 4 2009; 2 2016; 9 2012; 42 2016; 23 2003; 22 2016; 22 e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_52_1 Finkelstein J. (e_1_2_9_53_1) 2000; 84 e_1_2_9_73_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_33_1 Berberidis C. (e_1_2_9_55_1) 2004 Finkelstein J. (e_1_2_9_15_1) 2010; 160 Cha E. (e_1_2_9_16_1) 2007; 11 e_1_2_9_71_1 Soler‐Flores F. (e_1_2_9_60_1) 2013; 2 e_1_2_9_14_1 Price D. (e_1_2_9_34_1) 2016; 9 e_1_2_9_39_1 e_1_2_9_37_1 Kukafka R. (e_1_2_9_77_1) 2015; 208 Finkelstein J. (e_1_2_9_17_1) 2001; 120 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 Vapnik V. (e_1_2_9_59_1) 2013 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 Lapshin O.V. (e_1_2_9_18_1) 2005; 2005 e_1_2_9_4_1 e_1_2_9_2_1 Finkelstein J. (e_1_2_9_21_1) 2012 e_1_2_9_26_1 e_1_2_9_28_1 e_1_2_9_47_1 Kopec D. (e_1_2_9_50_1) 2004; 103 Platt J.C. (e_1_2_9_58_1) 1999 e_1_2_9_30_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_57_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_76_1 e_1_2_9_70_1 Joshi A. (e_1_2_9_12_1) 2005; 2005 e_1_2_9_38_1 Lee J. (e_1_2_9_24_1) 2014; 205 e_1_2_9_36_1 National institutes of Health, National Heart, Lung, and Blood Institute (e_1_2_9_54_1) 1997 e_1_2_9_19_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_5_1 e_1_2_9_3_1 der Meer V. (e_1_2_9_42_1) 2009; 151 Amarasingham R. (e_1_2_9_7_1) 2016; 4 Russo C.A. (e_1_2_9_9_1) 2006 Pamer C. (e_1_2_9_49_1) 2008; 6 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – volume: 13 start-page: S14 issue: Suppl. 15 year: 2012 article-title: Empirical evaluation of scoring functions for Bayesian network model selection publication-title: BMC Bioinformatics – volume: 84 start-page: 810 year: 2000 end-page: 814 article-title: Development and implementation of the home asthma telemonitoring (HAT) system to facilitate asthma self‐care publication-title: Stud. Health Technol. Inform. – volume: 60 start-page: 2001 year: 2011 end-page: 2009 – volume: 6 start-page: 37 year: 2015 article-title: Needed relapse‐prevention research on novel framework (ASPIRE model) for substance use disorders treatment publication-title: Front. Psychiatry – volume: 347 start-page: f6070 year: 2013 article-title: Effectiveness of telemonitoring integrated into existing clinical services on hospital admission for exacerbation of chronic obstructive pulmonary disease: researcher blind, multicentre, randomised controlled trial publication-title: BMJ – volume: 42 start-page: 1037 year: 2012 end-page: 1047 article-title: Individualized prediction of illness course at the first psychotic episode: a support vector machine MRI study publication-title: Psychol. Med. – volume: 132 start-page: 1920 year: 2015 end-page: 1930 article-title: Machine learning in medicine publication-title: Circulation – volume: 9 start-page: 1 year: 2016 end-page: 12 article-title: Predicting frequent asthma exacerbations using blood eosinophil count and other patient data routinely available in clinical practice publication-title: J. Asthma Allergy – volume: 12 start-page: 90 year: 2011 article-title: Genome wide association study to predict severe asthma exacerbations in children using random forests classifiers publication-title: BMC Med. Genet. – volume: 363 start-page: 2301 year: 2010 end-page: 2309 article-title: Telemonitoring in patients with heart failure publication-title: N. Engl. J. Med. – volume: 372 start-page: 793 year: 2015 end-page: 795 article-title: A new initiative on precision medicine publication-title: N. Engl. J. Med. – volume: 151 start-page: 110 year: 2009 end-page: 120 article-title: SMASHING (Self‐Management in Asthma Supported by Hospitals, ICT, Nurses and General Practitioners) Study Group publication-title: Ann. Intern. Med. – volume: 48 start-page: 71 year: 2010 end-page: 73 article-title: Artificial intelligence in biomedical engineering and informatics: an introduction and review publication-title: Artif. Intell. Med. – volume: 71 start-page: 838 year: 2016 end-page: 846 article-title: Identifying patients at risk for severe exacerbations of asthma: development and external validation of a multivariable prediction model publication-title: Thorax – volume: 208 start-page: 226 year: 2015 end-page: 231 article-title: Determinants of health behavior choices in patients using computer‐mediated decision aid publication-title: Stud. Health Technol. Inform. – volume: 120 start-page: 253S year: 2001 article-title: Feasibility of internet‐based home automated telemanagement in patients with chronic obstructive pulmonary disease publication-title: Chest – volume: 53 start-page: 441 year: 2015 end-page: 451 article-title: Detecting COPD exacerbations early using daily telemonitoring of symptoms and k‐means clustering: a pilot study publication-title: Med. Biol. Eng. Comput. – volume: 45 start-page: 35 year: 2015 end-page: 74 – volume: 11 start-page: 1404 year: 2001 end-page: 1409 article-title: Capturing whole‐genome characteristics in short sequences using a naïve Bayesian classifier publication-title: Genome Res – volume: 31 start-page: 776 year: 2002 end-page: 781 article-title: Population ageing in the United States of America: implications for public programmes publication-title: Int. J. Epidemiol. – volume: 13 start-page: 264 year: 2016 end-page: 283 article-title: Use of predictive algorithms in‐home monitoring of chronic obstructive pulmonary disease and asthma: a systematic review publication-title: Chron. Respir. Dis. – volume: 6 start-page: 550 year: 2008 end-page: 554 article-title: Analysis of Maryland poisoning deaths using classification and regression tree (CART) analysis publication-title: AMIA Annu. Symp. Proc. – volume: 40 start-page: 77 year: 2016 article-title: Introducing contactless blood pressure assessment using a high speed video camera publication-title: J. Med. Syst. – volume: 313 start-page: 2119 year: 2015 end-page: 2120 article-title: The precision medicine initiative: a new national effort publication-title: JAMA – volume: 18 start-page: 1018 year: 2012 end-page: 1025 article-title: Randomized, controlled trial of home telemanagement in patients with ulcerative colitis (UC HAT) publication-title: Inflamm. Bowel Dis. – year: 1997 – volume: 9 start-page: 31 year: 2016 end-page: 45 article-title: Potential utility of precision medicine for older adults with polypharmacy: a case series study publication-title: Pharmgenomics Pers. Med. – year: 2004 article-title: Inter‐transaction association rules mining for rare events prediction publication-title: Proceedings of the 3rd Hellenic Conference on Artificial Intelligence – volume: 4 start-page: 337 year: 2009 end-page: 349 article-title: Chronic obstructive pulmonary disease as an independent risk factor for cardiovascular morbidity publication-title: Int. J. Chron. Obstruct. Pulmon. Dis. – volume: 23 start-page: 791 year: 2016 end-page: 795 article-title: An informatics research agenda to support precision medicine: seven key areas publication-title: J. Am. Med. Inform. Assoc. – volume: 205 start-page: 558 year: 2014 end-page: 562 article-title: Activity trackers: a critical review publication-title: Stud. Health Technol. Inform. – volume: 46 start-page: 677 year: 2009 end-page: 682 article-title: The strategy for predicting future exacerbation of asthma using a combination of the Asthma Control Test and lung function test publication-title: J. Asthma – volume: 22 start-page: 12 year: 2003 end-page: 18 article-title: Predictors of repeat hospitalizations in children with asthma: the role of psychosocial and socioenvironmental factors publication-title: Health Psychol. – year: 2015 – volume: 61 start-page: 44 year: 2016 end-page: 54 article-title: Improving condition severity classification with an efficient active learning based framework publication-title: J. Biomed. Inform. – start-page: 185 year: 1999 end-page: 208 – volume: 18 start-page: 63 year: 2012 end-page: 69 article-title: Predicting asthma exacerbations in children publication-title: Curr. Opin. Pulm. Med. – volume: 103 start-page: 70 year: 2004 end-page: 80 article-title: Development of a clinical pathways analysis system with adaptive Bayesian nets and data mining techniques publication-title: Stud. Health Technol. Inform. – volume: 1 start-page: 72 year: 2011 end-page: 82 article-title: Consumer health informatics: results of a systematic evidence review and evidence based recommendations publication-title: Transl. Behav. Med. – volume: 101 start-page: 626 year: 2008 end-page: 630 article-title: Predicting an asthma exacerbation in children 2 to 5 years of age publication-title: Ann. Allergy Asthma Immunol. – volume: 168 start-page: 71 year: 2015 end-page: 78 article-title: Asthma: hospitalization trends and predictors of in‐hospital mortality and hospitalization costs in the USA (2001–2010) publication-title: Arch. Allergy Immunol. – volume: 14 start-page: 3202 year: 2012 end-page: 3210 article-title: Air pollution indicators predict outbreaks of asthma exacerbations among elementary school children: integration of daily environmental and school health surveillance systems in Pennsylvania publication-title: J. Environ. Monit. – volume: 2 start-page: 459 year: 2013 end-page: 462 article-title: Methodology for rare events prediction publication-title: Advanced Research in Scientific Areas – volume: 2005 start-page: 1017 year: 2005 article-title: Depression education for primary care patients using a web‐based program publication-title: AMIA Annu. Symp. Proc. – volume: 4 start-page: 1163 year: 2016 article-title: Consensus statement on electronic health predictive analytics: a guiding framework to address challenges publication-title: EGEMS (Wash. DC) – volume: 2005 start-page: 1000 year: 2005 article-title: Clinical impact of home automated telemanagement in asthma publication-title: AMIA Annu. Symp. Proc. – year: 2003 – volume: 160 start-page: 535 year: 2010 end-page: 539 article-title: Exploring feasibility of home telemanagement in African Americans with congestive heart failure publication-title: Stud. Health Technol. Inform – volume: 11 start-page: 669 year: 2014 end-page: 679 article-title: Personalized medicine for chronic, complex diseases: chronic obstructive pulmonary disease as an example publication-title: Persona. Med – volume: 21 start-page: 8 year: 2015 end-page: 15 article-title: Managing severe asthma in adults: lessons from the ERS/ATS guidelines publication-title: Curr. Opin. Pulm. Med. – volume: 14 start-page: 465 year: 1978 end-page: 471 article-title: Modeling by shortest data description publication-title: Automatica – volume: 11 start-page: 893 year: 2007 article-title: Acceptance of home telemanagement is high in patients with multiple sclerosis publication-title: AMIA Annu. Symp. Proc. – start-page: 1 year: 2012 end-page: 1531 article-title: Enabling patient‐centered care through health information technology publication-title: Evid. Rep. Technol. Assess. (Full Rep.) – volume: 4 start-page: 376 year: 2013 end-page: 391 article-title: Comparing predictions made by a prediction model, clinical score, and physicians: pediatric asthma exacerbations in the emergency department publication-title: Appl. Clin. Inform. – volume: 15 start-page: 84 year: 2015 article-title: Predicting asthma control deterioration in children publication-title: BMC Med. Inform. Decis. Mak. – year: 2016 article-title: Prognosis of clinical outcomes with temporal patterns and experiences with one class feature selection publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. – volume: 67 start-page: 124 year: 2008 end-page: 132 article-title: The changing prevalence of comorbidity across the age spectrum publication-title: Crit. Rev. Oncol. Hematol. – volume: 1346 start-page: 18 year: 2015 end-page: 32 article-title: Biomarkers for precision medicine in airways disease publication-title: Ann. N.Y. Acad. Sci. – volume: 63 start-page: 51 year: 2015 end-page: 59 article-title: Predicting the risk of exacerbation in patients with chronic obstructive pulmonary disease using home telehealth measurement data publication-title: Artif. Intell. Med. – volume: 41 start-page: 471 year: 2004 end-page: 476 article-title: Exhaled nitric oxide predicts asthma exacerbation publication-title: J. Asthma – volume: 18 start-page: 50 year: 2014 end-page: 57 article-title: Big data analysis using modern statistical and machine learning methods in medicine publication-title: Int. Neurourol. J. – volume: 22 start-page: 342 year: 2016 end-page: 375 article-title: The empirical foundations of telemedicine interventions in primary care publication-title: Telemed. J. E. Health – volume: 181 start-page: E181 year: 2009 end-page: E190 article-title: Asthma: epidemiology, etiology and risk factors publication-title: CMAJ – volume: 161 start-page: 1608 year: 2000 end-page: 1613 article-title: Time course and recovery of exacerbations in patients with chronic obstructive pulmonary disease publication-title: Am. J. Respir. Crit. Care Med. – volume: 16 start-page: 321 year: 2002 end-page: 357 article-title: SMOTE: synthetic minority over‐sampling technique publication-title: J. Artif. Intell. Res. – year: 2006 – volume: 16 start-page: 201 year: 2016 end-page: 209 article-title: The asthma prediction rule to decrease hospitalizations for children with asthma publication-title: Curr. Opin. Allergy Clin. Immunol. – volume: 137 start-page: 1289 year: 2016 end-page: 1300 article-title: Toward precision medicine and health: opportunities and challenges in allergic diseases publication-title: J. Allergy Clin. Immunol. – volume: 116 start-page: 112 year: 2016 end-page: 117 article-title: Predictors of asthma exacerbation among patients with poorly controlled asthma despite inhaled corticosteroid treatment publication-title: Ann. Allergy Asthma Immunol. – volume: 42 start-page: 244 year: 2008 end-page: 251 article-title: Patient subjective assessment of drug side effects in inflammatory bowel disease publication-title: J. Clin. Gastroenterol. – volume: 127 start-page: 145 year: 2011 end-page: 152 article-title: Costs of asthma in the United States: 2002–2007 publication-title: J. Allergy Clin. Immunol. – volume: 8 start-page: 57 year: 2000 end-page: 63 article-title: Potential role of telecommunication technologies in the management of chronic health conditions publication-title: Dis. Manag. Health Outcomes – volume: 2 start-page: 272 year: 2009 end-page: 278 article-title: Hypertension telemanagement in blacks publication-title: Circ. Cardiovasc. Qual. Outcomes – volume: 54 start-page: 546 year: 2015 end-page: 547 article-title: Big data and analytics in healthcare publication-title: Methods Inf. Med. – volume: 8 start-page: 27 year: 2008 article-title: Identification and management of adults with asthma prone to exacerbations: can we do better publication-title: BMC Pulm. Med. – year: 2013 – ident: e_1_2_9_51_1 doi: 10.1101/gr.186401 – ident: e_1_2_9_73_1 doi: 10.1111/nyas.12809 – ident: e_1_2_9_75_1 doi: 10.1097/MCP.0b013e32834db288 – volume: 160 start-page: 535 year: 2010 ident: e_1_2_9_15_1 article-title: Exploring feasibility of home telemanagement in African Americans with congestive heart failure publication-title: Stud. Health Technol. Inform contributor: fullname: Finkelstein J. – ident: e_1_2_9_36_1 doi: 10.1136/thoraxjnl-2015-208138 – ident: e_1_2_9_71_1 doi: 10.1016/j.jbi.2016.03.016 – ident: e_1_2_9_67_1 doi: 10.1613/jair.953 – ident: e_1_2_9_4_1 doi: 10.1093/jamia/ocv213 – ident: e_1_2_9_5_1 doi: 10.1001/jama.2015.3595 – ident: e_1_2_9_27_1 doi: 10.1159/000441687 – ident: e_1_2_9_72_1 doi: 10.2147/PGPM.S101474 – ident: e_1_2_9_64_1 doi: 10.1016/j.artmed.2014.12.003 – ident: e_1_2_9_29_1 doi: 10.1503/cmaj.080612 – ident: e_1_2_9_25_1 doi: 10.1007/s10916-016-0439-z – ident: e_1_2_9_39_1 doi: 10.1097/ACI.0000000000000259 – ident: e_1_2_9_28_1 doi: 10.1016/j.jaci.2010.10.020 – ident: e_1_2_9_46_1 doi: 10.1161/CIRCULATIONAHA.115.001593 – ident: e_1_2_9_2_1 – ident: e_1_2_9_32_1 doi: 10.1097/MCP.0000000000000116 – ident: e_1_2_9_43_1 doi: 10.1136/bmj.f6070 – ident: e_1_2_9_19_1 doi: 10.2217/pme.14.51 – ident: e_1_2_9_35_1 doi: 10.1081/JAS-120033990 – volume: 4 start-page: 1163 year: 2016 ident: e_1_2_9_7_1 article-title: Consensus statement on electronic health predictive analytics: a guiding framework to address challenges publication-title: EGEMS (Wash. DC) contributor: fullname: Amarasingham R. – volume: 2005 start-page: 1017 year: 2005 ident: e_1_2_9_18_1 article-title: Depression education for primary care patients using a web‐based program publication-title: AMIA Annu. Symp. Proc. contributor: fullname: Lapshin O.V. – ident: e_1_2_9_57_1 – ident: e_1_2_9_30_1 – volume: 11 start-page: 893 year: 2007 ident: e_1_2_9_16_1 article-title: Acceptance of home telemanagement is high in patients with multiple sclerosis publication-title: AMIA Annu. Symp. Proc. contributor: fullname: Cha E. – volume: 151 start-page: 110 year: 2009 ident: e_1_2_9_42_1 article-title: SMASHING (Self‐Management in Asthma Supported by Hospitals, ICT, Nurses and General Practitioners) Study Group publication-title: Ann. Intern. Med. contributor: fullname: der Meer V. – ident: e_1_2_9_52_1 doi: 10.1017/S0033291711002005 – ident: e_1_2_9_26_1 doi: 10.1089/tmj.2016.0045 – ident: e_1_2_9_37_1 doi: 10.1080/02770900902972160 – ident: e_1_2_9_48_1 doi: 10.1016/j.artmed.2009.07.007 – ident: e_1_2_9_14_1 doi: 10.1002/ibd.21795 – ident: e_1_2_9_66_1 doi: 10.1007/978-1-4614-6849-3 – volume: 9 start-page: 1 year: 2016 ident: e_1_2_9_34_1 article-title: Predicting frequent asthma exacerbations using blood eosinophil count and other patient data routinely available in clinical practice publication-title: J. Asthma Allergy contributor: fullname: Price D. – ident: e_1_2_9_61_1 doi: 10.1164/ajrccm.161.5.9908022 – volume: 84 start-page: 810 year: 2000 ident: e_1_2_9_53_1 article-title: Development and implementation of the home asthma telemonitoring (HAT) system to facilitate asthma self‐care publication-title: Stud. Health Technol. Inform. contributor: fullname: Finkelstein J. – ident: e_1_2_9_69_1 doi: 10.1186/1471-2105-13-S15-S14 – volume-title: The Nature of Statistical Learning Theory year: 2013 ident: e_1_2_9_59_1 contributor: fullname: Vapnik V. – volume: 6 start-page: 550 year: 2008 ident: e_1_2_9_49_1 article-title: Analysis of Maryland poisoning deaths using classification and regression tree (CART) analysis publication-title: AMIA Annu. Symp. Proc. contributor: fullname: Pamer C. – volume: 120 start-page: 253S year: 2001 ident: e_1_2_9_17_1 article-title: Feasibility of internet‐based home automated telemanagement in patients with chronic obstructive pulmonary disease publication-title: Chest contributor: fullname: Finkelstein J. – volume: 205 start-page: 558 year: 2014 ident: e_1_2_9_24_1 article-title: Activity trackers: a critical review publication-title: Stud. Health Technol. Inform. contributor: fullname: Lee J. – start-page: 1 year: 2012 ident: e_1_2_9_21_1 article-title: Enabling patient‐centered care through health information technology publication-title: Evid. Rep. Technol. Assess. (Full Rep.) contributor: fullname: Finkelstein J. – ident: e_1_2_9_62_1 doi: 10.1177/1479972316642365 – ident: e_1_2_9_68_1 doi: 10.1007/s10115-014-0784-5 – start-page: 185 volume-title: Advances in Kernel Methods: Support Vector Learning year: 1999 ident: e_1_2_9_58_1 contributor: fullname: Platt J.C. – ident: e_1_2_9_38_1 doi: 10.1016/S1081-1206(10)60226-8 – volume: 208 start-page: 226 year: 2015 ident: e_1_2_9_77_1 article-title: Determinants of health behavior choices in patients using computer‐mediated decision aid publication-title: Stud. Health Technol. Inform. contributor: fullname: Kukafka R. – ident: e_1_2_9_40_1 doi: 10.4338/ACI-2013-04-RA-0029 – year: 2004 ident: e_1_2_9_55_1 article-title: Inter‐transaction association rules mining for rare events prediction publication-title: Proceedings of the 3rd Hellenic Conference on Artificial Intelligence contributor: fullname: Berberidis C. – ident: e_1_2_9_76_1 doi: 10.1037/0278-6133.22.1.12 – ident: e_1_2_9_11_1 doi: 10.2165/00115677-200008020-00001 – ident: e_1_2_9_47_1 doi: 10.5213/inj.2014.18.2.50 – volume-title: Healthcare cost and utilization project (HCUP) statistical briefs year: 2006 ident: e_1_2_9_9_1 contributor: fullname: Russo C.A. – ident: e_1_2_9_56_1 doi: 10.1016/0005-1098(78)90005-5 – ident: e_1_2_9_31_1 doi: 10.1186/1471-2466-8-27 – ident: e_1_2_9_65_1 doi: 10.1007/s11517-015-1252-4 – ident: e_1_2_9_8_1 doi: 10.1016/j.critrevonc.2008.01.013 – volume: 2 start-page: 459 year: 2013 ident: e_1_2_9_60_1 article-title: Methodology for rare events prediction publication-title: Advanced Research in Scientific Areas contributor: fullname: Soler‐Flores F. – ident: e_1_2_9_63_1 doi: 10.1186/s12911-015-0208-9 – ident: e_1_2_9_20_1 doi: 10.3389/fpsyt.2015.00037 – ident: e_1_2_9_74_1 doi: 10.2147/COPD.S6400 – ident: e_1_2_9_13_1 doi: 10.1161/CIRCOUTCOMES.109.849968 – volume: 2005 start-page: 1000 year: 2005 ident: e_1_2_9_12_1 article-title: Clinical impact of home automated telemanagement in asthma publication-title: AMIA Annu. Symp. Proc. contributor: fullname: Joshi A. – ident: e_1_2_9_10_1 doi: 10.1093/ije/31.4.776 – ident: e_1_2_9_45_1 doi: 10.1016/j.jaci.2016.03.006 – ident: e_1_2_9_6_1 doi: 10.3414/ME15-06-1001 – volume-title: Expert panel report 2: guidelines for the diagnosis and management of asthma year: 1997 ident: e_1_2_9_54_1 contributor: fullname: National institutes of Health, National Heart, Lung, and Blood Institute – ident: e_1_2_9_22_1 doi: 10.1097/MCG.0b013e31802f19af – ident: e_1_2_9_3_1 doi: 10.1056/NEJMp1500523 – ident: e_1_2_9_70_1 doi: 10.1109/TCBB.2016.2591539 – volume: 103 start-page: 70 year: 2004 ident: e_1_2_9_50_1 article-title: Development of a clinical pathways analysis system with adaptive Bayesian nets and data mining techniques publication-title: Stud. Health Technol. Inform. contributor: fullname: Kopec D. – ident: e_1_2_9_44_1 doi: 10.1056/NEJMoa1010029 – ident: e_1_2_9_41_1 doi: 10.1039/c2em30430a – ident: e_1_2_9_78_1 doi: 10.1016/j.anai.2015.11.011 – ident: e_1_2_9_23_1 doi: 10.1007/s13142-011-0016-4 – ident: e_1_2_9_33_1 doi: 10.1186/1471-2350-12-90 |
SSID | ssj0012847 |
Score | 2.5815992 |
Snippet | Patient telemonitoring results in an aggregation of significant amounts of information about patient disease trajectory. However, the potential use of this... |
SourceID | pubmedcentral proquest crossref pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 153 |
SubjectTerms | Adult Algorithms Asthma Asthma - diagnosis Asthma - physiopathology Asthma - therapy asthma exacerbation Bayes Theorem Chronic illnesses Combined Modality Therapy Computational Biology Decision Support Systems, Clinical Disease Progression Electronic Health Records Humans Internet Machine Learning Models, Biological Monitoring, Physiologic Patients personalized medicine Precision Medicine prediction Prognosis ROC Curve Self Care Severity of Illness Index Telemedicine - methods |
Title | Machine learning approaches to personalize early prediction of asthma exacerbations |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnyas.13218 https://www.ncbi.nlm.nih.gov/pubmed/27627195 https://www.proquest.com/docview/1861700693 https://search.proquest.com/docview/1835507203 https://search.proquest.com/docview/1868313581 https://pubmed.ncbi.nlm.nih.gov/PMC5266630 |
Volume | 1387 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-UwFD6MguDG1zysOkNkXIxChzyaPmA2MqO4GRGugq5Kkibqwt6LvRfUX29O-hgvgjC4K-QU0p5855WcLwB73m1oZxLl0xJm4iSRJi6EkrHUGeNWaJsY7EY-GWWnl_mfI6TJ-dX3wrT8EEPBDZER7DUCXOnmBcjrR9X89LkUw05fnyaE_g1xNmwhoN0NZjjzZtiHMR03KR7j-ffqvDd6FWK-Pin5MoINLuh49X2TX4OVLvQkh-1aWYcPtt6ApfYyyscNWO9g3pAfHRf1_kcY_Q2HLS3pbpe4Jj0JuZebjsmkj-WfLLHIlUwm97j1g-omY0dUM725U8Q-KOP111YHP8HF8dH575O4u4chNon35zFyh9LcKy2rjBHW8kI6xQ0VNqVO5D4Bko5qrZnTiTcBgiqVpLZSzjpGq0qKz7BYj2u7CSRPC82ZKqTF4lPlCs4Vo2gKUmryKonge6-PctLSbZR9moL_rAz_LIKdXlVlBzk_kiO3PE0LEcHuMOzBgjsgqrbjGcoI5G_j9E2ZNBcMaeEi-NJqf5gK964jY4WMIJtbF4MAknXPj9S3N4G0W_pIKBU0goOwLt74uvL06nAUnrb-R3gbljmGHKE8tAOL0_uZ_QoLTTX7FoDxDPEYEfs |
link.rule.ids | 230,315,782,786,887,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ja9wwFH5kITSXZunmJmkV2kMbcNHq5ZBDaBKmNBkKk0J7MrIsNTnUM2RmoOmvj568NEMgUHIz6Blkv_e9TdIngPc-bJTOSO3LEmZiKZWJc6FVrMqUcStKKw2eRh6M0uGP7PgEaXIOu7MwDT9E33BDZAR_jQDHhvQdlNc3evrJF1MsW4ZVmXhLxBMc4lu_iICeNzji1Dtin8i07KS4keffu4vx6F6SeX-v5N0cNgSh041HTn8TnrbZJzlqzGULlmy9DWvNfZQ327DVIn1KPrR01B-fweg87Le0pL1g4hfpeMi93GxMJl06_9cSi3TJZHKNqz-ocTJ2RE9nl781sX-08SpsGoTP4fvpycXnQdxexRAb6UN6jPShNPN6SytjhLU8V05zQ4VNqBOZr4GUo2VZMldK7wUE1VomttLOOkarSokXsFKPa_sKSJbkJWc6Vxb7T5XLOdeMojdIqMkqGcG7TiHFpGHcKLpKBf9ZEf5ZBLudrooWdX4kQ3p5muQigv1-2OMFF0F0bcdzlBFI4cbpgzJJJhgyw0XwslF_PxXuo0fKchVBumAYvQDydS-O1FeXgbdb-WQoETSCg2AYD3xdMfx5NApPr_9H-C08GVycnxVnX4Zfd2CdYwYSukW7sDK7nts9WJ5W8zcBJbcmrxYj |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB9sxdKXar9Xa43oQ1tYyed-gC_F9qioR-EstE9LNptYH9w7endg_evNZD_sUShI3xYygWwmM_ObSfILwHsfNkpnpPZpCTOxlMrEudAqVmXKuBWllQZvI5-N0uFldnKKNDkfu7swDT9EX3BDywj-Gg18Urk7Rl7f6ukHn0uxbAmeSo_DkTlfiPN-DwEdb_DDqffDHse05KR4judf38VwdA9j3j8qeRfChhg0eP640b-AtRZ7kuNmsazDE1tvwLPmNcrbDVhv7XxKDloy6sNNGH0Lpy0taZ-X-EE6FnIvNxuTSQfm_1hikSyZTG5w7wf1TcaO6Ons-pcm9rc2XoFNeXALLgan3z-dxe1DDLGRPqDHSB5KM6-1tDJGWMtz5TQ3VNiEOpH5DEg5WpYlc6X0PkBQrWViK-2sY7SqlNiG5Xpc210gWZKXnOlcWaw-VS7nXDOKviChJqtkBO86fRSThm-j6PIUnLMizFkEe52qitbmfEuG5PI0yUUEb_tmby24BaJrO56jjEACN04flEkywZAXLoKdRvv9ULiPHSnLVQTpwrroBZCte7Gl_nkdWLuVh0KJoBEchXXxwN8Vw6vjUfh6-T_Cb2Dl_GRQfP08_PIKVjnCj1Aq2oPl2c3cvoalaTXfDzbyF7uWFMk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+approaches+to+personalize+early+prediction+of+asthma+exacerbations&rft.jtitle=Annals+of+the+New+York+Academy+of+Sciences&rft.au=Finkelstein%2C+Joseph&rft.au=Jeong%2C+In+cheol&rft.date=2017-01-01&rft.issn=0077-8923&rft.eissn=1749-6632&rft.volume=1387&rft.issue=1&rft.spage=153&rft.epage=165&rft_id=info:doi/10.1111%2Fnyas.13218&rft.externalDBID=10.1111%252Fnyas.13218&rft.externalDocID=NYAS13218 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0077-8923&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0077-8923&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0077-8923&client=summon |