Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982-2008

Changes in vegetative growing seasons are dominant indicators of the dynamic response of ecosystems to climate change. Therefore, knowledge of growing seasons over the past decades is essential to predict ecosystem changes. In this study, the long-term changes in the growing seasons of temperate veg...

Full description

Saved in:
Bibliographic Details
Published in:Global change biology Vol. 17; no. 7; pp. 2385 - 2399
Main Authors: JEONG, SU-JONG, HO, CHANG-HOI, GIM, HYEON-JU, BROWN, MOLLY E
Format: Journal Article
Language:English
Published: Oxford, UK Blackwell Publishing Ltd 01-07-2011
Wiley-Blackwell
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Changes in vegetative growing seasons are dominant indicators of the dynamic response of ecosystems to climate change. Therefore, knowledge of growing seasons over the past decades is essential to predict ecosystem changes. In this study, the long-term changes in the growing seasons of temperate vegetation over the Northern Hemisphere were examined by analyzing satellite-measured normalized difference vegetation index and reanalysis temperature during 1982-2008. Results showed that the length of the growing season (LOS) increased over the analysis period; however, the role of changes at the start of the growing season (SOS) and at the end of the growing season (EOS) differed depending on the time period. On a hemispheric scale, SOS advanced by 5.2 days in the early period (1982-1999) but advanced by only 0.2 days in the later period (2000-2008). EOS was delayed by 4.3 days in the early period, and it was further delayed by another 2.3 days in the later period. The difference between SOS and EOS in the later period was due to less warming during the preseason (January-April) before SOS compared with the magnitude of warming in the preseason (June-September) before EOS. At a regional scale, delayed EOS in later periods was shown. In North America, EOS was delayed by 8.1 days in the early period and delayed by another 1.3 days in the later period. In Europe, the delayed EOS by 8.2 days was more significant than the advanced SOS by 3.2 days in the later period. However, in East Asia, the overall increase in LOS during the early period was weakened in the later period. Admitting regional heterogeneity, changes in hemispheric features suggest that the longer-lasting vegetation growth in recent decades can be attributed to extended leaf senescence in autumn rather than earlier spring leaf-out.
AbstractList Changes in vegetative growing seasons are dominant indicators of the dynamic response of ecosystems to climate change. Therefore, knowledge of growing seasons over the past decades is essential to predict ecosystem changes. In this study, the long‐term changes in the growing seasons of temperate vegetation over the Northern Hemisphere were examined by analyzing satellite‐measured normalized difference vegetation index and reanalysis temperature during 1982–2008. Results showed that the length of the growing season (LOS) increased over the analysis period; however, the role of changes at the start of the growing season (SOS) and at the end of the growing season (EOS) differed depending on the time period. On a hemispheric scale, SOS advanced by 5.2 days in the early period (1982–1999) but advanced by only 0.2 days in the later period (2000–2008). EOS was delayed by 4.3 days in the early period, and it was further delayed by another 2.3 days in the later period. The difference between SOS and EOS in the later period was due to less warming during the preseason (January–April) before SOS compared with the magnitude of warming in the preseason (June–September) before EOS. At a regional scale, delayed EOS in later periods was shown. In North America, EOS was delayed by 8.1 days in the early period and delayed by another 1.3 days in the later period. In Europe, the delayed EOS by 8.2 days was more significant than the advanced SOS by 3.2 days in the later period. However, in East Asia, the overall increase in LOS during the early period was weakened in the later period. Admitting regional heterogeneity, changes in hemispheric features suggest that the longer‐lasting vegetation growth in recent decades can be attributed to extended leaf senescence in autumn rather than earlier spring leaf‐out.
Abstract Changes in vegetative growing seasons are dominant indicators of the dynamic response of ecosystems to climate change. Therefore, knowledge of growing seasons over the past decades is essential to predict ecosystem changes. In this study, the long-term changes in the growing seasons of temperate vegetation over the Northern Hemisphere were examined by analyzing satellite-measured normalized difference vegetation index and reanalysis temperature during 1982-2008. Results showed that the length of the growing season (LOS) increased over the analysis period; however, the role of changes at the start of the growing season (SOS) and at the end of the growing season (EOS) differed depending on the time period. On a hemispheric scale, SOS advanced by 5.2 days in the early period (1982-1999) but advanced by only 0.2 days in the later period (2000-2008). EOS was delayed by 4.3 days in the early period, and it was further delayed by another 2.3 days in the later period. The difference between SOS and EOS in the later period was due to less warming during the preseason (January-April) before SOS compared with the magnitude of warming in the preseason (June-September) before EOS. At a regional scale, delayed EOS in later periods was shown. In North America, EOS was delayed by 8.1 days in the early period and delayed by another 1.3 days in the later period. In Europe, the delayed EOS by 8.2 days was more significant than the advanced SOS by 3.2 days in the later period. However, in East Asia, the overall increase in LOS during the early period was weakened in the later period. Admitting regional heterogeneity, changes in hemispheric features suggest that the longer-lasting vegetation growth in recent decades can be attributed to extended leaf senescence in autumn rather than earlier spring leaf-out. [PUBLICATION ABSTRACT]
Author BROWN, MOLLY E
JEONG, SU-JONG
HO, CHANG-HOI
GIM, HYEON-JU
Author_xml – sequence: 1
  fullname: JEONG, SU-JONG
– sequence: 2
  fullname: HO, CHANG-HOI
– sequence: 3
  fullname: GIM, HYEON-JU
– sequence: 4
  fullname: BROWN, MOLLY E
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24274244$$DView record in Pascal Francis
BookMark eNpdkU9vEzEQxVeoSLSFz4CFhDjt4n-7tg8cIIIUtSqgUnG0nN3ZxGFjp7aTJke-OV62ygFLlkee3xs9zbsozpx3UBSI4Irk835dEdbUJeWyqSgmpMKUKVEdnhXnp8bZWNe8JJiwF8VFjGuMMaO4OS_-fF-B84NfHlFc2T5FZBKKyYSE9rFC4Drke7QM_tG6JYpgonfIOpRgs4VgEqA9LCGZZPO_30NAaQXo1of8BIeuYGPjNpeAej_1ssz6DhElaUkxli-L570ZIrx6ei-L-y-ff86uyptv86-zjzdlyyUR5YK3INuaG9VJJVhPFqDAwMIwhmsqVE-xwJ3AdV3zTppWNLRvKO8AMHDTAbss3k1zt8E_7CAmna21MAzGgd9FrfLimrwskck3_5Frvwsum9OyUZw1SrIMvX2CTGzN0AfjWhv1NtiNCUdNORWccp65DxP3aAc4nvoE6zE-vdZjSnpMSY_x6X_x6YOezz6NVdaXk97GBIeT3oTfOlsVtf51O9fXUlz_IJTru8y_nvjeeG2WIXu6v8uTOc6XKkrYX_J1qZw
CitedBy_id crossref_primary_10_1111_nph_14073
crossref_primary_10_1007_s13753_015_0062_5
crossref_primary_10_1371_journal_pone_0191428
crossref_primary_10_1016_j_scitotenv_2018_11_361
crossref_primary_10_1080_24694452_2017_1309964
crossref_primary_10_1111_gcb_13311
crossref_primary_10_1016_j_agrformet_2016_12_006
crossref_primary_10_1016_j_scitotenv_2018_09_308
crossref_primary_10_1029_2017WR022279
crossref_primary_10_1007_s11629_018_4982_6
crossref_primary_10_1007_s00442_019_04339_7
crossref_primary_10_1007_s12665_019_8135_1
crossref_primary_10_1016_S2095_3119_19_62599_2
crossref_primary_10_1016_j_catena_2019_104124
crossref_primary_10_1002_2017JD027318
crossref_primary_10_1007_s00704_013_1078_7
crossref_primary_10_1007_s00442_022_05296_4
crossref_primary_10_1080_20964471_2021_1920661
crossref_primary_10_3390_f14091880
crossref_primary_10_1007_s10661_017_6247_1
crossref_primary_10_1016_j_agrformet_2019_02_008
crossref_primary_10_1016_j_rse_2020_111960
crossref_primary_10_1007_s11600_023_01117_1
crossref_primary_10_1016_j_compag_2016_04_015
crossref_primary_10_1080_01431161_2019_1608390
crossref_primary_10_3390_rs15194783
crossref_primary_10_1111_gcb_15602
crossref_primary_10_1088_1748_9326_6_4_045508
crossref_primary_10_1002_ecy_2802
crossref_primary_10_1016_j_agrformet_2019_107628
crossref_primary_10_1007_s11434_013_5847_6
crossref_primary_10_1093_jpe_rtw084
crossref_primary_10_1016_j_earscirev_2024_104678
crossref_primary_10_1007_s00382_017_3840_5
crossref_primary_10_3389_fmars_2018_00114
crossref_primary_10_1007_s00484_020_01935_8
crossref_primary_10_1371_journal_pone_0041444
crossref_primary_10_1080_01431161_2017_1292070
crossref_primary_10_3390_rs5073190
crossref_primary_10_1029_2018JG004616
crossref_primary_10_1038_s41598_018_22258_0
crossref_primary_10_3390_rs14030721
crossref_primary_10_1016_j_ecolind_2020_107286
crossref_primary_10_1007_s42965_024_00336_x
crossref_primary_10_1016_j_scitotenv_2021_151799
crossref_primary_10_1016_j_rse_2018_11_022
crossref_primary_10_1016_j_jag_2020_102172
crossref_primary_10_1111_gcb_13217
crossref_primary_10_1371_journal_pone_0107396
crossref_primary_10_3390_rs11141651
crossref_primary_10_1371_journal_pone_0171918
crossref_primary_10_1016_j_ecolind_2023_111025
crossref_primary_10_1016_j_agrformet_2022_108828
crossref_primary_10_1016_j_ecolind_2019_105760
crossref_primary_10_1007_s00477_017_1452_6
crossref_primary_10_1007_s10342_021_01412_w
crossref_primary_10_1016_j_ecolind_2021_107483
crossref_primary_10_1016_j_ecolind_2017_07_027
crossref_primary_10_1016_j_jag_2020_102291
crossref_primary_10_3390_su12010012
crossref_primary_10_1016_j_agrformet_2019_03_021
crossref_primary_10_1016_j_ecolind_2021_108211
crossref_primary_10_3390_rs13142806
crossref_primary_10_1002_joc_7549
crossref_primary_10_1134_S199542552105005X
crossref_primary_10_3390_rs14061331
crossref_primary_10_3390_rs9050407
crossref_primary_10_1007_s11430_019_9622_2
crossref_primary_10_1111_1752_1688_12844
crossref_primary_10_1088_1748_9326_ac3696
crossref_primary_10_1111_brv_12105
crossref_primary_10_1371_journal_pone_0167302
crossref_primary_10_1111_nph_16479
crossref_primary_10_3390_ijgi9020111
crossref_primary_10_1007_s00300_019_02543_y
crossref_primary_10_1016_j_rse_2020_111865
crossref_primary_10_1016_j_scitotenv_2021_151205
crossref_primary_10_1111_gcb_13690
crossref_primary_10_1111_j_1365_2486_2012_02712_x
crossref_primary_10_1371_journal_pone_0245467
crossref_primary_10_3390_rs13020286
crossref_primary_10_1016_j_agrformet_2016_04_012
crossref_primary_10_1111_gcb_14414
crossref_primary_10_3390_rs8121029
crossref_primary_10_3389_ffgc_2021_687749
crossref_primary_10_1016_j_scitotenv_2019_05_125
crossref_primary_10_2139_ssrn_4157311
crossref_primary_10_3390_agronomy12081972
crossref_primary_10_1080_15481603_2015_1120371
crossref_primary_10_1590_2179_8087_036118
crossref_primary_10_3390_rs14061462
crossref_primary_10_5721_EuJRS20164916
crossref_primary_10_1016_j_jag_2021_102640
crossref_primary_10_1016_j_quascirev_2020_106712
crossref_primary_10_1016_j_agrformet_2019_107845
crossref_primary_10_1016_j_ecolind_2022_108629
crossref_primary_10_3389_feart_2022_953805
crossref_primary_10_3390_f14030590
crossref_primary_10_1038_s43017_019_0001_x
crossref_primary_10_1002_2017JG004025
crossref_primary_10_1007_s12524_013_0337_5
crossref_primary_10_1016_j_scitotenv_2021_152309
crossref_primary_10_1016_j_quaint_2019_03_010
crossref_primary_10_1016_j_agrformet_2024_110134
crossref_primary_10_1002_2015JD023969
crossref_primary_10_1016_j_rse_2015_04_030
crossref_primary_10_1016_j_jtherbio_2018_10_003
crossref_primary_10_3390_rs15102559
crossref_primary_10_1007_s00442_014_3055_y
crossref_primary_10_1007_s00704_018_2437_1
crossref_primary_10_1016_j_jhydrol_2024_130763
crossref_primary_10_1016_j_agrformet_2021_108489
crossref_primary_10_1016_j_earscirev_2018_06_010
crossref_primary_10_1016_j_jenvman_2023_119131
crossref_primary_10_1016_j_scitotenv_2020_138380
crossref_primary_10_1016_j_srs_2021_100030
crossref_primary_10_1002_ece3_5408
crossref_primary_10_1016_j_agwat_2021_107077
crossref_primary_10_1093_jpe_rty051
crossref_primary_10_1134_S1995425523060070
crossref_primary_10_1016_j_agrformet_2021_108492
crossref_primary_10_1016_j_foreco_2023_121677
crossref_primary_10_1111_ibi_12953
crossref_primary_10_1002_2013JG002565
crossref_primary_10_1002_2017JG004117
crossref_primary_10_1016_j_ecolind_2020_106161
crossref_primary_10_1016_j_scitotenv_2022_156018
crossref_primary_10_1007_s13143_021_00251_4
crossref_primary_10_1016_j_scitotenv_2023_166051
crossref_primary_10_1111_gcb_12778
crossref_primary_10_1007_s10021_021_00663_3
crossref_primary_10_1002_joc_6400
crossref_primary_10_1088_1748_9326_8_4_045030
crossref_primary_10_1088_1748_9326_aae9ad
crossref_primary_10_1016_j_agrformet_2020_108077
crossref_primary_10_1016_j_agrformet_2014_01_003
crossref_primary_10_1002_joc_4227
crossref_primary_10_1016_j_agrformet_2014_01_004
crossref_primary_10_1038_s41598_020_74563_2
crossref_primary_10_1111_gcb_13749
crossref_primary_10_3390_f12030282
crossref_primary_10_3390_rs6021057
crossref_primary_10_1016_j_foreco_2021_119402
crossref_primary_10_1016_j_agrformet_2019_107832
crossref_primary_10_1117_1_JRS_15_028502
crossref_primary_10_3390_rs70911914
crossref_primary_10_3390_f13050654
crossref_primary_10_3390_rs5084031
crossref_primary_10_3390_rs10091433
crossref_primary_10_1016_j_agrformet_2015_10_015
crossref_primary_10_1111_gcb_12206
crossref_primary_10_3390_rs14030705
crossref_primary_10_1016_j_scitotenv_2018_05_031
crossref_primary_10_1038_nplants_2016_133
crossref_primary_10_1111_gcb_14627
crossref_primary_10_1371_journal_pone_0250825
crossref_primary_10_1371_journal_pone_0174390
crossref_primary_10_1002_ldr_3117
crossref_primary_10_1007_s00484_017_1417_y
crossref_primary_10_1016_j_scitotenv_2018_09_129
crossref_primary_10_3390_rs13204063
crossref_primary_10_1016_j_gecco_2020_e01140
crossref_primary_10_1016_j_jhydrol_2023_130228
crossref_primary_10_3390_rs5104819
crossref_primary_10_3398_064_076_0202
crossref_primary_10_1111_ppl_13812
crossref_primary_10_5194_bg_9_2063_2012
crossref_primary_10_3390_rs11151746
crossref_primary_10_1007_s00484_021_02215_9
crossref_primary_10_1016_j_baae_2015_11_005
crossref_primary_10_1007_s13280_016_0864_8
crossref_primary_10_1038_s41598_020_74804_4
crossref_primary_10_1111_gcb_12556
crossref_primary_10_1002_eap_2288
crossref_primary_10_1007_s00704_019_02868_y
crossref_primary_10_1111_gcb_13646
crossref_primary_10_1007_s00376_014_4125_0
crossref_primary_10_1111_gcb_12310
crossref_primary_10_1093_forsci_fxab040
crossref_primary_10_5194_esd_8_627_2017
crossref_primary_10_1029_2019JG005137
crossref_primary_10_1111_nph_16389
crossref_primary_10_1016_j_ecolind_2021_107674
crossref_primary_10_1093_nsr_nwy158
crossref_primary_10_1111_gcb_14619
crossref_primary_10_3390_rs14153584
crossref_primary_10_1080_10106049_2016_1222633
crossref_primary_10_1016_j_agrformet_2015_08_246
crossref_primary_10_1093_aob_mcv169
crossref_primary_10_5194_bg_16_1265_2019
crossref_primary_10_1016_j_rse_2020_111956
crossref_primary_10_1111_2041_210X_13025
crossref_primary_10_3390_su11092618
crossref_primary_10_1002_eco_1870
crossref_primary_10_1016_j_agrformet_2016_06_010
crossref_primary_10_1016_j_jhydrol_2021_126584
crossref_primary_10_1111_gcb_14369
crossref_primary_10_1016_j_atmosres_2023_106745
crossref_primary_10_1657_1938_4246_46_1_19
crossref_primary_10_1890_ES15_00070_1
crossref_primary_10_1016_j_jag_2017_01_008
crossref_primary_10_1016_j_scitotenv_2021_145039
crossref_primary_10_1016_j_agrformet_2020_107910
crossref_primary_10_3390_land11020283
crossref_primary_10_5194_amt_16_3299_2023
crossref_primary_10_1111_een_13211
crossref_primary_10_3390_rs11182107
crossref_primary_10_1016_j_gloplacha_2020_103175
crossref_primary_10_1016_j_scitotenv_2020_138342
crossref_primary_10_3389_fpls_2020_01099
crossref_primary_10_3390_rs8030207
crossref_primary_10_1016_j_rse_2019_111542
crossref_primary_10_3390_rs13020307
crossref_primary_10_1007_s00484_023_02465_9
crossref_primary_10_3390_rs15051245
crossref_primary_10_1002_wea_2715
crossref_primary_10_1016_j_rse_2022_113060
crossref_primary_10_3390_rs11242976
crossref_primary_10_1016_j_agrformet_2019_04_011
crossref_primary_10_1007_s00484_017_1321_5
crossref_primary_10_1088_1748_9326_aaa17b
crossref_primary_10_1016_j_rse_2019_111307
crossref_primary_10_3390_rs11040426
crossref_primary_10_1029_2018JG004443
crossref_primary_10_5194_bg_12_3885_2015
crossref_primary_10_3390_su8111146
crossref_primary_10_1016_j_ecolind_2022_108684
crossref_primary_10_1016_j_agrformet_2024_109888
crossref_primary_10_1007_s11258_020_01104_2
crossref_primary_10_1016_j_agrformet_2023_109388
crossref_primary_10_1016_j_agrformet_2023_109389
crossref_primary_10_1007_s12665_015_4818_4
crossref_primary_10_1016_j_jag_2018_03_006
crossref_primary_10_1016_j_jhydrol_2024_131547
crossref_primary_10_3390_land13030399
crossref_primary_10_1016_j_rse_2018_08_012
crossref_primary_10_1080_23754931_2022_2081815
crossref_primary_10_1016_j_scitotenv_2021_152805
crossref_primary_10_1111_gcb_15322
crossref_primary_10_1175_JCLI_D_11_00224_1
crossref_primary_10_1016_j_rse_2020_111698
crossref_primary_10_1016_j_jhydrol_2022_128817
crossref_primary_10_3390_rs12101546
crossref_primary_10_1016_j_atmosenv_2013_04_051
crossref_primary_10_1016_j_agrformet_2012_09_001
crossref_primary_10_1007_s11769_019_1070_y
crossref_primary_10_1029_2018MS001541
crossref_primary_10_3389_fpls_2021_716071
crossref_primary_10_3390_rs9050485
crossref_primary_10_1016_j_ecolind_2022_108579
crossref_primary_10_1007_s10980_020_01022_8
crossref_primary_10_1016_j_ejrh_2023_101630
crossref_primary_10_3390_agronomy13071768
crossref_primary_10_1007_s00376_012_2173_x
crossref_primary_10_1016_j_jag_2019_05_009
crossref_primary_10_2139_ssrn_4183361
crossref_primary_10_1016_j_agrformet_2019_107682
crossref_primary_10_1016_j_rse_2012_04_001
crossref_primary_10_1038_s41612_023_00343_0
crossref_primary_10_1360_SSV_2021_0303
crossref_primary_10_5194_se_6_1185_2015
crossref_primary_10_1002_ecs2_4694
crossref_primary_10_1038_s41467_019_10235_8
crossref_primary_10_3390_rs14030475
crossref_primary_10_1007_s11629_016_4115_z
crossref_primary_10_1111_gcb_12086
crossref_primary_10_1111_gcb_14021
crossref_primary_10_1016_j_agrformet_2011_07_003
crossref_primary_10_5194_bg_12_7185_2015
crossref_primary_10_1007_s12665_016_5385_z
crossref_primary_10_1016_j_ecolind_2012_11_010
crossref_primary_10_1016_j_agrformet_2012_09_012
crossref_primary_10_1080_24749508_2019_1633219
crossref_primary_10_1016_j_ecolind_2021_108042
crossref_primary_10_1111_gcb_13168
crossref_primary_10_3390_rs13051044
crossref_primary_10_5194_bg_15_1795_2018
crossref_primary_10_1086_714270
crossref_primary_10_3390_f14071415
crossref_primary_10_1038_s41612_024_00650_0
crossref_primary_10_1016_j_scitotenv_2021_148578
crossref_primary_10_1016_j_foreco_2021_119594
crossref_primary_10_1038_nclimate2253
crossref_primary_10_1002_gbc_20017
crossref_primary_10_1007_s13280_020_01359_z
crossref_primary_10_3390_f9070377
crossref_primary_10_1016_j_agrformet_2023_109495
crossref_primary_10_1111_1365_2745_14164
crossref_primary_10_1016_j_scitotenv_2023_165650
crossref_primary_10_1080_01431161_2018_1482021
crossref_primary_10_1111_gcb_14496
crossref_primary_10_1371_journal_pone_0201951
crossref_primary_10_1038_s41598_019_44188_1
crossref_primary_10_1080_17445647_2020_1758808
crossref_primary_10_3389_fpls_2019_01413
crossref_primary_10_1007_s11442_023_2073_2
crossref_primary_10_1111_gcb_15586
crossref_primary_10_1002_eco_2125
crossref_primary_10_1111_gcb_12077
crossref_primary_10_1002_joc_6351
crossref_primary_10_3389_fpls_2022_1071858
crossref_primary_10_1016_j_scitotenv_2024_171088
crossref_primary_10_1111_nph_12892
crossref_primary_10_3390_f13091362
crossref_primary_10_3390_rs15030737
crossref_primary_10_3390_su14052776
crossref_primary_10_3390_rs14061396
crossref_primary_10_1007_s00376_022_1426_6
crossref_primary_10_1093_nsr_nwv058
crossref_primary_10_1038_s41558_020_0806_0
crossref_primary_10_1139_cjfr_2017_0259
crossref_primary_10_1371_journal_pone_0088178
crossref_primary_10_3390_su9040551
crossref_primary_10_1016_j_jag_2022_102747
crossref_primary_10_3390_plants11212971
crossref_primary_10_1007_s00382_023_06739_1
crossref_primary_10_1029_2018JG004881
crossref_primary_10_1007_s00704_018_2527_0
crossref_primary_10_3389_ffgc_2023_1172220
crossref_primary_10_1111_1365_2435_14307
crossref_primary_10_1111_gcb_13224
crossref_primary_10_3390_rs14030517
crossref_primary_10_1007_s00484_015_1049_z
crossref_primary_10_1016_j_rse_2021_112604
crossref_primary_10_1002_joc_8309
crossref_primary_10_1007_s13595_018_0763_1
crossref_primary_10_1007_s00484_016_1236_6
crossref_primary_10_7717_peerj_10650
crossref_primary_10_1109_TGRS_2013_2247611
crossref_primary_10_1088_1748_9326_ab9466
crossref_primary_10_1038_s41558_022_01353_1
crossref_primary_10_3390_rs12203383
crossref_primary_10_1016_j_agrformet_2015_05_002
crossref_primary_10_1007_s10584_016_1704_3
crossref_primary_10_3390_rs70100360
crossref_primary_10_1371_journal_pone_0036741
crossref_primary_10_1016_j_agrformet_2017_09_021
crossref_primary_10_1016_j_scitotenv_2023_164382
crossref_primary_10_1016_j_sajb_2017_03_007
crossref_primary_10_3390_cli5020037
crossref_primary_10_1007_s00376_017_6296_y
crossref_primary_10_3390_rs11192201
crossref_primary_10_34133_2021_9859103
crossref_primary_10_1016_j_rse_2021_112835
crossref_primary_10_1016_j_agrformet_2019_107639
crossref_primary_10_1007_s00484_015_1036_4
crossref_primary_10_1016_j_scitotenv_2024_170093
crossref_primary_10_1080_14498596_2023_2281926
crossref_primary_10_3390_w13091143
crossref_primary_10_1007_s13351_020_9211_x
crossref_primary_10_3389_fpls_2020_01031
crossref_primary_10_1016_j_agrformet_2023_109441
crossref_primary_10_1016_j_scitotenv_2020_138323
crossref_primary_10_1016_j_agrformet_2023_109440
crossref_primary_10_3390_rs9121288
crossref_primary_10_1111_gcb_12283
crossref_primary_10_1080_01431161_2017_1378457
crossref_primary_10_1016_j_envres_2023_116643
crossref_primary_10_1016_j_agrformet_2022_109027
crossref_primary_10_1016_j_rse_2015_01_011
crossref_primary_10_1016_j_agrformet_2012_01_019
crossref_primary_10_1038_ncomms7911
crossref_primary_10_3390_rs15215101
crossref_primary_10_1016_j_agrformet_2019_107774
crossref_primary_10_3390_rs12203282
crossref_primary_10_1016_j_agrformet_2019_107896
crossref_primary_10_1029_2022JG007369
crossref_primary_10_1016_j_ecolind_2012_10_012
crossref_primary_10_1016_j_isprsjprs_2017_05_015
crossref_primary_10_1016_j_foreco_2022_120555
crossref_primary_10_1007_s00442_017_3838_z
crossref_primary_10_1002_2016GL068062
crossref_primary_10_3390_rs14112542
crossref_primary_10_1007_s10342_023_01642_0
crossref_primary_10_3390_rs6054217
crossref_primary_10_1016_j_gecco_2023_e02622
crossref_primary_10_1002_ecs2_4761
crossref_primary_10_1016_j_rse_2019_111477
crossref_primary_10_1371_journal_pone_0130516
crossref_primary_10_1007_s00704_022_04141_1
crossref_primary_10_1016_j_scitotenv_2022_154306
crossref_primary_10_1016_j_catena_2021_105505
crossref_primary_10_1007_s00484_019_01679_0
crossref_primary_10_1109_ACCESS_2020_3007073
crossref_primary_10_1016_j_agrformet_2015_06_013
crossref_primary_10_1080_17538947_2017_1282547
crossref_primary_10_5194_bg_17_4443_2020
crossref_primary_10_1016_j_agrformet_2016_08_020
crossref_primary_10_14358_PERS_23_00008R2
crossref_primary_10_1088_1748_9326_ab1ac0
crossref_primary_10_3390_f15030471
crossref_primary_10_3390_rs13163298
crossref_primary_10_3390_atmos13020324
crossref_primary_10_3390_rs14236163
crossref_primary_10_1002_joc_7095
crossref_primary_10_1109_TGRS_2012_2217149
crossref_primary_10_1080_14498596_2019_1578273
crossref_primary_10_18172_cig_5739
crossref_primary_10_3390_rs16101744
crossref_primary_10_1016_j_jag_2023_103513
crossref_primary_10_1016_j_agrformet_2017_10_008
crossref_primary_10_1007_s00484_018_1610_7
crossref_primary_10_3390_rs13224538
crossref_primary_10_1016_j_scitotenv_2019_02_293
crossref_primary_10_1007_s00484_016_1190_3
crossref_primary_10_1016_j_quaint_2019_06_017
crossref_primary_10_1007_s10661_018_6519_4
crossref_primary_10_1016_j_ecoinf_2024_102667
crossref_primary_10_1002_2015JG003157
crossref_primary_10_1002_2016JD025190
crossref_primary_10_1016_j_cliser_2023_100443
crossref_primary_10_3390_su16083303
crossref_primary_10_1016_j_agrformet_2022_109008
crossref_primary_10_1016_j_foreco_2017_05_027
crossref_primary_10_5194_acp_15_11931_2015
crossref_primary_10_1038_s43247_023_00835_0
crossref_primary_10_1117_1_JRS_18_014524
crossref_primary_10_3390_rs9121277
crossref_primary_10_1111_geb_12210
crossref_primary_10_1007_s11738_017_2396_7
crossref_primary_10_1016_j_jenvman_2024_121490
crossref_primary_10_1016_j_rse_2016_11_021
crossref_primary_10_1134_S1062359020020041
crossref_primary_10_1016_j_isprsjprs_2023_07_017
crossref_primary_10_1016_j_quaint_2016_08_038
crossref_primary_10_1016_j_agrformet_2023_109638
crossref_primary_10_1111_geb_12206
crossref_primary_10_3390_rs15010072
crossref_primary_10_1371_journal_pone_0242883
crossref_primary_10_1002_2014GL061841
crossref_primary_10_1088_1748_9326_aa5b3a
crossref_primary_10_3390_su10051497
crossref_primary_10_1016_j_rse_2021_112635
crossref_primary_10_1038_s41467_017_02690_y
crossref_primary_10_3390_f14102055
crossref_primary_10_1029_2023JG007498
crossref_primary_10_3390_rs5083637
crossref_primary_10_1038_srep06749
crossref_primary_10_1111_gcb_12804
crossref_primary_10_1029_2022JG007315
crossref_primary_10_1088_1748_9326_abb332
crossref_primary_10_1016_j_gecco_2023_e02550
crossref_primary_10_5194_cp_18_2143_2022
crossref_primary_10_3389_fpls_2015_00120
crossref_primary_10_1016_j_rse_2016_02_010
crossref_primary_10_3390_rs14236180
crossref_primary_10_1002_ecs2_2677
crossref_primary_10_3390_rs15205058
crossref_primary_10_1088_2515_7620_ab3d79
crossref_primary_10_3390_rs6065650
crossref_primary_10_3390_rs15010187
crossref_primary_10_2139_ssrn_4022143
crossref_primary_10_1111_gcb_12919
crossref_primary_10_1007_s10584_013_0722_7
crossref_primary_10_1109_TGRS_2016_2518167
crossref_primary_10_1002_ldr_3827
crossref_primary_10_3390_rs13040669
crossref_primary_10_1016_j_ecoinf_2023_102239
crossref_primary_10_3390_rs8050433
crossref_primary_10_1038_s41598_021_97240_4
crossref_primary_10_5194_bg_13_625_2016
crossref_primary_10_1126_science_abb7772
crossref_primary_10_1016_j_isprsjprs_2023_07_021
crossref_primary_10_1016_j_rse_2016_02_020
crossref_primary_10_1371_journal_pone_0119811
crossref_primary_10_3389_fevo_2023_1240514
crossref_primary_10_1016_j_rse_2021_112456
crossref_primary_10_1002_joc_7045
crossref_primary_10_5721_EuJRS20154842
crossref_primary_10_1016_j_agrformet_2012_07_013
crossref_primary_10_1016_j_agrformet_2019_05_011
crossref_primary_10_1016_j_rse_2016_09_014
crossref_primary_10_1088_1748_9326_acf728
crossref_primary_10_3390_f11070757
crossref_primary_10_1002_ajb2_1557
crossref_primary_10_1088_1755_1315_611_1_012028
crossref_primary_10_1016_j_agrformet_2018_03_004
crossref_primary_10_1111_j_1365_2486_2011_02612_x
crossref_primary_10_1007_s11356_020_09211_3
crossref_primary_10_1016_j_isprsjprs_2022_12_025
crossref_primary_10_1080_10871209_2020_1752419
crossref_primary_10_1016_j_scitotenv_2023_166607
crossref_primary_10_1007_s11430_019_9577_5
crossref_primary_10_1016_j_agrformet_2023_109734
crossref_primary_10_1016_j_gloplacha_2020_103131
crossref_primary_10_1016_j_scitotenv_2021_147806
crossref_primary_10_1002_hyp_14621
crossref_primary_10_1111_oik_06667
crossref_primary_10_1016_j_scitotenv_2023_163587
crossref_primary_10_1016_j_agrformet_2022_109100
crossref_primary_10_1016_j_agrformet_2022_109221
crossref_primary_10_1016_j_ecolind_2019_05_003
crossref_primary_10_1016_j_ecolind_2019_05_004
crossref_primary_10_1016_j_gloplacha_2021_103657
crossref_primary_10_1111_geb_13234
crossref_primary_10_1111_gcb_16104
crossref_primary_10_3390_rs11131593
crossref_primary_10_1007_s13595_016_0599_5
crossref_primary_10_1016_j_geosus_2022_10_002
crossref_primary_10_3390_agriculture12070945
crossref_primary_10_1007_s11538_018_0504_5
crossref_primary_10_3389_ffgc_2020_610162
crossref_primary_10_1016_j_agrformet_2023_109869
crossref_primary_10_3390_rs13245018
crossref_primary_10_1029_2020JG005912
crossref_primary_10_1080_02723646_2019_1672023
crossref_primary_10_1080_07038992_2018_1526064
crossref_primary_10_1016_j_agrformet_2022_109204
crossref_primary_10_1038_s41477_022_01209_8
crossref_primary_10_1007_s11442_023_2146_2
crossref_primary_10_1016_j_isprsjprs_2020_08_020
crossref_primary_10_3390_rs14215417
crossref_primary_10_3390_rs13091836
crossref_primary_10_2139_ssrn_4132881
crossref_primary_10_1016_j_agrformet_2018_05_022
crossref_primary_10_1080_15481603_2021_1969629
crossref_primary_10_3390_rs9070628
crossref_primary_10_1007_s13143_021_00247_0
crossref_primary_10_1016_j_agwat_2021_107404
crossref_primary_10_1029_2011GL049118
crossref_primary_10_3390_rs15092266
crossref_primary_10_1007_s00382_023_06935_z
crossref_primary_10_1007_s00484_013_0723_2
crossref_primary_10_1111_geb_13581
crossref_primary_10_1007_s10980_020_01129_y
crossref_primary_10_1016_j_ecolind_2014_11_004
crossref_primary_10_1371_journal_pone_0157134
crossref_primary_10_3389_fenvs_2021_792918
crossref_primary_10_1088_1748_9326_ac9636
crossref_primary_10_1016_j_rse_2022_112956
crossref_primary_10_3390_rs10010017
crossref_primary_10_3390_agriculture13061228
crossref_primary_10_7717_peerj_11334
crossref_primary_10_1007_s00704_017_2297_0
crossref_primary_10_1007_s00704_018_2739_3
crossref_primary_10_1002_ecy_1685
crossref_primary_10_1088_1748_9326_9_9_094007
crossref_primary_10_1080_01431161_2018_1528399
crossref_primary_10_1016_j_rse_2019_111407
crossref_primary_10_1007_s10584_012_0434_4
crossref_primary_10_5721_EuJRS20154819
crossref_primary_10_1016_j_actao_2021_103804
crossref_primary_10_1016_j_gloplacha_2020_103396
crossref_primary_10_1016_j_isprsjprs_2018_05_022
crossref_primary_10_3390_rs12233977
crossref_primary_10_1007_s41207_016_0006_5
crossref_primary_10_1007_s00049_015_0194_5
crossref_primary_10_1038_s41559_022_01946_1
crossref_primary_10_1002_ecy_3518
crossref_primary_10_1038_s41558_018_0346_z
crossref_primary_10_1016_j_ecolind_2022_109239
crossref_primary_10_1088_1748_9326_ab6d39
crossref_primary_10_1016_j_foreco_2019_117679
crossref_primary_10_1002_ece3_1990
crossref_primary_10_3390_plants10071474
crossref_primary_10_1016_j_envexpbot_2014_02_007
crossref_primary_10_1016_j_agrformet_2011_06_016
crossref_primary_10_1111_gcb_13081
crossref_primary_10_1016_j_scitotenv_2023_164522
crossref_primary_10_3390_rs15082205
crossref_primary_10_1088_1748_9326_8_1_014008
crossref_primary_10_1016_j_rse_2013_11_020
crossref_primary_10_1111_1365_2435_12309
crossref_primary_10_3390_rs5126159
crossref_primary_10_5194_bg_12_4693_2015
crossref_primary_10_1016_j_jhydrol_2018_08_012
crossref_primary_10_3390_atmos11121364
crossref_primary_10_1016_j_agrformet_2019_01_038
crossref_primary_10_1111_gcb_13954
crossref_primary_10_1016_j_isprsjprs_2020_11_019
crossref_primary_10_1111_gcb_12625
crossref_primary_10_3390_land12091692
crossref_primary_10_34133_remotesensing_0085
crossref_primary_10_5194_bg_17_3563_2020
crossref_primary_10_1002_2015JG003308
crossref_primary_10_1016_j_scitotenv_2015_04_044
crossref_primary_10_1016_j_ecolind_2021_107743
crossref_primary_10_1029_2021GL096558
crossref_primary_10_1007_s00484_015_1031_9
crossref_primary_10_1007_s00382_021_05970_y
crossref_primary_10_1016_j_agrformet_2012_06_009
crossref_primary_10_1016_j_jhydrol_2020_124687
crossref_primary_10_3390_insects12110985
crossref_primary_10_1016_j_scitotenv_2019_01_084
crossref_primary_10_3390_plants13121659
crossref_primary_10_1080_01431161_2014_955146
crossref_primary_10_3390_rs71013729
crossref_primary_10_1155_2015_546920
crossref_primary_10_3390_ijgi7080290
crossref_primary_10_1088_1748_9326_8_3_035036
crossref_primary_10_1016_j_eja_2022_126642
crossref_primary_10_1080_01431161_2018_1479797
crossref_primary_10_1111_gcb_13823
crossref_primary_10_1016_j_agrformet_2020_108312
crossref_primary_10_1016_j_jhydrol_2019_124538
crossref_primary_10_3390_rs15153830
crossref_primary_10_1111_geb_13269
crossref_primary_10_1007_s10113_015_0881_3
crossref_primary_10_1111_gcb_12852
crossref_primary_10_1016_j_jag_2023_103590
crossref_primary_10_1038_s41559_019_0931_1
crossref_primary_10_1111_j_1744_7909_2012_01167_x
crossref_primary_10_1155_2019_2706803
crossref_primary_10_1007_s40725_015_0009_5
crossref_primary_10_5194_bg_18_2405_2021
crossref_primary_10_1029_2023JG007689
crossref_primary_10_1007_s12665_016_6148_6
crossref_primary_10_1016_j_rse_2024_114042
crossref_primary_10_1080_10106049_2022_2068677
crossref_primary_10_1016_j_ecolind_2020_106112
crossref_primary_10_3390_rs15184468
crossref_primary_10_3390_atmos11040391
crossref_primary_10_3390_rs70810973
crossref_primary_10_1080_01431161_2019_1706780
crossref_primary_10_1093_treephys_tpx136
crossref_primary_10_1016_j_rse_2021_112484
crossref_primary_10_1073_pnas_1210423110
crossref_primary_10_1088_1748_9326_abe2cf
crossref_primary_10_1007_s00484_018_1640_1
crossref_primary_10_1007_s11442_015_1158_y
crossref_primary_10_1016_j_oceano_2022_02_007
crossref_primary_10_1080_10106049_2020_1723716
crossref_primary_10_1007_s10584_019_02450_5
crossref_primary_10_3390_ijerph16030429
crossref_primary_10_1038_s41598_017_14918_4
crossref_primary_10_1002_joc_4311
crossref_primary_10_1016_j_ecolind_2021_107640
crossref_primary_10_1002_2017WR021970
crossref_primary_10_1002_joc_7827
crossref_primary_10_3390_s23042040
crossref_primary_10_1111_gcb_12528
crossref_primary_10_1016_j_eja_2022_126516
crossref_primary_10_1111_j_1365_3040_2012_02560_x
crossref_primary_10_5194_bg_13_3305_2016
crossref_primary_10_1029_2023GB007833
crossref_primary_10_1073_pnas_2202393119
crossref_primary_10_1073_pnas_1321727111
crossref_primary_10_1080_15481603_2022_2079273
crossref_primary_10_1111_geb_12289
crossref_primary_10_1016_j_ecolind_2020_106260
crossref_primary_10_1016_j_rse_2021_112471
crossref_primary_10_3390_f10111007
crossref_primary_10_1111_gcb_13723
crossref_primary_10_1016_j_agrformet_2017_12_259
crossref_primary_10_1007_s00484_014_0877_6
crossref_primary_10_1016_j_agrformet_2021_108759
crossref_primary_10_1016_j_agrformet_2023_109809
crossref_primary_10_1016_j_agrformet_2023_109807
crossref_primary_10_1016_j_ecoinf_2014_05_009
crossref_primary_10_1007_s13595_020_00966_w
crossref_primary_10_3354_cr01182
crossref_primary_10_3390_rs12040718
crossref_primary_10_1007_s12517_021_07440_5
crossref_primary_10_1360_SSV_2022_0010
crossref_primary_10_3390_f14122310
crossref_primary_10_1109_JSTARS_2018_2870329
crossref_primary_10_1016_j_ecolmodel_2024_110733
crossref_primary_10_1007_s00484_019_01843_6
crossref_primary_10_1007_s40808_022_01389_4
crossref_primary_10_1080_01431161_2021_1969056
crossref_primary_10_1134_S1062360414030023
crossref_primary_10_3390_f15071093
crossref_primary_10_1016_j_agrformet_2013_07_016
crossref_primary_10_3390_rs15092304
crossref_primary_10_3390_rs14122909
crossref_primary_10_1016_j_agrformet_2017_05_009
crossref_primary_10_1111_gcb_12945
crossref_primary_10_3389_ffgc_2023_1332734
crossref_primary_10_3390_rs8050400
crossref_primary_10_1016_j_foreco_2020_118785
crossref_primary_10_3390_f15030553
crossref_primary_10_1016_j_scitotenv_2023_161687
crossref_primary_10_1029_2020JG006167
crossref_primary_10_1080_15481603_2021_2022426
crossref_primary_10_1088_1748_9326_ab6502
crossref_primary_10_3389_fpls_2022_1052660
crossref_primary_10_1007_s11430_019_9644_8
crossref_primary_10_1007_s11769_017_0844_3
crossref_primary_10_1016_j_scitotenv_2024_172728
crossref_primary_10_1029_2021EF002553
crossref_primary_10_1038_s41559_017_0328_y
crossref_primary_10_3390_rs14132964
crossref_primary_10_1016_j_gloplacha_2012_03_010
crossref_primary_10_3390_rs13020187
crossref_primary_10_1016_j_dendro_2024_126207
crossref_primary_10_1016_j_agrformet_2021_108770
crossref_primary_10_3390_rs14174402
crossref_primary_10_1007_s00704_024_04933_7
crossref_primary_10_1002_joc_6803
crossref_primary_10_1016_j_agrformet_2021_108413
crossref_primary_10_1016_j_agrformet_2017_05_007
crossref_primary_10_1016_j_isprsjprs_2019_11_027
crossref_primary_10_1016_j_tplants_2019_04_003
crossref_primary_10_1007_s11434_012_5407_5
crossref_primary_10_5194_bg_12_6985_2015
crossref_primary_10_1016_j_agrformet_2021_108780
crossref_primary_10_1016_j_scitotenv_2020_140297
crossref_primary_10_3390_f14020413
crossref_primary_10_3390_f12101315
crossref_primary_10_1016_j_agrformet_2021_108427
crossref_primary_10_1016_j_ecolind_2024_111983
crossref_primary_10_1016_j_scitotenv_2023_169023
crossref_primary_10_3390_agronomy12123208
crossref_primary_10_1016_j_scitotenv_2021_149055
crossref_primary_10_1080_15481603_2022_2163575
crossref_primary_10_1007_s10113_020_01629_2
crossref_primary_10_1371_journal_pone_0190313
crossref_primary_10_3390_rs5105193
crossref_primary_10_1111_gcb_12961
crossref_primary_10_1007_s00344_023_11140_7
crossref_primary_10_1016_j_agrformet_2020_108143
crossref_primary_10_3390_f13071099
crossref_primary_10_1016_j_agrformet_2015_01_015
crossref_primary_10_3390_rs9010065
crossref_primary_10_1016_j_foreco_2015_11_043
crossref_primary_10_1016_j_jag_2022_103148
crossref_primary_10_1016_j_scitotenv_2022_160373
crossref_primary_10_3390_rs9070695
crossref_primary_10_1016_j_geosus_2024_05_005
crossref_primary_10_1038_s42003_019_0636_7
crossref_primary_10_1088_1748_9326_11_10_105004
crossref_primary_10_1016_j_fcr_2019_03_003
crossref_primary_10_1016_j_compag_2023_108108
crossref_primary_10_1088_1748_9326_aa6ad9
crossref_primary_10_1016_j_agrformet_2022_108977
crossref_primary_10_1016_j_agrformet_2022_108979
crossref_primary_10_1007_s41064_018_0059_y
crossref_primary_10_1016_j_gloplacha_2023_104181
crossref_primary_10_1016_j_agrformet_2016_11_193
crossref_primary_10_1111_gcb_12950
crossref_primary_10_1016_j_scitotenv_2023_161649
crossref_primary_10_1029_2020JG006191
crossref_primary_10_1016_j_agrformet_2021_108432
crossref_primary_10_1109_JSTARS_2020_2971098
crossref_primary_10_3354_cr01143
crossref_primary_10_1016_j_agrformet_2024_110054
crossref_primary_10_1016_j_scitotenv_2020_144437
crossref_primary_10_3390_rs12091355
crossref_primary_10_3390_rs70709390
crossref_primary_10_1029_2019GL084612
crossref_primary_10_3390_rs13173343
crossref_primary_10_1088_1748_9326_9_10_104016
crossref_primary_10_1007_s00484_019_01690_5
crossref_primary_10_1016_j_agrformet_2017_05_020
crossref_primary_10_1890_14_0005_1
crossref_primary_10_5814_j_issn_1674_764x_2017_01_007
ContentType Journal Article
Copyright 2011 Blackwell Publishing Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2011 Blackwell Publishing Ltd
– notice: 2015 INIST-CNRS
DBID FBQ
BSCLL
IQODW
7SN
7UA
C1K
F1W
H97
L.G
DOI 10.1111/j.1365-2486.2011.02397.x
DatabaseName AGRIS
Istex
Pascal-Francis
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional

DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
EISSN 1365-2486
EndPage 2399
ExternalDocumentID 2363052271
24274244
GCB2397
ark_67375_WNG_K87KQ124_S
US201400142921
Genre article
Feature
GeographicLocations Northern Hemisphere
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHEFC
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
FBQ
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AHBTC
AITYG
BSCLL
HGLYW
OIG
AAPBV
IQODW
7SN
7UA
C1K
F1W
H97
L.G
ID FETCH-LOGICAL-c4817-b4ce8c54a9d8973f1be9eaeba3305279f2070d705554d8ac762f624dee0e4ade3
IEDL.DBID 33P
ISSN 1354-1013
IngestDate Sat Aug 17 03:41:10 EDT 2024
Thu Oct 10 17:58:26 EDT 2024
Sun Oct 22 16:09:17 EDT 2023
Sat Aug 24 00:38:09 EDT 2024
Wed Oct 30 10:05:38 EDT 2024
Wed Dec 27 19:01:16 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Dynamical climatology
Climate change
Vegetation index
Northern Hemisphere
Phenology
Growing season
Vegetation
temperate vegetation
NDVI (normalized difference vegetation index)
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4817-b4ce8c54a9d8973f1be9eaeba3305279f2070d705554d8ac762f624dee0e4ade3
Notes http://dx.doi.org/10.1111/j.1365-2486.2011.02397.x
istex:084F22BB3CC79D849A3EFCD2BD3BD902B7558B13
ArticleID:GCB2397
ark:/67375/WNG-K87KQ124-S
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 869436983
PQPubID 30327
PageCount 15
ParticipantIDs proquest_miscellaneous_902364867
proquest_journals_869436983
pascalfrancis_primary_24274244
wiley_primary_10_1111_j_1365_2486_2011_02397_x_GCB2397
istex_primary_ark_67375_WNG_K87KQ124_S
fao_agris_US201400142921
PublicationCentury 2000
PublicationDate July 2011
PublicationDateYYYYMMDD 2011-07-01
PublicationDate_xml – month: 07
  year: 2011
  text: July 2011
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationTitle Global change biology
PublicationYear 2011
Publisher Blackwell Publishing Ltd
Wiley-Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley-Blackwell
References Cane MA (2010) Climate science: decadal predictions in demand. Nature Geoscience, 3, 231-232.
Cannell MGR, Smith RI (1983) Thermal time, chill days and prediction of budburst in Picea sitchensis. Journal of Applied Ecology, 20, 951-963.
Prince SD, Becker-Reshef I, Rishmawi K (2009) Detection and mapping of long-term land degradation using local net production scaling: application to Zimbabwe. Remote Sensing of Environment, 113, 1046-1057.
Piao SL, Fang J, Zhou L et al. (2006) Variations in satellite-derived phenology in China's temperate vegetation. Global Change Biology, 12, 672-685.
de Beurs KM, Henebry GM (2008) Northern annular mode effects on the land surface phenologies of northern Eurasia. Journal of Climate, 21, 4257-4279.
Ho CH, Lee EJ, Lee I, Jeong SJ (2006) Earlier spring in Seoul, Korea. International Journal of Climatology, 26, 2117-2127.
Tucker CJ, Pinzon JE, Brown ME et al. (2005) An extended AVHRR 8-km NDVI data set compatible with MODIS and SPOT vegetation NDVI data. International Journal of Remote Sensing, 26, 4485-4498.
Fisher JI, Richardson AD, Mustard JF (2007) Phenology model from surface meteorology does not capture satellite-based greenup estimations. Global Change Biology, 13, 707-721.
Jeong SJ, Ho CH, Kim KY, Jeong JH (2009b) Reduction of spring warming over East Asia associated with vegetation feedback. Geophysical Research Letters, 36, L18705, doi: DOI: 10.1029/2009GL039114.
Nemani RR, White MA, Thronton P et al. (2002) Recent trends in hydrological balance have enhanced the terrestrial carbon sink in the United States. Geophysical Research Letters, 29, 1468, doi: DOI: 10.1029/2002GL014867.
Schwartz MD, Hanes JM (2010) Continental-scale phenology: warming and chilling. International Journal of Climatology, 30, 1595-1598.
Linderholm HW (2006) Growing season changes in the last century. Agricultural and Forest Meteorology, 137, 1-14.
Beaubien EG, Freeland HJ (2000) Spring phenology trends in Alberta, Canada: links to ocean temperature. International Journal of Biometeorology, 44, 53-59.
Richardson AD, Bailey AS, Denny EG et al. (2006) Phenology of northern hardwood forest canopy. Global Change Biology, 12, 1174-1188.
Karlsen SR, Tolvanen A, Kubin E et al. (2008) MODIS-NDVI-based mapping of the length of the growing season in northern Fennoscandia. International Journal of Applied Earth Observation and Geoinformation, 10, 253-266.
Schwartz MD (1994) Monitoring global change with phenology: the case of the spring green wave. International Journal of Biometeorology, 38, 18-22.
Sitch S, Huntingford C, Gedney N et al. (2008) Evaluation of terrestrial carbon cycle, future plant geography, and climate-carbon cycle feedback using five Dynamic Global Vegetation Models (DGVMs). Global Change Biology, 14, 2015-2039.
Tucker CJ, Slayback DA, Pinzon JE et al. (2001) Higher northern latitude NDVI and growing season trends from 1982 to 1999. International Journal of Biometeorology, 45, 184-190.
Wolfe DW, Schwartz MD, Lakso AN et al. (2005) Climate change and shifts in phenology of three horticultural woody perennials in northeastern USA. International Journal of Biometeorology, 49, 303-309.
Lee DW, O'Keefe J, Holbrook NM et al. (2003) Pigment dynamics and autumn leaf senescence in a New England deciduous forest, eastern USA. Ecological Research, 124, 821-842.
Slayback DA, Pinzon J, Los SO et al. (2003) Northern hemisphere photosynthetic trends 1982-99. Global Change Biology, 9, 1-15.
Zhang X, Tarpley D, Sullivan T (2007) Diverse response of vegetation phenology to a warming climate. Geophysical Research Letters, 34, L19405, doi: DOI: 10.1029/2007GL031447.
Chen X, Hu B, Yu R (2005) Spatial and temporal variation of phenological growing season and climate change impacts in temperate eastern China. Global Change Biology, 11, 1118-1130.
Hunter AF, Lechowicz MJ (1992) Predicting the timing of budburst in temperate trees. Journal of Applied Ecology, 29, 597-604.
Reynolds RW, Smith TM (1994) Improved global sea surface temperature analyses using optimum interpolation. Journal of Climate, 7, 929-948.
Menzel A (2000) Trends in phenological phase in Europe between 1951 and 1996. International Journal of Biometeorology, 31, 179-190.
Chmielewski FM, Rötzer T (2002) Annual and spatial variability of the beginning of growing season in Europe in relation to temperature changes. Climate Research, 19, 257-264.
Jeong SJ, Ho CH, Kim J et al. (2011) Impact of vegetation feedback on the temperature and its diurnal range over the Northern Hemisphere during summer in a 2 × CO2 climate. Climate Dynamics, doi: DOI: 10.1029/2007GL031447.
Schwartz MD, Ahas R, Aasa A (2006) Onset of spring starting earlier across the northern hemisphere. Global Change Biology, 12, 343-351.
Bonan GB (2008) Forest and climate change: forcings, feedbacks, and the climate benefits of forests. Science, 320, 1444-1449.
Brown ME, de Beurs KM (2010) The response of African land surface phenology to large scale climate oscillations. Remote sensing of Environment, 10, 2286-2296.
Kalnay E, Kanamitsu M, Kistler R et al. (1996) The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77, 437-471.
de Beurs KM, Henebry GM (2005) Land surface phenology and temperature variation in the International Geosphere-Biosphere Program high-latitude transects. Global Change Biology, 11, 779-790.
Chmielewski F-M, Rötzer T (2001) Response of tree phenology to climate change across Europe. Agricultural and Forest Meteorology, 180, 101-112.
McPherson RA (2007) A review of vegetation-atmosphere interactions and their influences on mesoscale phenomena. Progress in Physical Geography, 31, 261-285.
Ahas R, Aasa A, Menzel A et al. (2002) Changes in European spring phenology. International Journal of Climatology, 22, 1727-1738.
Jeong SJ, Ho CH, Jeong JH (2009a) Increase in vegetation greenness and decrease in spring time warming over East Asia. Geophysical Research Letters, 36, L0270, doi: DOI: 10.1029/2008GL036583.
Piao SL, Friedlingstein P, Ciais P et al. (2007) Growing season extension and its effects on terrestrial carbon flux over the last two decades. Global Biogeochemical Cycles, 21, GB3018, doi: DOI: 10.1029/2006GB002888.
Gong DY, Ho CH (2003) Detection of large-scale climate signals in spring vegetation index (normalized difference vegetation index) over the Northern Hemisphere. Journal of Geophysical Research, 108, 4066, doi: DOI: 10.1029/2002JD002193.
Brown ME, de Beurs KM (2008) Evaluation of multi-sensor semi-arid crop season parameters based on NDVI and rainfall. Remote Sensing of Environment, 112, 2261-2271.
Angert A, Biraud S, Bonfils C et al. (2005) Drier summers cancel out the CO2 uptake enhancement induced by warmer springs. Proceedings of the National Academe Science, 102, 10823-10827.
Stockli R, Vidale PL (2004) European plant phenology and climate as seen in a 20-year AVHRR land-surface parameter dataset. International Journal of Remote Sensing, 25, 3303-3330.
Menzel A, Fabian P (1999) Growing season extended in Europe. Nature, 397, 659.
Menzel A, Estrella N, Fabian P (2001) Spatial and temporal variability of the phenological seasons in Germany from 1951 to 1996. Global Change Biology, 7, 657-666.
Julien Y, Sobrino JA (2009) Global land surface phenology trends from GIMMS database. International Journal of Remote Sensing, 30, 3495-3513.
Lucht W, Prentice IC, Myneni RB et al. (2002) Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science, 296, 1687-1689.
Sparks TH, Croxton PJ, Collinson N et al. (2005) Examples of phenological change, past and present, in UK farming. Annals of Applied Biology, 146, 531-537.
Abu-Asab MS, Peterson PM, Shetler SG, Orli SS (2001) Earlier plant flowering in spring as a response to global warming in the Washington, DC, area. Biodiversity and Conservation, 10, 597-612.
Myneni RB, Keeling CD, Tucker CJ et al. (1997) Increased plant growth in the northern high latitudes from 1981-1991. Nature, 386, 698-702.
Zhou L, Tucker CJ, Kaufmann RK et al. (2001) Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981-1999. Journal of Geophysical Research, 106, 20069-20083.
Buermann W, Lintner BR, Koven CD et al. (2007) The changing carbon cycle at Mauna Loa observatory. Proceedings of the National Academe Science, 104, 4249-4254.
Lotsch A, Friedl MA, Anderson BT et al. (2005) Response of terrestrial ecosystems to recent northern hemispheric drought. Geophysical Research Letters, 32, L06705, doi: DOI: 10.1029/2007GL031447.
White MA, de Beurs KM, Didan K et al. (2009) Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982-2006. Global Change Biology, 15, 2335-2359.
Reed BC, Brown JF, Vanderzee D et al. (1994) Measuring phenological variability from satellite imagery. Journal of Vegetation Science, 5, 703-714.
Schaffer K, Denning AS, Leonard O (2005) The winter Arctic Oscillation, the timing of spring, and carbon fluxes in the Northern Hemisphere. Global Biogeochemical Cycles, 19, GB3017, doi: DOI: 10.1029/2004GB002336.
Adler RF, Huffman GJ, Chang A et al. (2003) The version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). Journal of Hydrometeorogy, 4, 1147-1167.
2007; 104
2010; 10
2002; 19
2001; 180
2004; 25
2000; 44
2009; 113
2009a; 36
2007; 31
2005; 26
2006; 137
2001; 45
2007; 34
2001; 106
1996; 77
2000
2005; 102
2005; 146
1997; 386
2006; 26
2003; 9
1983; 20
2003; 4
2005; 32
2008; 21
1994; 38
2008; 112
2010; 3
2007; 21
2003; 124
2010; 30
2009; 15
2001; 10
2002; 296
2006; 12
2011
2008; 14
2009
2008; 10
2008; 320
2005; 49
2007; 13
2003; 108
2009; 30
2005; 19
2009b; 36
2002; 29
2001; 7
2002; 22
2000; 31
1992; 29
1999; 397
2005; 11
1994; 5
1994; 7
References_xml – volume: 21
  start-page: GB3018
  year: 2007
  article-title: Growing season extension and its effects on terrestrial carbon flux over the last two decades
  publication-title: Global Biogeochemical Cycles
– volume: 12
  start-page: 1174
  year: 2006
  end-page: 1188
  article-title: Phenology of northern hardwood forest canopy
  publication-title: Global Change Biology
– volume: 7
  start-page: 657
  year: 2001
  end-page: 666
  article-title: Spatial and temporal variability of the phenological seasons in Germany from 1951 to 1996
  publication-title: Global Change Biology
– volume: 77
  start-page: 437
  year: 1996
  end-page: 471
  article-title: The NCEP/NCAR 40‐year reanalysis project
  publication-title: Bulletin of the American Meteorological Society
– volume: 137
  start-page: 1
  year: 2006
  end-page: 14
  article-title: Growing season changes in the last century
  publication-title: Agricultural and Forest Meteorology
– volume: 146
  start-page: 531
  year: 2005
  end-page: 537
  article-title: Examples of phenological change, past and present, in UK farming
  publication-title: Annals of Applied Biology
– volume: 19
  start-page: 257
  year: 2002
  end-page: 264
  article-title: Annual and spatial variability of the beginning of growing season in Europe in relation to temperature changes
  publication-title: Climate Research
– year: 2011
  article-title: Impact of vegetation feedback on the temperature and its diurnal range over the Northern Hemisphere during summer in a 2 × CO climate
  publication-title: Climate Dynamics
– volume: 36
  start-page: L0270
  year: 2009a
  article-title: Increase in vegetation greenness and decrease in spring time warming over East Asia
  publication-title: Geophysical Research Letters
– volume: 104
  start-page: 4249
  year: 2007
  end-page: 4254
  article-title: The changing carbon cycle at Mauna Loa observatory
  publication-title: Proceedings of the National Academe Science
– volume: 21
  start-page: 4257
  year: 2008
  end-page: 4279
  article-title: Northern annular mode effects on the land surface phenologies of northern Eurasia
  publication-title: Journal of Climate
– volume: 386
  start-page: 698
  year: 1997
  end-page: 702
  article-title: Increased plant growth in the northern high latitudes from 1981–1991
  publication-title: Nature
– volume: 26
  start-page: 4485
  year: 2005
  end-page: 4498
  article-title: An extended AVHRR 8‐km NDVI data set compatible with MODIS and SPOT vegetation NDVI data
  publication-title: International Journal of Remote Sensing
– start-page: 200
  year: 2000
  end-page: 201
– volume: 112
  start-page: 2261
  year: 2008
  end-page: 2271
  article-title: Evaluation of multi‐sensor semi‐arid crop season parameters based on NDVI and rainfall
  publication-title: Remote Sensing of Environment
– volume: 10
  start-page: 2286
  year: 2010
  end-page: 2296
  article-title: The response of African land surface phenology to large scale climate oscillations
  publication-title: Remote sensing of Environment
– volume: 10
  start-page: 253
  year: 2008
  end-page: 266
  article-title: MODIS‐NDVI‐based mapping of the length of the growing season in northern Fennoscandia
  publication-title: International Journal of Applied Earth Observation and Geoinformation
– volume: 3
  start-page: 231
  year: 2010
  end-page: 232
  article-title: Climate science: decadal predictions in demand
  publication-title: Nature Geoscience
– volume: 31
  start-page: 179
  year: 2000
  end-page: 190
  article-title: Trends in phenological phase in Europe between 1951 and 1996
  publication-title: International Journal of Biometeorology
– volume: 49
  start-page: 303
  year: 2005
  end-page: 309
  article-title: Climate change and shifts in phenology of three horticultural woody perennials in northeastern USA
  publication-title: International Journal of Biometeorology
– volume: 36
  start-page: L18705
  year: 2009b
  article-title: Reduction of spring warming over East Asia associated with vegetation feedback
  publication-title: Geophysical Research Letters
– volume: 26
  start-page: 2117
  year: 2006
  end-page: 2127
  article-title: Earlier spring in Seoul, Korea
  publication-title: International Journal of Climatology
– volume: 30
  start-page: 1595
  year: 2010
  end-page: 1598
  article-title: Continental‐scale phenology
  publication-title: International Journal of Climatology
– volume: 11
  start-page: 1118
  year: 2005
  end-page: 1130
  article-title: Spatial and temporal variation of phenological growing season and climate change impacts in temperate eastern China
  publication-title: Global Change Biology
– volume: 296
  start-page: 1687
  year: 2002
  end-page: 1689
  article-title: Climatic control of the high‐latitude vegetation greening trend and Pinatubo effect
  publication-title: Science
– volume: 22
  start-page: 1727
  year: 2002
  end-page: 1738
  article-title: Changes in European spring phenology
  publication-title: International Journal of Climatology
– volume: 38
  start-page: 18
  year: 1994
  end-page: 22
  article-title: Monitoring global change with phenology
  publication-title: International Journal of Biometeorology
– volume: 320
  start-page: 1444
  year: 2008
  end-page: 1449
  article-title: Forest and climate change
  publication-title: Science
– volume: 4
  start-page: 1147
  year: 2003
  end-page: 1167
  article-title: The version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present)
  publication-title: Journal of Hydrometeorogy
– volume: 12
  start-page: 672
  year: 2006
  end-page: 685
  article-title: Variations in satellite‐derived phenology in China's temperate vegetation
  publication-title: Global Change Biology
– volume: 30
  start-page: 3495
  year: 2009
  end-page: 3513
  article-title: Global land surface phenology trends from GIMMS database
  publication-title: International Journal of Remote Sensing
– volume: 15
  start-page: 2335
  year: 2009
  end-page: 2359
  article-title: Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006
  publication-title: Global Change Biology
– volume: 14
  start-page: 2015
  year: 2008
  end-page: 2039
  article-title: Evaluation of terrestrial carbon cycle, future plant geography, and climate‐carbon cycle feedback using five Dynamic Global Vegetation Models (DGVMs)
  publication-title: Global Change Biology
– volume: 19
  start-page: GB3017
  year: 2005
  article-title: The winter Arctic Oscillation, the timing of spring, and carbon fluxes in the Northern Hemisphere
  publication-title: Global Biogeochemical Cycles
– volume: 10
  start-page: 597
  year: 2001
  end-page: 612
  article-title: Earlier plant flowering in spring as a response to global warming in the Washington, DC, area
  publication-title: Biodiversity and Conservation
– volume: 32
  year: 2005
  article-title: Response of terrestrial ecosystems to recent northern hemispheric drought
  publication-title: Geophysical Research Letters
– volume: 113
  start-page: 1046
  year: 2009
  end-page: 1057
  article-title: Detection and mapping of long‐term land degradation using local net production scaling: application to Zimbabwe
  publication-title: Remote Sensing of Environment
– volume: 180
  start-page: 101
  year: 2001
  end-page: 112
  article-title: Response of tree phenology to climate change across Europe
  publication-title: Agricultural and Forest Meteorology
– volume: 9
  start-page: 1
  year: 2003
  end-page: 15
  article-title: Northern hemisphere photosynthetic trends 1982–99
  publication-title: Global Change Biology
– volume: 106
  start-page: 20069
  year: 2001
  end-page: 20083
  article-title: Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981–1999
  publication-title: Journal of Geophysical Research
– volume: 29
  start-page: 1468
  year: 2002
  article-title: Recent trends in hydrological balance have enhanced the terrestrial carbon sink in the United States
  publication-title: Geophysical Research Letters
– volume: 397
  start-page: 659
  year: 1999
  article-title: Growing season extended in Europe
  publication-title: Nature
– volume: 29
  start-page: 597
  year: 1992
  end-page: 604
  article-title: Predicting the timing of budburst in temperate trees
  publication-title: Journal of Applied Ecology
– volume: 13
  start-page: 707
  year: 2007
  end-page: 721
  article-title: Phenology model from surface meteorology does not capture satellite‐based greenup estimations
  publication-title: Global Change Biology
– volume: 124
  start-page: 821
  year: 2003
  end-page: 842
  article-title: Pigment dynamics and autumn leaf senescence in a New England deciduous forest, eastern USA
  publication-title: Ecological Research
– volume: 44
  start-page: 53
  year: 2000
  end-page: 59
  article-title: Spring phenology trends in Alberta, Canada
  publication-title: International Journal of Biometeorology
– volume: 11
  start-page: 779
  year: 2005
  end-page: 790
  article-title: Land surface phenology and temperature variation in the International Geosphere‐Biosphere Program high‐latitude transects
  publication-title: Global Change Biology
– volume: 7
  start-page: 929
  year: 1994
  end-page: 948
  article-title: Improved global sea surface temperature analyses using optimum interpolation
  publication-title: Journal of Climate
– volume: 5
  start-page: 703
  year: 1994
  end-page: 714
  article-title: Measuring phenological variability from satellite imagery
  publication-title: Journal of Vegetation Science
– volume: 34
  start-page: L19405
  year: 2007
  article-title: Diverse response of vegetation phenology to a warming climate
  publication-title: Geophysical Research Letters
– volume: 108
  start-page: 4066
  year: 2003
  article-title: Detection of large‐scale climate signals in spring vegetation index (normalized difference vegetation index) over the Northern Hemisphere
  publication-title: Journal of Geophysical Research
– volume: 12
  start-page: 343
  year: 2006
  end-page: 351
  article-title: Onset of spring starting earlier across the northern hemisphere
  publication-title: Global Change Biology
– volume: 31
  start-page: 261
  year: 2007
  end-page: 285
  article-title: A review of vegetation‐atmosphere interactions and their influences on mesoscale phenomena
  publication-title: Progress in Physical Geography
– start-page: 1
  year: 2009
  end-page: 164
– volume: 25
  start-page: 3303
  year: 2004
  end-page: 3330
  article-title: European plant phenology and climate as seen in a 20‐year AVHRR land‐surface parameter dataset
  publication-title: International Journal of Remote Sensing
– volume: 102
  start-page: 10823
  year: 2005
  end-page: 10827
  article-title: Drier summers cancel out the CO uptake enhancement induced by warmer springs
  publication-title: Proceedings of the National Academe Science
– volume: 20
  start-page: 951
  year: 1983
  end-page: 963
  article-title: Thermal time, chill days and prediction of budburst in
  publication-title: Journal of Applied Ecology
– volume: 45
  start-page: 184
  year: 2001
  end-page: 190
  article-title: Higher northern latitude NDVI and growing season trends from 1982 to 1999
  publication-title: International Journal of Biometeorology
SSID ssj0003206
Score 2.6146832
Snippet Changes in vegetative growing seasons are dominant indicators of the dynamic response of ecosystems to climate change. Therefore, knowledge of growing seasons...
Abstract Changes in vegetative growing seasons are dominant indicators of the dynamic response of ecosystems to climate change. Therefore, knowledge of growing...
SourceID proquest
pascalfrancis
wiley
istex
fao
SourceType Aggregation Database
Index Database
Publisher
StartPage 2385
SubjectTerms Animal and plant ecology
Animal, plant and microbial ecology
autumn
Biological and medical sciences
Climate change
Climatology. Bioclimatology. Climate change
Earth, ocean, space
ecosystems
Exact sciences and technology
External geophysics
Fundamental and applied biological sciences. Psychology
General aspects
Global warming
growing season
Indexing in process
leaves
Meteorology
NDVI (normalized difference vegetation index)
Northern Hemisphere
phenology
Saissetia coffeae
senescence
temperate vegetation
temperature
Terrestrial ecosystems
Vegetation
Title Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982-2008
URI https://api.istex.fr/ark:/67375/WNG-K87KQ124-S/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2486.2011.02397.x
https://www.proquest.com/docview/869436983
https://search.proquest.com/docview/902364867
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgEhIXPhaqhkLlA-ptq8Z2YvsIy7YrKqqipYKb5cT2dlWUoGS3lBsSP4F_yC9hxklDV-KEOGSVVRJLscdvnp2ZN4S8DEWaWx7EuBDwIwppx7rgbMzKwzIPmculwGzk2VyeflJvpiiT8_YmF6bThxg23HBmRLzGCW6LdnOSxwgtofJeiZOBbz1APgmLhpjNwc8GUOYsltlMeSYAeVK-GdTz14bA2wRbA2nF_r7GoEnbQr-FruDFBiO9zWujYzp6-D9f6RF50NNT-qqzp8fkjq9G5F5XsPLbiGxP_-TFwW09MLQjkrwD8l038Ta6Tyefl8CE478n5MfZhe9272l7sQyrltoVBVLarOhVe0B95Wgd6KKpv4IbpbhpWVd0WVFUzULJZ0-v_KKPiqQYcUqBtNL4wck3FZ1hxToUR_AUCHi8hurNtaOpVuzX958Ye_GUnB9NP0xm4772w7gUChxnIUqvykxY7ZSWPKSF1976wnIAKCZ1YIBVDqWAMuGULQHTQ86E8_7QC-s83yZbVV35HRhnl2XWautKaM97DqYpVWmlBipTcp8lZAfG2dgFoKo5nzNcc8LBNEsTsh8H33zppD-MbS4xEk5m5uPpsTlR8uQ9ECQzT8jehnUMDwADkphLmJDdG3MxPUq0RuVa8FwrnhA6XIU-w282tvL1ujU6KvyrXCYkj6YztHxr9QZGY9BoDBqNiUZjrs3x5DWePfvXB3fJ_W4DHWOTn5OtVbP2L8jd1q334tz6DdsQIgI
link.rule.ids 315,782,786,1408,27935,27936,46066,46490
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Bb9MwFLZgCMFlQGFaNhg-oN06LbYT20co3Yq6VUPdBDfLiZ2uAiUoace4IfET-If8Et5zsrJKnBCHRImSWIr9_L0vL8_fI-RVkcWp5YXoZwJ2IpO2rzPO-iw_zNMicakUuBp5NJWTj-rtEGVyxjdrYVp9iFXADWdGwGuc4BiQXp_lIUVLqLST4mTgXA-AUN4TqdBYx4HzsxUscxYKbcY8EYA9MV9P6_lrS-BvClsBbcUev8a0SdtAzxVtyYs1Tnqb2QbXdPTov77UY7LZMVT6ujWpJ-SOL3vkfluz8luPbA3_LI2D2zpsaHokOgX-XdXhNrpPB5_nQIbD2VPy4-zStwF82lzOi0VD7YICL60X9Ko5oL50tCrorK6-gielGLesSjovKQpnoeqzp1d-1iVGUkw6pcBbafjn5OuSjrBoHeojeAocPFxDAefK0Vgr9uv7T0y_eEYujobng1G_K__Qz4UC35mJ3Ks8EVY7pSUv4sxrb31mOWAUk7pgAFcO1YAS4ZTNAdaLlAnn_aEX1nm-RTbKqvTbMNAuSazV1uXQnvccrFOq3EoNbCbnPonINgy0sTMAVnMxZfjZCRvTLI7Ifhh986VV_zC2_oTJcDIxHybHZqzk-D1wJDONyN6aeaweABIkcTlhRHZv7MV0QNEYlWrBU614ROjqKvQZ_raxpa-WjdFB5F-lMiJpsJ1Vy7c-4MBoDBqNQaMxwWjMtTkevMGjnX998CV5MDo_PTEn7ybjXfKwjadjqvJzsrGol_4Fudu45V6YaL8BFGYmIw
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLZgCMSFH4VpYTB8QLt1WmInto_QtSsMqqIywc1yYrurQMmUtGPckPgT-A_5S3jPycoqcUIcEiVKYin28_e-OO99j5AXPo8zwzzv5xx2PBemr3KW9JPisMh8ajPBMRt5PBOTT_JoiDI5b65yYVp9iPWCG86MgNc4wc-t35zkIUKLy6xT4kzAtx4An7zFkZVjOgebrlGZJaHOZsxSDtATs82onr-2BO7GmwpYK3b4JUZNmgY6zrcVLzYo6XViGzzT6P7_fKcH5F7HT-nL1qAekhuu7JHbbcXKbz2yPfyTGAe3dcjQ9Ej0Dth3VYfb6D4dfFkAFQ5nj8iP6Zlrl-9pc7bwy4aaJQVWWi_pRXNAXWlp5em8rr6CH6W4almVdFFSlM1CzWdHL9y8C4ukGHJKgbXS8MfJ1SUdY8k6VEdwFBh4uIbyzZWlsZLJr-8_MfjiMTkdDT8Mxv2u-EO_4BI8Z84LJ4uUG2WlEszHuVPOuNwwQKhEKJ8AWFnUAkq5laYAUPdZwq1zh44b69g22Sqr0u3AONs0NUYZW0B7zjGwTSELIxRwmYK5NCI7MM7azAFW9ekswY9O2BKVxBHZD4Ovz1vtD23qzxgKJ1L9cXKsT6Q4eQ8MSc8isrdhHesHgAIJTCaMyO6VuegOJhotM8VZpiSLCF1fhT7DnzamdNWq0SpI_MtMRCQLprNu-drnGxiNRqPRaDQ6GI2-1MeDV3j05F8ffE7uTI9G-u3ryckuudsupmOc8lOytaxX7hm52djVXphmvwFwOSTS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phenology+shifts+at+start+vs.+end+of+growing+season+in+temperate+vegetation+over+the+Northern+Hemisphere+for+the+period+1982%E2%80%932008&rft.jtitle=Global+change+biology&rft.au=JEONG%2C+SU%E2%80%90JONG&rft.au=HO%2C+CHANG%E2%80%90HOI&rft.au=GIM%2C+HYEON%E2%80%90JU&rft.au=BROWN%2C+MOLLY+E.&rft.date=2011-07-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=17&rft.issue=7&rft.spage=2385&rft.epage=2399&rft_id=info:doi/10.1111%2Fj.1365-2486.2011.02397.x&rft.externalDBID=10.1111%252Fj.1365-2486.2011.02397.x&rft.externalDocID=GCB2397
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon