Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982-2008
Changes in vegetative growing seasons are dominant indicators of the dynamic response of ecosystems to climate change. Therefore, knowledge of growing seasons over the past decades is essential to predict ecosystem changes. In this study, the long-term changes in the growing seasons of temperate veg...
Saved in:
Published in: | Global change biology Vol. 17; no. 7; pp. 2385 - 2399 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford, UK
Blackwell Publishing Ltd
01-07-2011
Wiley-Blackwell |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Changes in vegetative growing seasons are dominant indicators of the dynamic response of ecosystems to climate change. Therefore, knowledge of growing seasons over the past decades is essential to predict ecosystem changes. In this study, the long-term changes in the growing seasons of temperate vegetation over the Northern Hemisphere were examined by analyzing satellite-measured normalized difference vegetation index and reanalysis temperature during 1982-2008. Results showed that the length of the growing season (LOS) increased over the analysis period; however, the role of changes at the start of the growing season (SOS) and at the end of the growing season (EOS) differed depending on the time period. On a hemispheric scale, SOS advanced by 5.2 days in the early period (1982-1999) but advanced by only 0.2 days in the later period (2000-2008). EOS was delayed by 4.3 days in the early period, and it was further delayed by another 2.3 days in the later period. The difference between SOS and EOS in the later period was due to less warming during the preseason (January-April) before SOS compared with the magnitude of warming in the preseason (June-September) before EOS. At a regional scale, delayed EOS in later periods was shown. In North America, EOS was delayed by 8.1 days in the early period and delayed by another 1.3 days in the later period. In Europe, the delayed EOS by 8.2 days was more significant than the advanced SOS by 3.2 days in the later period. However, in East Asia, the overall increase in LOS during the early period was weakened in the later period. Admitting regional heterogeneity, changes in hemispheric features suggest that the longer-lasting vegetation growth in recent decades can be attributed to extended leaf senescence in autumn rather than earlier spring leaf-out. |
---|---|
AbstractList | Changes in vegetative growing seasons are dominant indicators of the dynamic response of ecosystems to climate change. Therefore, knowledge of growing seasons over the past decades is essential to predict ecosystem changes. In this study, the long‐term changes in the growing seasons of temperate vegetation over the Northern Hemisphere were examined by analyzing satellite‐measured normalized difference vegetation index and reanalysis temperature during 1982–2008. Results showed that the length of the growing season (LOS) increased over the analysis period; however, the role of changes at the start of the growing season (SOS) and at the end of the growing season (EOS) differed depending on the time period. On a hemispheric scale, SOS advanced by 5.2 days in the early period (1982–1999) but advanced by only 0.2 days in the later period (2000–2008). EOS was delayed by 4.3 days in the early period, and it was further delayed by another 2.3 days in the later period. The difference between SOS and EOS in the later period was due to less warming during the preseason (January–April) before SOS compared with the magnitude of warming in the preseason (June–September) before EOS. At a regional scale, delayed EOS in later periods was shown. In North America, EOS was delayed by 8.1 days in the early period and delayed by another 1.3 days in the later period. In Europe, the delayed EOS by 8.2 days was more significant than the advanced SOS by 3.2 days in the later period. However, in East Asia, the overall increase in LOS during the early period was weakened in the later period. Admitting regional heterogeneity, changes in hemispheric features suggest that the longer‐lasting vegetation growth in recent decades can be attributed to extended leaf senescence in autumn rather than earlier spring leaf‐out. Abstract Changes in vegetative growing seasons are dominant indicators of the dynamic response of ecosystems to climate change. Therefore, knowledge of growing seasons over the past decades is essential to predict ecosystem changes. In this study, the long-term changes in the growing seasons of temperate vegetation over the Northern Hemisphere were examined by analyzing satellite-measured normalized difference vegetation index and reanalysis temperature during 1982-2008. Results showed that the length of the growing season (LOS) increased over the analysis period; however, the role of changes at the start of the growing season (SOS) and at the end of the growing season (EOS) differed depending on the time period. On a hemispheric scale, SOS advanced by 5.2 days in the early period (1982-1999) but advanced by only 0.2 days in the later period (2000-2008). EOS was delayed by 4.3 days in the early period, and it was further delayed by another 2.3 days in the later period. The difference between SOS and EOS in the later period was due to less warming during the preseason (January-April) before SOS compared with the magnitude of warming in the preseason (June-September) before EOS. At a regional scale, delayed EOS in later periods was shown. In North America, EOS was delayed by 8.1 days in the early period and delayed by another 1.3 days in the later period. In Europe, the delayed EOS by 8.2 days was more significant than the advanced SOS by 3.2 days in the later period. However, in East Asia, the overall increase in LOS during the early period was weakened in the later period. Admitting regional heterogeneity, changes in hemispheric features suggest that the longer-lasting vegetation growth in recent decades can be attributed to extended leaf senescence in autumn rather than earlier spring leaf-out. [PUBLICATION ABSTRACT] |
Author | BROWN, MOLLY E JEONG, SU-JONG HO, CHANG-HOI GIM, HYEON-JU |
Author_xml | – sequence: 1 fullname: JEONG, SU-JONG – sequence: 2 fullname: HO, CHANG-HOI – sequence: 3 fullname: GIM, HYEON-JU – sequence: 4 fullname: BROWN, MOLLY E |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24274244$$DView record in Pascal Francis |
BookMark | eNpdkU9vEzEQxVeoSLSFz4CFhDjt4n-7tg8cIIIUtSqgUnG0nN3ZxGFjp7aTJke-OV62ygFLlkee3xs9zbsozpx3UBSI4Irk835dEdbUJeWyqSgmpMKUKVEdnhXnp8bZWNe8JJiwF8VFjGuMMaO4OS_-fF-B84NfHlFc2T5FZBKKyYSE9rFC4Drke7QM_tG6JYpgonfIOpRgs4VgEqA9LCGZZPO_30NAaQXo1of8BIeuYGPjNpeAej_1ssz6DhElaUkxli-L570ZIrx6ei-L-y-ff86uyptv86-zjzdlyyUR5YK3INuaG9VJJVhPFqDAwMIwhmsqVE-xwJ3AdV3zTppWNLRvKO8AMHDTAbss3k1zt8E_7CAmna21MAzGgd9FrfLimrwskck3_5Frvwsum9OyUZw1SrIMvX2CTGzN0AfjWhv1NtiNCUdNORWccp65DxP3aAc4nvoE6zE-vdZjSnpMSY_x6X_x6YOezz6NVdaXk97GBIeT3oTfOlsVtf51O9fXUlz_IJTru8y_nvjeeG2WIXu6v8uTOc6XKkrYX_J1qZw |
CitedBy_id | crossref_primary_10_1111_nph_14073 crossref_primary_10_1007_s13753_015_0062_5 crossref_primary_10_1371_journal_pone_0191428 crossref_primary_10_1016_j_scitotenv_2018_11_361 crossref_primary_10_1080_24694452_2017_1309964 crossref_primary_10_1111_gcb_13311 crossref_primary_10_1016_j_agrformet_2016_12_006 crossref_primary_10_1016_j_scitotenv_2018_09_308 crossref_primary_10_1029_2017WR022279 crossref_primary_10_1007_s11629_018_4982_6 crossref_primary_10_1007_s00442_019_04339_7 crossref_primary_10_1007_s12665_019_8135_1 crossref_primary_10_1016_S2095_3119_19_62599_2 crossref_primary_10_1016_j_catena_2019_104124 crossref_primary_10_1002_2017JD027318 crossref_primary_10_1007_s00704_013_1078_7 crossref_primary_10_1007_s00442_022_05296_4 crossref_primary_10_1080_20964471_2021_1920661 crossref_primary_10_3390_f14091880 crossref_primary_10_1007_s10661_017_6247_1 crossref_primary_10_1016_j_agrformet_2019_02_008 crossref_primary_10_1016_j_rse_2020_111960 crossref_primary_10_1007_s11600_023_01117_1 crossref_primary_10_1016_j_compag_2016_04_015 crossref_primary_10_1080_01431161_2019_1608390 crossref_primary_10_3390_rs15194783 crossref_primary_10_1111_gcb_15602 crossref_primary_10_1088_1748_9326_6_4_045508 crossref_primary_10_1002_ecy_2802 crossref_primary_10_1016_j_agrformet_2019_107628 crossref_primary_10_1007_s11434_013_5847_6 crossref_primary_10_1093_jpe_rtw084 crossref_primary_10_1016_j_earscirev_2024_104678 crossref_primary_10_1007_s00382_017_3840_5 crossref_primary_10_3389_fmars_2018_00114 crossref_primary_10_1007_s00484_020_01935_8 crossref_primary_10_1371_journal_pone_0041444 crossref_primary_10_1080_01431161_2017_1292070 crossref_primary_10_3390_rs5073190 crossref_primary_10_1029_2018JG004616 crossref_primary_10_1038_s41598_018_22258_0 crossref_primary_10_3390_rs14030721 crossref_primary_10_1016_j_ecolind_2020_107286 crossref_primary_10_1007_s42965_024_00336_x crossref_primary_10_1016_j_scitotenv_2021_151799 crossref_primary_10_1016_j_rse_2018_11_022 crossref_primary_10_1016_j_jag_2020_102172 crossref_primary_10_1111_gcb_13217 crossref_primary_10_1371_journal_pone_0107396 crossref_primary_10_3390_rs11141651 crossref_primary_10_1371_journal_pone_0171918 crossref_primary_10_1016_j_ecolind_2023_111025 crossref_primary_10_1016_j_agrformet_2022_108828 crossref_primary_10_1016_j_ecolind_2019_105760 crossref_primary_10_1007_s00477_017_1452_6 crossref_primary_10_1007_s10342_021_01412_w crossref_primary_10_1016_j_ecolind_2021_107483 crossref_primary_10_1016_j_ecolind_2017_07_027 crossref_primary_10_1016_j_jag_2020_102291 crossref_primary_10_3390_su12010012 crossref_primary_10_1016_j_agrformet_2019_03_021 crossref_primary_10_1016_j_ecolind_2021_108211 crossref_primary_10_3390_rs13142806 crossref_primary_10_1002_joc_7549 crossref_primary_10_1134_S199542552105005X crossref_primary_10_3390_rs14061331 crossref_primary_10_3390_rs9050407 crossref_primary_10_1007_s11430_019_9622_2 crossref_primary_10_1111_1752_1688_12844 crossref_primary_10_1088_1748_9326_ac3696 crossref_primary_10_1111_brv_12105 crossref_primary_10_1371_journal_pone_0167302 crossref_primary_10_1111_nph_16479 crossref_primary_10_3390_ijgi9020111 crossref_primary_10_1007_s00300_019_02543_y crossref_primary_10_1016_j_rse_2020_111865 crossref_primary_10_1016_j_scitotenv_2021_151205 crossref_primary_10_1111_gcb_13690 crossref_primary_10_1111_j_1365_2486_2012_02712_x crossref_primary_10_1371_journal_pone_0245467 crossref_primary_10_3390_rs13020286 crossref_primary_10_1016_j_agrformet_2016_04_012 crossref_primary_10_1111_gcb_14414 crossref_primary_10_3390_rs8121029 crossref_primary_10_3389_ffgc_2021_687749 crossref_primary_10_1016_j_scitotenv_2019_05_125 crossref_primary_10_2139_ssrn_4157311 crossref_primary_10_3390_agronomy12081972 crossref_primary_10_1080_15481603_2015_1120371 crossref_primary_10_1590_2179_8087_036118 crossref_primary_10_3390_rs14061462 crossref_primary_10_5721_EuJRS20164916 crossref_primary_10_1016_j_jag_2021_102640 crossref_primary_10_1016_j_quascirev_2020_106712 crossref_primary_10_1016_j_agrformet_2019_107845 crossref_primary_10_1016_j_ecolind_2022_108629 crossref_primary_10_3389_feart_2022_953805 crossref_primary_10_3390_f14030590 crossref_primary_10_1038_s43017_019_0001_x crossref_primary_10_1002_2017JG004025 crossref_primary_10_1007_s12524_013_0337_5 crossref_primary_10_1016_j_scitotenv_2021_152309 crossref_primary_10_1016_j_quaint_2019_03_010 crossref_primary_10_1016_j_agrformet_2024_110134 crossref_primary_10_1002_2015JD023969 crossref_primary_10_1016_j_rse_2015_04_030 crossref_primary_10_1016_j_jtherbio_2018_10_003 crossref_primary_10_3390_rs15102559 crossref_primary_10_1007_s00442_014_3055_y crossref_primary_10_1007_s00704_018_2437_1 crossref_primary_10_1016_j_jhydrol_2024_130763 crossref_primary_10_1016_j_agrformet_2021_108489 crossref_primary_10_1016_j_earscirev_2018_06_010 crossref_primary_10_1016_j_jenvman_2023_119131 crossref_primary_10_1016_j_scitotenv_2020_138380 crossref_primary_10_1016_j_srs_2021_100030 crossref_primary_10_1002_ece3_5408 crossref_primary_10_1016_j_agwat_2021_107077 crossref_primary_10_1093_jpe_rty051 crossref_primary_10_1134_S1995425523060070 crossref_primary_10_1016_j_agrformet_2021_108492 crossref_primary_10_1016_j_foreco_2023_121677 crossref_primary_10_1111_ibi_12953 crossref_primary_10_1002_2013JG002565 crossref_primary_10_1002_2017JG004117 crossref_primary_10_1016_j_ecolind_2020_106161 crossref_primary_10_1016_j_scitotenv_2022_156018 crossref_primary_10_1007_s13143_021_00251_4 crossref_primary_10_1016_j_scitotenv_2023_166051 crossref_primary_10_1111_gcb_12778 crossref_primary_10_1007_s10021_021_00663_3 crossref_primary_10_1002_joc_6400 crossref_primary_10_1088_1748_9326_8_4_045030 crossref_primary_10_1088_1748_9326_aae9ad crossref_primary_10_1016_j_agrformet_2020_108077 crossref_primary_10_1016_j_agrformet_2014_01_003 crossref_primary_10_1002_joc_4227 crossref_primary_10_1016_j_agrformet_2014_01_004 crossref_primary_10_1038_s41598_020_74563_2 crossref_primary_10_1111_gcb_13749 crossref_primary_10_3390_f12030282 crossref_primary_10_3390_rs6021057 crossref_primary_10_1016_j_foreco_2021_119402 crossref_primary_10_1016_j_agrformet_2019_107832 crossref_primary_10_1117_1_JRS_15_028502 crossref_primary_10_3390_rs70911914 crossref_primary_10_3390_f13050654 crossref_primary_10_3390_rs5084031 crossref_primary_10_3390_rs10091433 crossref_primary_10_1016_j_agrformet_2015_10_015 crossref_primary_10_1111_gcb_12206 crossref_primary_10_3390_rs14030705 crossref_primary_10_1016_j_scitotenv_2018_05_031 crossref_primary_10_1038_nplants_2016_133 crossref_primary_10_1111_gcb_14627 crossref_primary_10_1371_journal_pone_0250825 crossref_primary_10_1371_journal_pone_0174390 crossref_primary_10_1002_ldr_3117 crossref_primary_10_1007_s00484_017_1417_y crossref_primary_10_1016_j_scitotenv_2018_09_129 crossref_primary_10_3390_rs13204063 crossref_primary_10_1016_j_gecco_2020_e01140 crossref_primary_10_1016_j_jhydrol_2023_130228 crossref_primary_10_3390_rs5104819 crossref_primary_10_3398_064_076_0202 crossref_primary_10_1111_ppl_13812 crossref_primary_10_5194_bg_9_2063_2012 crossref_primary_10_3390_rs11151746 crossref_primary_10_1007_s00484_021_02215_9 crossref_primary_10_1016_j_baae_2015_11_005 crossref_primary_10_1007_s13280_016_0864_8 crossref_primary_10_1038_s41598_020_74804_4 crossref_primary_10_1111_gcb_12556 crossref_primary_10_1002_eap_2288 crossref_primary_10_1007_s00704_019_02868_y crossref_primary_10_1111_gcb_13646 crossref_primary_10_1007_s00376_014_4125_0 crossref_primary_10_1111_gcb_12310 crossref_primary_10_1093_forsci_fxab040 crossref_primary_10_5194_esd_8_627_2017 crossref_primary_10_1029_2019JG005137 crossref_primary_10_1111_nph_16389 crossref_primary_10_1016_j_ecolind_2021_107674 crossref_primary_10_1093_nsr_nwy158 crossref_primary_10_1111_gcb_14619 crossref_primary_10_3390_rs14153584 crossref_primary_10_1080_10106049_2016_1222633 crossref_primary_10_1016_j_agrformet_2015_08_246 crossref_primary_10_1093_aob_mcv169 crossref_primary_10_5194_bg_16_1265_2019 crossref_primary_10_1016_j_rse_2020_111956 crossref_primary_10_1111_2041_210X_13025 crossref_primary_10_3390_su11092618 crossref_primary_10_1002_eco_1870 crossref_primary_10_1016_j_agrformet_2016_06_010 crossref_primary_10_1016_j_jhydrol_2021_126584 crossref_primary_10_1111_gcb_14369 crossref_primary_10_1016_j_atmosres_2023_106745 crossref_primary_10_1657_1938_4246_46_1_19 crossref_primary_10_1890_ES15_00070_1 crossref_primary_10_1016_j_jag_2017_01_008 crossref_primary_10_1016_j_scitotenv_2021_145039 crossref_primary_10_1016_j_agrformet_2020_107910 crossref_primary_10_3390_land11020283 crossref_primary_10_5194_amt_16_3299_2023 crossref_primary_10_1111_een_13211 crossref_primary_10_3390_rs11182107 crossref_primary_10_1016_j_gloplacha_2020_103175 crossref_primary_10_1016_j_scitotenv_2020_138342 crossref_primary_10_3389_fpls_2020_01099 crossref_primary_10_3390_rs8030207 crossref_primary_10_1016_j_rse_2019_111542 crossref_primary_10_3390_rs13020307 crossref_primary_10_1007_s00484_023_02465_9 crossref_primary_10_3390_rs15051245 crossref_primary_10_1002_wea_2715 crossref_primary_10_1016_j_rse_2022_113060 crossref_primary_10_3390_rs11242976 crossref_primary_10_1016_j_agrformet_2019_04_011 crossref_primary_10_1007_s00484_017_1321_5 crossref_primary_10_1088_1748_9326_aaa17b crossref_primary_10_1016_j_rse_2019_111307 crossref_primary_10_3390_rs11040426 crossref_primary_10_1029_2018JG004443 crossref_primary_10_5194_bg_12_3885_2015 crossref_primary_10_3390_su8111146 crossref_primary_10_1016_j_ecolind_2022_108684 crossref_primary_10_1016_j_agrformet_2024_109888 crossref_primary_10_1007_s11258_020_01104_2 crossref_primary_10_1016_j_agrformet_2023_109388 crossref_primary_10_1016_j_agrformet_2023_109389 crossref_primary_10_1007_s12665_015_4818_4 crossref_primary_10_1016_j_jag_2018_03_006 crossref_primary_10_1016_j_jhydrol_2024_131547 crossref_primary_10_3390_land13030399 crossref_primary_10_1016_j_rse_2018_08_012 crossref_primary_10_1080_23754931_2022_2081815 crossref_primary_10_1016_j_scitotenv_2021_152805 crossref_primary_10_1111_gcb_15322 crossref_primary_10_1175_JCLI_D_11_00224_1 crossref_primary_10_1016_j_rse_2020_111698 crossref_primary_10_1016_j_jhydrol_2022_128817 crossref_primary_10_3390_rs12101546 crossref_primary_10_1016_j_atmosenv_2013_04_051 crossref_primary_10_1016_j_agrformet_2012_09_001 crossref_primary_10_1007_s11769_019_1070_y crossref_primary_10_1029_2018MS001541 crossref_primary_10_3389_fpls_2021_716071 crossref_primary_10_3390_rs9050485 crossref_primary_10_1016_j_ecolind_2022_108579 crossref_primary_10_1007_s10980_020_01022_8 crossref_primary_10_1016_j_ejrh_2023_101630 crossref_primary_10_3390_agronomy13071768 crossref_primary_10_1007_s00376_012_2173_x crossref_primary_10_1016_j_jag_2019_05_009 crossref_primary_10_2139_ssrn_4183361 crossref_primary_10_1016_j_agrformet_2019_107682 crossref_primary_10_1016_j_rse_2012_04_001 crossref_primary_10_1038_s41612_023_00343_0 crossref_primary_10_1360_SSV_2021_0303 crossref_primary_10_5194_se_6_1185_2015 crossref_primary_10_1002_ecs2_4694 crossref_primary_10_1038_s41467_019_10235_8 crossref_primary_10_3390_rs14030475 crossref_primary_10_1007_s11629_016_4115_z crossref_primary_10_1111_gcb_12086 crossref_primary_10_1111_gcb_14021 crossref_primary_10_1016_j_agrformet_2011_07_003 crossref_primary_10_5194_bg_12_7185_2015 crossref_primary_10_1007_s12665_016_5385_z crossref_primary_10_1016_j_ecolind_2012_11_010 crossref_primary_10_1016_j_agrformet_2012_09_012 crossref_primary_10_1080_24749508_2019_1633219 crossref_primary_10_1016_j_ecolind_2021_108042 crossref_primary_10_1111_gcb_13168 crossref_primary_10_3390_rs13051044 crossref_primary_10_5194_bg_15_1795_2018 crossref_primary_10_1086_714270 crossref_primary_10_3390_f14071415 crossref_primary_10_1038_s41612_024_00650_0 crossref_primary_10_1016_j_scitotenv_2021_148578 crossref_primary_10_1016_j_foreco_2021_119594 crossref_primary_10_1038_nclimate2253 crossref_primary_10_1002_gbc_20017 crossref_primary_10_1007_s13280_020_01359_z crossref_primary_10_3390_f9070377 crossref_primary_10_1016_j_agrformet_2023_109495 crossref_primary_10_1111_1365_2745_14164 crossref_primary_10_1016_j_scitotenv_2023_165650 crossref_primary_10_1080_01431161_2018_1482021 crossref_primary_10_1111_gcb_14496 crossref_primary_10_1371_journal_pone_0201951 crossref_primary_10_1038_s41598_019_44188_1 crossref_primary_10_1080_17445647_2020_1758808 crossref_primary_10_3389_fpls_2019_01413 crossref_primary_10_1007_s11442_023_2073_2 crossref_primary_10_1111_gcb_15586 crossref_primary_10_1002_eco_2125 crossref_primary_10_1111_gcb_12077 crossref_primary_10_1002_joc_6351 crossref_primary_10_3389_fpls_2022_1071858 crossref_primary_10_1016_j_scitotenv_2024_171088 crossref_primary_10_1111_nph_12892 crossref_primary_10_3390_f13091362 crossref_primary_10_3390_rs15030737 crossref_primary_10_3390_su14052776 crossref_primary_10_3390_rs14061396 crossref_primary_10_1007_s00376_022_1426_6 crossref_primary_10_1093_nsr_nwv058 crossref_primary_10_1038_s41558_020_0806_0 crossref_primary_10_1139_cjfr_2017_0259 crossref_primary_10_1371_journal_pone_0088178 crossref_primary_10_3390_su9040551 crossref_primary_10_1016_j_jag_2022_102747 crossref_primary_10_3390_plants11212971 crossref_primary_10_1007_s00382_023_06739_1 crossref_primary_10_1029_2018JG004881 crossref_primary_10_1007_s00704_018_2527_0 crossref_primary_10_3389_ffgc_2023_1172220 crossref_primary_10_1111_1365_2435_14307 crossref_primary_10_1111_gcb_13224 crossref_primary_10_3390_rs14030517 crossref_primary_10_1007_s00484_015_1049_z crossref_primary_10_1016_j_rse_2021_112604 crossref_primary_10_1002_joc_8309 crossref_primary_10_1007_s13595_018_0763_1 crossref_primary_10_1007_s00484_016_1236_6 crossref_primary_10_7717_peerj_10650 crossref_primary_10_1109_TGRS_2013_2247611 crossref_primary_10_1088_1748_9326_ab9466 crossref_primary_10_1038_s41558_022_01353_1 crossref_primary_10_3390_rs12203383 crossref_primary_10_1016_j_agrformet_2015_05_002 crossref_primary_10_1007_s10584_016_1704_3 crossref_primary_10_3390_rs70100360 crossref_primary_10_1371_journal_pone_0036741 crossref_primary_10_1016_j_agrformet_2017_09_021 crossref_primary_10_1016_j_scitotenv_2023_164382 crossref_primary_10_1016_j_sajb_2017_03_007 crossref_primary_10_3390_cli5020037 crossref_primary_10_1007_s00376_017_6296_y crossref_primary_10_3390_rs11192201 crossref_primary_10_34133_2021_9859103 crossref_primary_10_1016_j_rse_2021_112835 crossref_primary_10_1016_j_agrformet_2019_107639 crossref_primary_10_1007_s00484_015_1036_4 crossref_primary_10_1016_j_scitotenv_2024_170093 crossref_primary_10_1080_14498596_2023_2281926 crossref_primary_10_3390_w13091143 crossref_primary_10_1007_s13351_020_9211_x crossref_primary_10_3389_fpls_2020_01031 crossref_primary_10_1016_j_agrformet_2023_109441 crossref_primary_10_1016_j_scitotenv_2020_138323 crossref_primary_10_1016_j_agrformet_2023_109440 crossref_primary_10_3390_rs9121288 crossref_primary_10_1111_gcb_12283 crossref_primary_10_1080_01431161_2017_1378457 crossref_primary_10_1016_j_envres_2023_116643 crossref_primary_10_1016_j_agrformet_2022_109027 crossref_primary_10_1016_j_rse_2015_01_011 crossref_primary_10_1016_j_agrformet_2012_01_019 crossref_primary_10_1038_ncomms7911 crossref_primary_10_3390_rs15215101 crossref_primary_10_1016_j_agrformet_2019_107774 crossref_primary_10_3390_rs12203282 crossref_primary_10_1016_j_agrformet_2019_107896 crossref_primary_10_1029_2022JG007369 crossref_primary_10_1016_j_ecolind_2012_10_012 crossref_primary_10_1016_j_isprsjprs_2017_05_015 crossref_primary_10_1016_j_foreco_2022_120555 crossref_primary_10_1007_s00442_017_3838_z crossref_primary_10_1002_2016GL068062 crossref_primary_10_3390_rs14112542 crossref_primary_10_1007_s10342_023_01642_0 crossref_primary_10_3390_rs6054217 crossref_primary_10_1016_j_gecco_2023_e02622 crossref_primary_10_1002_ecs2_4761 crossref_primary_10_1016_j_rse_2019_111477 crossref_primary_10_1371_journal_pone_0130516 crossref_primary_10_1007_s00704_022_04141_1 crossref_primary_10_1016_j_scitotenv_2022_154306 crossref_primary_10_1016_j_catena_2021_105505 crossref_primary_10_1007_s00484_019_01679_0 crossref_primary_10_1109_ACCESS_2020_3007073 crossref_primary_10_1016_j_agrformet_2015_06_013 crossref_primary_10_1080_17538947_2017_1282547 crossref_primary_10_5194_bg_17_4443_2020 crossref_primary_10_1016_j_agrformet_2016_08_020 crossref_primary_10_14358_PERS_23_00008R2 crossref_primary_10_1088_1748_9326_ab1ac0 crossref_primary_10_3390_f15030471 crossref_primary_10_3390_rs13163298 crossref_primary_10_3390_atmos13020324 crossref_primary_10_3390_rs14236163 crossref_primary_10_1002_joc_7095 crossref_primary_10_1109_TGRS_2012_2217149 crossref_primary_10_1080_14498596_2019_1578273 crossref_primary_10_18172_cig_5739 crossref_primary_10_3390_rs16101744 crossref_primary_10_1016_j_jag_2023_103513 crossref_primary_10_1016_j_agrformet_2017_10_008 crossref_primary_10_1007_s00484_018_1610_7 crossref_primary_10_3390_rs13224538 crossref_primary_10_1016_j_scitotenv_2019_02_293 crossref_primary_10_1007_s00484_016_1190_3 crossref_primary_10_1016_j_quaint_2019_06_017 crossref_primary_10_1007_s10661_018_6519_4 crossref_primary_10_1016_j_ecoinf_2024_102667 crossref_primary_10_1002_2015JG003157 crossref_primary_10_1002_2016JD025190 crossref_primary_10_1016_j_cliser_2023_100443 crossref_primary_10_3390_su16083303 crossref_primary_10_1016_j_agrformet_2022_109008 crossref_primary_10_1016_j_foreco_2017_05_027 crossref_primary_10_5194_acp_15_11931_2015 crossref_primary_10_1038_s43247_023_00835_0 crossref_primary_10_1117_1_JRS_18_014524 crossref_primary_10_3390_rs9121277 crossref_primary_10_1111_geb_12210 crossref_primary_10_1007_s11738_017_2396_7 crossref_primary_10_1016_j_jenvman_2024_121490 crossref_primary_10_1016_j_rse_2016_11_021 crossref_primary_10_1134_S1062359020020041 crossref_primary_10_1016_j_isprsjprs_2023_07_017 crossref_primary_10_1016_j_quaint_2016_08_038 crossref_primary_10_1016_j_agrformet_2023_109638 crossref_primary_10_1111_geb_12206 crossref_primary_10_3390_rs15010072 crossref_primary_10_1371_journal_pone_0242883 crossref_primary_10_1002_2014GL061841 crossref_primary_10_1088_1748_9326_aa5b3a crossref_primary_10_3390_su10051497 crossref_primary_10_1016_j_rse_2021_112635 crossref_primary_10_1038_s41467_017_02690_y crossref_primary_10_3390_f14102055 crossref_primary_10_1029_2023JG007498 crossref_primary_10_3390_rs5083637 crossref_primary_10_1038_srep06749 crossref_primary_10_1111_gcb_12804 crossref_primary_10_1029_2022JG007315 crossref_primary_10_1088_1748_9326_abb332 crossref_primary_10_1016_j_gecco_2023_e02550 crossref_primary_10_5194_cp_18_2143_2022 crossref_primary_10_3389_fpls_2015_00120 crossref_primary_10_1016_j_rse_2016_02_010 crossref_primary_10_3390_rs14236180 crossref_primary_10_1002_ecs2_2677 crossref_primary_10_3390_rs15205058 crossref_primary_10_1088_2515_7620_ab3d79 crossref_primary_10_3390_rs6065650 crossref_primary_10_3390_rs15010187 crossref_primary_10_2139_ssrn_4022143 crossref_primary_10_1111_gcb_12919 crossref_primary_10_1007_s10584_013_0722_7 crossref_primary_10_1109_TGRS_2016_2518167 crossref_primary_10_1002_ldr_3827 crossref_primary_10_3390_rs13040669 crossref_primary_10_1016_j_ecoinf_2023_102239 crossref_primary_10_3390_rs8050433 crossref_primary_10_1038_s41598_021_97240_4 crossref_primary_10_5194_bg_13_625_2016 crossref_primary_10_1126_science_abb7772 crossref_primary_10_1016_j_isprsjprs_2023_07_021 crossref_primary_10_1016_j_rse_2016_02_020 crossref_primary_10_1371_journal_pone_0119811 crossref_primary_10_3389_fevo_2023_1240514 crossref_primary_10_1016_j_rse_2021_112456 crossref_primary_10_1002_joc_7045 crossref_primary_10_5721_EuJRS20154842 crossref_primary_10_1016_j_agrformet_2012_07_013 crossref_primary_10_1016_j_agrformet_2019_05_011 crossref_primary_10_1016_j_rse_2016_09_014 crossref_primary_10_1088_1748_9326_acf728 crossref_primary_10_3390_f11070757 crossref_primary_10_1002_ajb2_1557 crossref_primary_10_1088_1755_1315_611_1_012028 crossref_primary_10_1016_j_agrformet_2018_03_004 crossref_primary_10_1111_j_1365_2486_2011_02612_x crossref_primary_10_1007_s11356_020_09211_3 crossref_primary_10_1016_j_isprsjprs_2022_12_025 crossref_primary_10_1080_10871209_2020_1752419 crossref_primary_10_1016_j_scitotenv_2023_166607 crossref_primary_10_1007_s11430_019_9577_5 crossref_primary_10_1016_j_agrformet_2023_109734 crossref_primary_10_1016_j_gloplacha_2020_103131 crossref_primary_10_1016_j_scitotenv_2021_147806 crossref_primary_10_1002_hyp_14621 crossref_primary_10_1111_oik_06667 crossref_primary_10_1016_j_scitotenv_2023_163587 crossref_primary_10_1016_j_agrformet_2022_109100 crossref_primary_10_1016_j_agrformet_2022_109221 crossref_primary_10_1016_j_ecolind_2019_05_003 crossref_primary_10_1016_j_ecolind_2019_05_004 crossref_primary_10_1016_j_gloplacha_2021_103657 crossref_primary_10_1111_geb_13234 crossref_primary_10_1111_gcb_16104 crossref_primary_10_3390_rs11131593 crossref_primary_10_1007_s13595_016_0599_5 crossref_primary_10_1016_j_geosus_2022_10_002 crossref_primary_10_3390_agriculture12070945 crossref_primary_10_1007_s11538_018_0504_5 crossref_primary_10_3389_ffgc_2020_610162 crossref_primary_10_1016_j_agrformet_2023_109869 crossref_primary_10_3390_rs13245018 crossref_primary_10_1029_2020JG005912 crossref_primary_10_1080_02723646_2019_1672023 crossref_primary_10_1080_07038992_2018_1526064 crossref_primary_10_1016_j_agrformet_2022_109204 crossref_primary_10_1038_s41477_022_01209_8 crossref_primary_10_1007_s11442_023_2146_2 crossref_primary_10_1016_j_isprsjprs_2020_08_020 crossref_primary_10_3390_rs14215417 crossref_primary_10_3390_rs13091836 crossref_primary_10_2139_ssrn_4132881 crossref_primary_10_1016_j_agrformet_2018_05_022 crossref_primary_10_1080_15481603_2021_1969629 crossref_primary_10_3390_rs9070628 crossref_primary_10_1007_s13143_021_00247_0 crossref_primary_10_1016_j_agwat_2021_107404 crossref_primary_10_1029_2011GL049118 crossref_primary_10_3390_rs15092266 crossref_primary_10_1007_s00382_023_06935_z crossref_primary_10_1007_s00484_013_0723_2 crossref_primary_10_1111_geb_13581 crossref_primary_10_1007_s10980_020_01129_y crossref_primary_10_1016_j_ecolind_2014_11_004 crossref_primary_10_1371_journal_pone_0157134 crossref_primary_10_3389_fenvs_2021_792918 crossref_primary_10_1088_1748_9326_ac9636 crossref_primary_10_1016_j_rse_2022_112956 crossref_primary_10_3390_rs10010017 crossref_primary_10_3390_agriculture13061228 crossref_primary_10_7717_peerj_11334 crossref_primary_10_1007_s00704_017_2297_0 crossref_primary_10_1007_s00704_018_2739_3 crossref_primary_10_1002_ecy_1685 crossref_primary_10_1088_1748_9326_9_9_094007 crossref_primary_10_1080_01431161_2018_1528399 crossref_primary_10_1016_j_rse_2019_111407 crossref_primary_10_1007_s10584_012_0434_4 crossref_primary_10_5721_EuJRS20154819 crossref_primary_10_1016_j_actao_2021_103804 crossref_primary_10_1016_j_gloplacha_2020_103396 crossref_primary_10_1016_j_isprsjprs_2018_05_022 crossref_primary_10_3390_rs12233977 crossref_primary_10_1007_s41207_016_0006_5 crossref_primary_10_1007_s00049_015_0194_5 crossref_primary_10_1038_s41559_022_01946_1 crossref_primary_10_1002_ecy_3518 crossref_primary_10_1038_s41558_018_0346_z crossref_primary_10_1016_j_ecolind_2022_109239 crossref_primary_10_1088_1748_9326_ab6d39 crossref_primary_10_1016_j_foreco_2019_117679 crossref_primary_10_1002_ece3_1990 crossref_primary_10_3390_plants10071474 crossref_primary_10_1016_j_envexpbot_2014_02_007 crossref_primary_10_1016_j_agrformet_2011_06_016 crossref_primary_10_1111_gcb_13081 crossref_primary_10_1016_j_scitotenv_2023_164522 crossref_primary_10_3390_rs15082205 crossref_primary_10_1088_1748_9326_8_1_014008 crossref_primary_10_1016_j_rse_2013_11_020 crossref_primary_10_1111_1365_2435_12309 crossref_primary_10_3390_rs5126159 crossref_primary_10_5194_bg_12_4693_2015 crossref_primary_10_1016_j_jhydrol_2018_08_012 crossref_primary_10_3390_atmos11121364 crossref_primary_10_1016_j_agrformet_2019_01_038 crossref_primary_10_1111_gcb_13954 crossref_primary_10_1016_j_isprsjprs_2020_11_019 crossref_primary_10_1111_gcb_12625 crossref_primary_10_3390_land12091692 crossref_primary_10_34133_remotesensing_0085 crossref_primary_10_5194_bg_17_3563_2020 crossref_primary_10_1002_2015JG003308 crossref_primary_10_1016_j_scitotenv_2015_04_044 crossref_primary_10_1016_j_ecolind_2021_107743 crossref_primary_10_1029_2021GL096558 crossref_primary_10_1007_s00484_015_1031_9 crossref_primary_10_1007_s00382_021_05970_y crossref_primary_10_1016_j_agrformet_2012_06_009 crossref_primary_10_1016_j_jhydrol_2020_124687 crossref_primary_10_3390_insects12110985 crossref_primary_10_1016_j_scitotenv_2019_01_084 crossref_primary_10_3390_plants13121659 crossref_primary_10_1080_01431161_2014_955146 crossref_primary_10_3390_rs71013729 crossref_primary_10_1155_2015_546920 crossref_primary_10_3390_ijgi7080290 crossref_primary_10_1088_1748_9326_8_3_035036 crossref_primary_10_1016_j_eja_2022_126642 crossref_primary_10_1080_01431161_2018_1479797 crossref_primary_10_1111_gcb_13823 crossref_primary_10_1016_j_agrformet_2020_108312 crossref_primary_10_1016_j_jhydrol_2019_124538 crossref_primary_10_3390_rs15153830 crossref_primary_10_1111_geb_13269 crossref_primary_10_1007_s10113_015_0881_3 crossref_primary_10_1111_gcb_12852 crossref_primary_10_1016_j_jag_2023_103590 crossref_primary_10_1038_s41559_019_0931_1 crossref_primary_10_1111_j_1744_7909_2012_01167_x crossref_primary_10_1155_2019_2706803 crossref_primary_10_1007_s40725_015_0009_5 crossref_primary_10_5194_bg_18_2405_2021 crossref_primary_10_1029_2023JG007689 crossref_primary_10_1007_s12665_016_6148_6 crossref_primary_10_1016_j_rse_2024_114042 crossref_primary_10_1080_10106049_2022_2068677 crossref_primary_10_1016_j_ecolind_2020_106112 crossref_primary_10_3390_rs15184468 crossref_primary_10_3390_atmos11040391 crossref_primary_10_3390_rs70810973 crossref_primary_10_1080_01431161_2019_1706780 crossref_primary_10_1093_treephys_tpx136 crossref_primary_10_1016_j_rse_2021_112484 crossref_primary_10_1073_pnas_1210423110 crossref_primary_10_1088_1748_9326_abe2cf crossref_primary_10_1007_s00484_018_1640_1 crossref_primary_10_1007_s11442_015_1158_y crossref_primary_10_1016_j_oceano_2022_02_007 crossref_primary_10_1080_10106049_2020_1723716 crossref_primary_10_1007_s10584_019_02450_5 crossref_primary_10_3390_ijerph16030429 crossref_primary_10_1038_s41598_017_14918_4 crossref_primary_10_1002_joc_4311 crossref_primary_10_1016_j_ecolind_2021_107640 crossref_primary_10_1002_2017WR021970 crossref_primary_10_1002_joc_7827 crossref_primary_10_3390_s23042040 crossref_primary_10_1111_gcb_12528 crossref_primary_10_1016_j_eja_2022_126516 crossref_primary_10_1111_j_1365_3040_2012_02560_x crossref_primary_10_5194_bg_13_3305_2016 crossref_primary_10_1029_2023GB007833 crossref_primary_10_1073_pnas_2202393119 crossref_primary_10_1073_pnas_1321727111 crossref_primary_10_1080_15481603_2022_2079273 crossref_primary_10_1111_geb_12289 crossref_primary_10_1016_j_ecolind_2020_106260 crossref_primary_10_1016_j_rse_2021_112471 crossref_primary_10_3390_f10111007 crossref_primary_10_1111_gcb_13723 crossref_primary_10_1016_j_agrformet_2017_12_259 crossref_primary_10_1007_s00484_014_0877_6 crossref_primary_10_1016_j_agrformet_2021_108759 crossref_primary_10_1016_j_agrformet_2023_109809 crossref_primary_10_1016_j_agrformet_2023_109807 crossref_primary_10_1016_j_ecoinf_2014_05_009 crossref_primary_10_1007_s13595_020_00966_w crossref_primary_10_3354_cr01182 crossref_primary_10_3390_rs12040718 crossref_primary_10_1007_s12517_021_07440_5 crossref_primary_10_1360_SSV_2022_0010 crossref_primary_10_3390_f14122310 crossref_primary_10_1109_JSTARS_2018_2870329 crossref_primary_10_1016_j_ecolmodel_2024_110733 crossref_primary_10_1007_s00484_019_01843_6 crossref_primary_10_1007_s40808_022_01389_4 crossref_primary_10_1080_01431161_2021_1969056 crossref_primary_10_1134_S1062360414030023 crossref_primary_10_3390_f15071093 crossref_primary_10_1016_j_agrformet_2013_07_016 crossref_primary_10_3390_rs15092304 crossref_primary_10_3390_rs14122909 crossref_primary_10_1016_j_agrformet_2017_05_009 crossref_primary_10_1111_gcb_12945 crossref_primary_10_3389_ffgc_2023_1332734 crossref_primary_10_3390_rs8050400 crossref_primary_10_1016_j_foreco_2020_118785 crossref_primary_10_3390_f15030553 crossref_primary_10_1016_j_scitotenv_2023_161687 crossref_primary_10_1029_2020JG006167 crossref_primary_10_1080_15481603_2021_2022426 crossref_primary_10_1088_1748_9326_ab6502 crossref_primary_10_3389_fpls_2022_1052660 crossref_primary_10_1007_s11430_019_9644_8 crossref_primary_10_1007_s11769_017_0844_3 crossref_primary_10_1016_j_scitotenv_2024_172728 crossref_primary_10_1029_2021EF002553 crossref_primary_10_1038_s41559_017_0328_y crossref_primary_10_3390_rs14132964 crossref_primary_10_1016_j_gloplacha_2012_03_010 crossref_primary_10_3390_rs13020187 crossref_primary_10_1016_j_dendro_2024_126207 crossref_primary_10_1016_j_agrformet_2021_108770 crossref_primary_10_3390_rs14174402 crossref_primary_10_1007_s00704_024_04933_7 crossref_primary_10_1002_joc_6803 crossref_primary_10_1016_j_agrformet_2021_108413 crossref_primary_10_1016_j_agrformet_2017_05_007 crossref_primary_10_1016_j_isprsjprs_2019_11_027 crossref_primary_10_1016_j_tplants_2019_04_003 crossref_primary_10_1007_s11434_012_5407_5 crossref_primary_10_5194_bg_12_6985_2015 crossref_primary_10_1016_j_agrformet_2021_108780 crossref_primary_10_1016_j_scitotenv_2020_140297 crossref_primary_10_3390_f14020413 crossref_primary_10_3390_f12101315 crossref_primary_10_1016_j_agrformet_2021_108427 crossref_primary_10_1016_j_ecolind_2024_111983 crossref_primary_10_1016_j_scitotenv_2023_169023 crossref_primary_10_3390_agronomy12123208 crossref_primary_10_1016_j_scitotenv_2021_149055 crossref_primary_10_1080_15481603_2022_2163575 crossref_primary_10_1007_s10113_020_01629_2 crossref_primary_10_1371_journal_pone_0190313 crossref_primary_10_3390_rs5105193 crossref_primary_10_1111_gcb_12961 crossref_primary_10_1007_s00344_023_11140_7 crossref_primary_10_1016_j_agrformet_2020_108143 crossref_primary_10_3390_f13071099 crossref_primary_10_1016_j_agrformet_2015_01_015 crossref_primary_10_3390_rs9010065 crossref_primary_10_1016_j_foreco_2015_11_043 crossref_primary_10_1016_j_jag_2022_103148 crossref_primary_10_1016_j_scitotenv_2022_160373 crossref_primary_10_3390_rs9070695 crossref_primary_10_1016_j_geosus_2024_05_005 crossref_primary_10_1038_s42003_019_0636_7 crossref_primary_10_1088_1748_9326_11_10_105004 crossref_primary_10_1016_j_fcr_2019_03_003 crossref_primary_10_1016_j_compag_2023_108108 crossref_primary_10_1088_1748_9326_aa6ad9 crossref_primary_10_1016_j_agrformet_2022_108977 crossref_primary_10_1016_j_agrformet_2022_108979 crossref_primary_10_1007_s41064_018_0059_y crossref_primary_10_1016_j_gloplacha_2023_104181 crossref_primary_10_1016_j_agrformet_2016_11_193 crossref_primary_10_1111_gcb_12950 crossref_primary_10_1016_j_scitotenv_2023_161649 crossref_primary_10_1029_2020JG006191 crossref_primary_10_1016_j_agrformet_2021_108432 crossref_primary_10_1109_JSTARS_2020_2971098 crossref_primary_10_3354_cr01143 crossref_primary_10_1016_j_agrformet_2024_110054 crossref_primary_10_1016_j_scitotenv_2020_144437 crossref_primary_10_3390_rs12091355 crossref_primary_10_3390_rs70709390 crossref_primary_10_1029_2019GL084612 crossref_primary_10_3390_rs13173343 crossref_primary_10_1088_1748_9326_9_10_104016 crossref_primary_10_1007_s00484_019_01690_5 crossref_primary_10_1016_j_agrformet_2017_05_020 crossref_primary_10_1890_14_0005_1 crossref_primary_10_5814_j_issn_1674_764x_2017_01_007 |
ContentType | Journal Article |
Copyright | 2011 Blackwell Publishing Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2011 Blackwell Publishing Ltd – notice: 2015 INIST-CNRS |
DBID | FBQ BSCLL IQODW 7SN 7UA C1K F1W H97 L.G |
DOI | 10.1111/j.1365-2486.2011.02397.x |
DatabaseName | AGRIS Istex Pascal-Francis Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Environmental Sciences |
EISSN | 1365-2486 |
EndPage | 2399 |
ExternalDocumentID | 2363052271 24274244 GCB2397 ark_67375_WNG_K87KQ124_S US201400142921 |
Genre | article Feature |
GeographicLocations | Northern Hemisphere |
GroupedDBID | -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEFU ABEML ABHUG ABJNI ABPTK ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AHEFC AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 FBQ FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 UQL VOH W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT AAHBH AHBTC AITYG BSCLL HGLYW OIG AAPBV IQODW 7SN 7UA C1K F1W H97 L.G |
ID | FETCH-LOGICAL-c4817-b4ce8c54a9d8973f1be9eaeba3305279f2070d705554d8ac762f624dee0e4ade3 |
IEDL.DBID | 33P |
ISSN | 1354-1013 |
IngestDate | Sat Aug 17 03:41:10 EDT 2024 Thu Oct 10 17:58:26 EDT 2024 Sun Oct 22 16:09:17 EDT 2023 Sat Aug 24 00:38:09 EDT 2024 Wed Oct 30 10:05:38 EDT 2024 Wed Dec 27 19:01:16 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Dynamical climatology Climate change Vegetation index Northern Hemisphere Phenology Growing season Vegetation temperate vegetation NDVI (normalized difference vegetation index) |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4817-b4ce8c54a9d8973f1be9eaeba3305279f2070d705554d8ac762f624dee0e4ade3 |
Notes | http://dx.doi.org/10.1111/j.1365-2486.2011.02397.x istex:084F22BB3CC79D849A3EFCD2BD3BD902B7558B13 ArticleID:GCB2397 ark:/67375/WNG-K87KQ124-S ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 869436983 |
PQPubID | 30327 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_902364867 proquest_journals_869436983 pascalfrancis_primary_24274244 wiley_primary_10_1111_j_1365_2486_2011_02397_x_GCB2397 istex_primary_ark_67375_WNG_K87KQ124_S fao_agris_US201400142921 |
PublicationCentury | 2000 |
PublicationDate | July 2011 |
PublicationDateYYYYMMDD | 2011-07-01 |
PublicationDate_xml | – month: 07 year: 2011 text: July 2011 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford |
PublicationTitle | Global change biology |
PublicationYear | 2011 |
Publisher | Blackwell Publishing Ltd Wiley-Blackwell |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley-Blackwell |
References | Cane MA (2010) Climate science: decadal predictions in demand. Nature Geoscience, 3, 231-232. Cannell MGR, Smith RI (1983) Thermal time, chill days and prediction of budburst in Picea sitchensis. Journal of Applied Ecology, 20, 951-963. Prince SD, Becker-Reshef I, Rishmawi K (2009) Detection and mapping of long-term land degradation using local net production scaling: application to Zimbabwe. Remote Sensing of Environment, 113, 1046-1057. Piao SL, Fang J, Zhou L et al. (2006) Variations in satellite-derived phenology in China's temperate vegetation. Global Change Biology, 12, 672-685. de Beurs KM, Henebry GM (2008) Northern annular mode effects on the land surface phenologies of northern Eurasia. Journal of Climate, 21, 4257-4279. Ho CH, Lee EJ, Lee I, Jeong SJ (2006) Earlier spring in Seoul, Korea. International Journal of Climatology, 26, 2117-2127. Tucker CJ, Pinzon JE, Brown ME et al. (2005) An extended AVHRR 8-km NDVI data set compatible with MODIS and SPOT vegetation NDVI data. International Journal of Remote Sensing, 26, 4485-4498. Fisher JI, Richardson AD, Mustard JF (2007) Phenology model from surface meteorology does not capture satellite-based greenup estimations. Global Change Biology, 13, 707-721. Jeong SJ, Ho CH, Kim KY, Jeong JH (2009b) Reduction of spring warming over East Asia associated with vegetation feedback. Geophysical Research Letters, 36, L18705, doi: DOI: 10.1029/2009GL039114. Nemani RR, White MA, Thronton P et al. (2002) Recent trends in hydrological balance have enhanced the terrestrial carbon sink in the United States. Geophysical Research Letters, 29, 1468, doi: DOI: 10.1029/2002GL014867. Schwartz MD, Hanes JM (2010) Continental-scale phenology: warming and chilling. International Journal of Climatology, 30, 1595-1598. Linderholm HW (2006) Growing season changes in the last century. Agricultural and Forest Meteorology, 137, 1-14. Beaubien EG, Freeland HJ (2000) Spring phenology trends in Alberta, Canada: links to ocean temperature. International Journal of Biometeorology, 44, 53-59. Richardson AD, Bailey AS, Denny EG et al. (2006) Phenology of northern hardwood forest canopy. Global Change Biology, 12, 1174-1188. Karlsen SR, Tolvanen A, Kubin E et al. (2008) MODIS-NDVI-based mapping of the length of the growing season in northern Fennoscandia. International Journal of Applied Earth Observation and Geoinformation, 10, 253-266. Schwartz MD (1994) Monitoring global change with phenology: the case of the spring green wave. International Journal of Biometeorology, 38, 18-22. Sitch S, Huntingford C, Gedney N et al. (2008) Evaluation of terrestrial carbon cycle, future plant geography, and climate-carbon cycle feedback using five Dynamic Global Vegetation Models (DGVMs). Global Change Biology, 14, 2015-2039. Tucker CJ, Slayback DA, Pinzon JE et al. (2001) Higher northern latitude NDVI and growing season trends from 1982 to 1999. International Journal of Biometeorology, 45, 184-190. Wolfe DW, Schwartz MD, Lakso AN et al. (2005) Climate change and shifts in phenology of three horticultural woody perennials in northeastern USA. International Journal of Biometeorology, 49, 303-309. Lee DW, O'Keefe J, Holbrook NM et al. (2003) Pigment dynamics and autumn leaf senescence in a New England deciduous forest, eastern USA. Ecological Research, 124, 821-842. Slayback DA, Pinzon J, Los SO et al. (2003) Northern hemisphere photosynthetic trends 1982-99. Global Change Biology, 9, 1-15. Zhang X, Tarpley D, Sullivan T (2007) Diverse response of vegetation phenology to a warming climate. Geophysical Research Letters, 34, L19405, doi: DOI: 10.1029/2007GL031447. Chen X, Hu B, Yu R (2005) Spatial and temporal variation of phenological growing season and climate change impacts in temperate eastern China. Global Change Biology, 11, 1118-1130. Hunter AF, Lechowicz MJ (1992) Predicting the timing of budburst in temperate trees. Journal of Applied Ecology, 29, 597-604. Reynolds RW, Smith TM (1994) Improved global sea surface temperature analyses using optimum interpolation. Journal of Climate, 7, 929-948. Menzel A (2000) Trends in phenological phase in Europe between 1951 and 1996. International Journal of Biometeorology, 31, 179-190. Chmielewski FM, Rötzer T (2002) Annual and spatial variability of the beginning of growing season in Europe in relation to temperature changes. Climate Research, 19, 257-264. Jeong SJ, Ho CH, Kim J et al. (2011) Impact of vegetation feedback on the temperature and its diurnal range over the Northern Hemisphere during summer in a 2 × CO2 climate. Climate Dynamics, doi: DOI: 10.1029/2007GL031447. Schwartz MD, Ahas R, Aasa A (2006) Onset of spring starting earlier across the northern hemisphere. Global Change Biology, 12, 343-351. Bonan GB (2008) Forest and climate change: forcings, feedbacks, and the climate benefits of forests. Science, 320, 1444-1449. Brown ME, de Beurs KM (2010) The response of African land surface phenology to large scale climate oscillations. Remote sensing of Environment, 10, 2286-2296. Kalnay E, Kanamitsu M, Kistler R et al. (1996) The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77, 437-471. de Beurs KM, Henebry GM (2005) Land surface phenology and temperature variation in the International Geosphere-Biosphere Program high-latitude transects. Global Change Biology, 11, 779-790. Chmielewski F-M, Rötzer T (2001) Response of tree phenology to climate change across Europe. Agricultural and Forest Meteorology, 180, 101-112. McPherson RA (2007) A review of vegetation-atmosphere interactions and their influences on mesoscale phenomena. Progress in Physical Geography, 31, 261-285. Ahas R, Aasa A, Menzel A et al. (2002) Changes in European spring phenology. International Journal of Climatology, 22, 1727-1738. Jeong SJ, Ho CH, Jeong JH (2009a) Increase in vegetation greenness and decrease in spring time warming over East Asia. Geophysical Research Letters, 36, L0270, doi: DOI: 10.1029/2008GL036583. Piao SL, Friedlingstein P, Ciais P et al. (2007) Growing season extension and its effects on terrestrial carbon flux over the last two decades. Global Biogeochemical Cycles, 21, GB3018, doi: DOI: 10.1029/2006GB002888. Gong DY, Ho CH (2003) Detection of large-scale climate signals in spring vegetation index (normalized difference vegetation index) over the Northern Hemisphere. Journal of Geophysical Research, 108, 4066, doi: DOI: 10.1029/2002JD002193. Brown ME, de Beurs KM (2008) Evaluation of multi-sensor semi-arid crop season parameters based on NDVI and rainfall. Remote Sensing of Environment, 112, 2261-2271. Angert A, Biraud S, Bonfils C et al. (2005) Drier summers cancel out the CO2 uptake enhancement induced by warmer springs. Proceedings of the National Academe Science, 102, 10823-10827. Stockli R, Vidale PL (2004) European plant phenology and climate as seen in a 20-year AVHRR land-surface parameter dataset. International Journal of Remote Sensing, 25, 3303-3330. Menzel A, Fabian P (1999) Growing season extended in Europe. Nature, 397, 659. Menzel A, Estrella N, Fabian P (2001) Spatial and temporal variability of the phenological seasons in Germany from 1951 to 1996. Global Change Biology, 7, 657-666. Julien Y, Sobrino JA (2009) Global land surface phenology trends from GIMMS database. International Journal of Remote Sensing, 30, 3495-3513. Lucht W, Prentice IC, Myneni RB et al. (2002) Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science, 296, 1687-1689. Sparks TH, Croxton PJ, Collinson N et al. (2005) Examples of phenological change, past and present, in UK farming. Annals of Applied Biology, 146, 531-537. Abu-Asab MS, Peterson PM, Shetler SG, Orli SS (2001) Earlier plant flowering in spring as a response to global warming in the Washington, DC, area. Biodiversity and Conservation, 10, 597-612. Myneni RB, Keeling CD, Tucker CJ et al. (1997) Increased plant growth in the northern high latitudes from 1981-1991. Nature, 386, 698-702. Zhou L, Tucker CJ, Kaufmann RK et al. (2001) Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981-1999. Journal of Geophysical Research, 106, 20069-20083. Buermann W, Lintner BR, Koven CD et al. (2007) The changing carbon cycle at Mauna Loa observatory. Proceedings of the National Academe Science, 104, 4249-4254. Lotsch A, Friedl MA, Anderson BT et al. (2005) Response of terrestrial ecosystems to recent northern hemispheric drought. Geophysical Research Letters, 32, L06705, doi: DOI: 10.1029/2007GL031447. White MA, de Beurs KM, Didan K et al. (2009) Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982-2006. Global Change Biology, 15, 2335-2359. Reed BC, Brown JF, Vanderzee D et al. (1994) Measuring phenological variability from satellite imagery. Journal of Vegetation Science, 5, 703-714. Schaffer K, Denning AS, Leonard O (2005) The winter Arctic Oscillation, the timing of spring, and carbon fluxes in the Northern Hemisphere. Global Biogeochemical Cycles, 19, GB3017, doi: DOI: 10.1029/2004GB002336. Adler RF, Huffman GJ, Chang A et al. (2003) The version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). Journal of Hydrometeorogy, 4, 1147-1167. 2007; 104 2010; 10 2002; 19 2001; 180 2004; 25 2000; 44 2009; 113 2009a; 36 2007; 31 2005; 26 2006; 137 2001; 45 2007; 34 2001; 106 1996; 77 2000 2005; 102 2005; 146 1997; 386 2006; 26 2003; 9 1983; 20 2003; 4 2005; 32 2008; 21 1994; 38 2008; 112 2010; 3 2007; 21 2003; 124 2010; 30 2009; 15 2001; 10 2002; 296 2006; 12 2011 2008; 14 2009 2008; 10 2008; 320 2005; 49 2007; 13 2003; 108 2009; 30 2005; 19 2009b; 36 2002; 29 2001; 7 2002; 22 2000; 31 1992; 29 1999; 397 2005; 11 1994; 5 1994; 7 |
References_xml | – volume: 21 start-page: GB3018 year: 2007 article-title: Growing season extension and its effects on terrestrial carbon flux over the last two decades publication-title: Global Biogeochemical Cycles – volume: 12 start-page: 1174 year: 2006 end-page: 1188 article-title: Phenology of northern hardwood forest canopy publication-title: Global Change Biology – volume: 7 start-page: 657 year: 2001 end-page: 666 article-title: Spatial and temporal variability of the phenological seasons in Germany from 1951 to 1996 publication-title: Global Change Biology – volume: 77 start-page: 437 year: 1996 end-page: 471 article-title: The NCEP/NCAR 40‐year reanalysis project publication-title: Bulletin of the American Meteorological Society – volume: 137 start-page: 1 year: 2006 end-page: 14 article-title: Growing season changes in the last century publication-title: Agricultural and Forest Meteorology – volume: 146 start-page: 531 year: 2005 end-page: 537 article-title: Examples of phenological change, past and present, in UK farming publication-title: Annals of Applied Biology – volume: 19 start-page: 257 year: 2002 end-page: 264 article-title: Annual and spatial variability of the beginning of growing season in Europe in relation to temperature changes publication-title: Climate Research – year: 2011 article-title: Impact of vegetation feedback on the temperature and its diurnal range over the Northern Hemisphere during summer in a 2 × CO climate publication-title: Climate Dynamics – volume: 36 start-page: L0270 year: 2009a article-title: Increase in vegetation greenness and decrease in spring time warming over East Asia publication-title: Geophysical Research Letters – volume: 104 start-page: 4249 year: 2007 end-page: 4254 article-title: The changing carbon cycle at Mauna Loa observatory publication-title: Proceedings of the National Academe Science – volume: 21 start-page: 4257 year: 2008 end-page: 4279 article-title: Northern annular mode effects on the land surface phenologies of northern Eurasia publication-title: Journal of Climate – volume: 386 start-page: 698 year: 1997 end-page: 702 article-title: Increased plant growth in the northern high latitudes from 1981–1991 publication-title: Nature – volume: 26 start-page: 4485 year: 2005 end-page: 4498 article-title: An extended AVHRR 8‐km NDVI data set compatible with MODIS and SPOT vegetation NDVI data publication-title: International Journal of Remote Sensing – start-page: 200 year: 2000 end-page: 201 – volume: 112 start-page: 2261 year: 2008 end-page: 2271 article-title: Evaluation of multi‐sensor semi‐arid crop season parameters based on NDVI and rainfall publication-title: Remote Sensing of Environment – volume: 10 start-page: 2286 year: 2010 end-page: 2296 article-title: The response of African land surface phenology to large scale climate oscillations publication-title: Remote sensing of Environment – volume: 10 start-page: 253 year: 2008 end-page: 266 article-title: MODIS‐NDVI‐based mapping of the length of the growing season in northern Fennoscandia publication-title: International Journal of Applied Earth Observation and Geoinformation – volume: 3 start-page: 231 year: 2010 end-page: 232 article-title: Climate science: decadal predictions in demand publication-title: Nature Geoscience – volume: 31 start-page: 179 year: 2000 end-page: 190 article-title: Trends in phenological phase in Europe between 1951 and 1996 publication-title: International Journal of Biometeorology – volume: 49 start-page: 303 year: 2005 end-page: 309 article-title: Climate change and shifts in phenology of three horticultural woody perennials in northeastern USA publication-title: International Journal of Biometeorology – volume: 36 start-page: L18705 year: 2009b article-title: Reduction of spring warming over East Asia associated with vegetation feedback publication-title: Geophysical Research Letters – volume: 26 start-page: 2117 year: 2006 end-page: 2127 article-title: Earlier spring in Seoul, Korea publication-title: International Journal of Climatology – volume: 30 start-page: 1595 year: 2010 end-page: 1598 article-title: Continental‐scale phenology publication-title: International Journal of Climatology – volume: 11 start-page: 1118 year: 2005 end-page: 1130 article-title: Spatial and temporal variation of phenological growing season and climate change impacts in temperate eastern China publication-title: Global Change Biology – volume: 296 start-page: 1687 year: 2002 end-page: 1689 article-title: Climatic control of the high‐latitude vegetation greening trend and Pinatubo effect publication-title: Science – volume: 22 start-page: 1727 year: 2002 end-page: 1738 article-title: Changes in European spring phenology publication-title: International Journal of Climatology – volume: 38 start-page: 18 year: 1994 end-page: 22 article-title: Monitoring global change with phenology publication-title: International Journal of Biometeorology – volume: 320 start-page: 1444 year: 2008 end-page: 1449 article-title: Forest and climate change publication-title: Science – volume: 4 start-page: 1147 year: 2003 end-page: 1167 article-title: The version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present) publication-title: Journal of Hydrometeorogy – volume: 12 start-page: 672 year: 2006 end-page: 685 article-title: Variations in satellite‐derived phenology in China's temperate vegetation publication-title: Global Change Biology – volume: 30 start-page: 3495 year: 2009 end-page: 3513 article-title: Global land surface phenology trends from GIMMS database publication-title: International Journal of Remote Sensing – volume: 15 start-page: 2335 year: 2009 end-page: 2359 article-title: Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006 publication-title: Global Change Biology – volume: 14 start-page: 2015 year: 2008 end-page: 2039 article-title: Evaluation of terrestrial carbon cycle, future plant geography, and climate‐carbon cycle feedback using five Dynamic Global Vegetation Models (DGVMs) publication-title: Global Change Biology – volume: 19 start-page: GB3017 year: 2005 article-title: The winter Arctic Oscillation, the timing of spring, and carbon fluxes in the Northern Hemisphere publication-title: Global Biogeochemical Cycles – volume: 10 start-page: 597 year: 2001 end-page: 612 article-title: Earlier plant flowering in spring as a response to global warming in the Washington, DC, area publication-title: Biodiversity and Conservation – volume: 32 year: 2005 article-title: Response of terrestrial ecosystems to recent northern hemispheric drought publication-title: Geophysical Research Letters – volume: 113 start-page: 1046 year: 2009 end-page: 1057 article-title: Detection and mapping of long‐term land degradation using local net production scaling: application to Zimbabwe publication-title: Remote Sensing of Environment – volume: 180 start-page: 101 year: 2001 end-page: 112 article-title: Response of tree phenology to climate change across Europe publication-title: Agricultural and Forest Meteorology – volume: 9 start-page: 1 year: 2003 end-page: 15 article-title: Northern hemisphere photosynthetic trends 1982–99 publication-title: Global Change Biology – volume: 106 start-page: 20069 year: 2001 end-page: 20083 article-title: Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981–1999 publication-title: Journal of Geophysical Research – volume: 29 start-page: 1468 year: 2002 article-title: Recent trends in hydrological balance have enhanced the terrestrial carbon sink in the United States publication-title: Geophysical Research Letters – volume: 397 start-page: 659 year: 1999 article-title: Growing season extended in Europe publication-title: Nature – volume: 29 start-page: 597 year: 1992 end-page: 604 article-title: Predicting the timing of budburst in temperate trees publication-title: Journal of Applied Ecology – volume: 13 start-page: 707 year: 2007 end-page: 721 article-title: Phenology model from surface meteorology does not capture satellite‐based greenup estimations publication-title: Global Change Biology – volume: 124 start-page: 821 year: 2003 end-page: 842 article-title: Pigment dynamics and autumn leaf senescence in a New England deciduous forest, eastern USA publication-title: Ecological Research – volume: 44 start-page: 53 year: 2000 end-page: 59 article-title: Spring phenology trends in Alberta, Canada publication-title: International Journal of Biometeorology – volume: 11 start-page: 779 year: 2005 end-page: 790 article-title: Land surface phenology and temperature variation in the International Geosphere‐Biosphere Program high‐latitude transects publication-title: Global Change Biology – volume: 7 start-page: 929 year: 1994 end-page: 948 article-title: Improved global sea surface temperature analyses using optimum interpolation publication-title: Journal of Climate – volume: 5 start-page: 703 year: 1994 end-page: 714 article-title: Measuring phenological variability from satellite imagery publication-title: Journal of Vegetation Science – volume: 34 start-page: L19405 year: 2007 article-title: Diverse response of vegetation phenology to a warming climate publication-title: Geophysical Research Letters – volume: 108 start-page: 4066 year: 2003 article-title: Detection of large‐scale climate signals in spring vegetation index (normalized difference vegetation index) over the Northern Hemisphere publication-title: Journal of Geophysical Research – volume: 12 start-page: 343 year: 2006 end-page: 351 article-title: Onset of spring starting earlier across the northern hemisphere publication-title: Global Change Biology – volume: 31 start-page: 261 year: 2007 end-page: 285 article-title: A review of vegetation‐atmosphere interactions and their influences on mesoscale phenomena publication-title: Progress in Physical Geography – start-page: 1 year: 2009 end-page: 164 – volume: 25 start-page: 3303 year: 2004 end-page: 3330 article-title: European plant phenology and climate as seen in a 20‐year AVHRR land‐surface parameter dataset publication-title: International Journal of Remote Sensing – volume: 102 start-page: 10823 year: 2005 end-page: 10827 article-title: Drier summers cancel out the CO uptake enhancement induced by warmer springs publication-title: Proceedings of the National Academe Science – volume: 20 start-page: 951 year: 1983 end-page: 963 article-title: Thermal time, chill days and prediction of budburst in publication-title: Journal of Applied Ecology – volume: 45 start-page: 184 year: 2001 end-page: 190 article-title: Higher northern latitude NDVI and growing season trends from 1982 to 1999 publication-title: International Journal of Biometeorology |
SSID | ssj0003206 |
Score | 2.6146832 |
Snippet | Changes in vegetative growing seasons are dominant indicators of the dynamic response of ecosystems to climate change. Therefore, knowledge of growing seasons... Abstract Changes in vegetative growing seasons are dominant indicators of the dynamic response of ecosystems to climate change. Therefore, knowledge of growing... |
SourceID | proquest pascalfrancis wiley istex fao |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2385 |
SubjectTerms | Animal and plant ecology Animal, plant and microbial ecology autumn Biological and medical sciences Climate change Climatology. Bioclimatology. Climate change Earth, ocean, space ecosystems Exact sciences and technology External geophysics Fundamental and applied biological sciences. Psychology General aspects Global warming growing season Indexing in process leaves Meteorology NDVI (normalized difference vegetation index) Northern Hemisphere phenology Saissetia coffeae senescence temperate vegetation temperature Terrestrial ecosystems Vegetation |
Title | Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982-2008 |
URI | https://api.istex.fr/ark:/67375/WNG-K87KQ124-S/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2486.2011.02397.x https://www.proquest.com/docview/869436983 https://search.proquest.com/docview/902364867 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgEhIXPhaqhkLlA-ptq8Z2YvsIy7YrKqqipYKb5cT2dlWUoGS3lBsSP4F_yC9hxklDV-KEOGSVVRJLscdvnp2ZN4S8DEWaWx7EuBDwIwppx7rgbMzKwzIPmculwGzk2VyeflJvpiiT8_YmF6bThxg23HBmRLzGCW6LdnOSxwgtofJeiZOBbz1APgmLhpjNwc8GUOYsltlMeSYAeVK-GdTz14bA2wRbA2nF_r7GoEnbQr-FruDFBiO9zWujYzp6-D9f6RF50NNT-qqzp8fkjq9G5F5XsPLbiGxP_-TFwW09MLQjkrwD8l038Ta6Tyefl8CE478n5MfZhe9272l7sQyrltoVBVLarOhVe0B95Wgd6KKpv4IbpbhpWVd0WVFUzULJZ0-v_KKPiqQYcUqBtNL4wck3FZ1hxToUR_AUCHi8hurNtaOpVuzX958Ye_GUnB9NP0xm4772w7gUChxnIUqvykxY7ZSWPKSF1976wnIAKCZ1YIBVDqWAMuGULQHTQ86E8_7QC-s83yZbVV35HRhnl2XWautKaM97DqYpVWmlBipTcp8lZAfG2dgFoKo5nzNcc8LBNEsTsh8H33zppD-MbS4xEk5m5uPpsTlR8uQ9ECQzT8jehnUMDwADkphLmJDdG3MxPUq0RuVa8FwrnhA6XIU-w282tvL1ujU6KvyrXCYkj6YztHxr9QZGY9BoDBqNiUZjrs3x5DWePfvXB3fJ_W4DHWOTn5OtVbP2L8jd1q334tz6DdsQIgI |
link.rule.ids | 315,782,786,1408,27935,27936,46066,46490 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Bb9MwFLZgCMFlQGFaNhg-oN06LbYT20co3Yq6VUPdBDfLiZ2uAiUoace4IfET-If8Et5zsrJKnBCHRImSWIr9_L0vL8_fI-RVkcWp5YXoZwJ2IpO2rzPO-iw_zNMicakUuBp5NJWTj-rtEGVyxjdrYVp9iFXADWdGwGuc4BiQXp_lIUVLqLST4mTgXA-AUN4TqdBYx4HzsxUscxYKbcY8EYA9MV9P6_lrS-BvClsBbcUev8a0SdtAzxVtyYs1Tnqb2QbXdPTov77UY7LZMVT6ujWpJ-SOL3vkfluz8luPbA3_LI2D2zpsaHokOgX-XdXhNrpPB5_nQIbD2VPy4-zStwF82lzOi0VD7YICL60X9Ko5oL50tCrorK6-gielGLesSjovKQpnoeqzp1d-1iVGUkw6pcBbafjn5OuSjrBoHeojeAocPFxDAefK0Vgr9uv7T0y_eEYujobng1G_K__Qz4UC35mJ3Ks8EVY7pSUv4sxrb31mOWAUk7pgAFcO1YAS4ZTNAdaLlAnn_aEX1nm-RTbKqvTbMNAuSazV1uXQnvccrFOq3EoNbCbnPonINgy0sTMAVnMxZfjZCRvTLI7Ifhh986VV_zC2_oTJcDIxHybHZqzk-D1wJDONyN6aeaweABIkcTlhRHZv7MV0QNEYlWrBU614ROjqKvQZ_raxpa-WjdFB5F-lMiJpsJ1Vy7c-4MBoDBqNQaMxwWjMtTkevMGjnX998CV5MDo_PTEn7ybjXfKwjadjqvJzsrGol_4Fudu45V6YaL8BFGYmIw |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLZgCMSFH4VpYTB8QLt1WmInto_QtSsMqqIywc1yYrurQMmUtGPckPgT-A_5S3jPycoqcUIcEiVKYin28_e-OO99j5AXPo8zwzzv5xx2PBemr3KW9JPisMh8ajPBMRt5PBOTT_JoiDI5b65yYVp9iPWCG86MgNc4wc-t35zkIUKLy6xT4kzAtx4An7zFkZVjOgebrlGZJaHOZsxSDtATs82onr-2BO7GmwpYK3b4JUZNmgY6zrcVLzYo6XViGzzT6P7_fKcH5F7HT-nL1qAekhuu7JHbbcXKbz2yPfyTGAe3dcjQ9Ej0Dth3VYfb6D4dfFkAFQ5nj8iP6Zlrl-9pc7bwy4aaJQVWWi_pRXNAXWlp5em8rr6CH6W4almVdFFSlM1CzWdHL9y8C4ukGHJKgbXS8MfJ1SUdY8k6VEdwFBh4uIbyzZWlsZLJr-8_MfjiMTkdDT8Mxv2u-EO_4BI8Z84LJ4uUG2WlEszHuVPOuNwwQKhEKJ8AWFnUAkq5laYAUPdZwq1zh44b69g22Sqr0u3AONs0NUYZW0B7zjGwTSELIxRwmYK5NCI7MM7azAFW9ekswY9O2BKVxBHZD4Ovz1vtD23qzxgKJ1L9cXKsT6Q4eQ8MSc8isrdhHesHgAIJTCaMyO6VuegOJhotM8VZpiSLCF1fhT7DnzamdNWq0SpI_MtMRCQLprNu-drnGxiNRqPRaDQ6GI2-1MeDV3j05F8ffE7uTI9G-u3ryckuudsupmOc8lOytaxX7hm52djVXphmvwFwOSTS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phenology+shifts+at+start+vs.+end+of+growing+season+in+temperate+vegetation+over+the+Northern+Hemisphere+for+the+period+1982%E2%80%932008&rft.jtitle=Global+change+biology&rft.au=JEONG%2C+SU%E2%80%90JONG&rft.au=HO%2C+CHANG%E2%80%90HOI&rft.au=GIM%2C+HYEON%E2%80%90JU&rft.au=BROWN%2C+MOLLY+E.&rft.date=2011-07-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=17&rft.issue=7&rft.spage=2385&rft.epage=2399&rft_id=info:doi/10.1111%2Fj.1365-2486.2011.02397.x&rft.externalDBID=10.1111%252Fj.1365-2486.2011.02397.x&rft.externalDocID=GCB2397 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon |