Shifts in the vascular endothelial growth factor isoforms result in transcriptome changes correlated with early neural stem cell proliferation and differentiation in mouse forebrain
ABSTRACT Regulation of neural stem cell (NSC) fate decisions is critical during the transition from a multicellular mammalian forebrain neuroepithelium to the multilayered neocortex. Forebrain development requires coordinated vascular investment alongside NSC differentiation. Vascular endothelial gr...
Saved in:
Published in: | Developmental neurobiology (Hoboken, N.J.) Vol. 74; no. 1; pp. 63 - 81 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Wiley Subscription Services, Inc
01-01-2014
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | ABSTRACT
Regulation of neural stem cell (NSC) fate decisions is critical during the transition from a multicellular mammalian forebrain neuroepithelium to the multilayered neocortex. Forebrain development requires coordinated vascular investment alongside NSC differentiation. Vascular endothelial growth factor A (Vegf) has proven to be a pleiotrophic gene whose multiple protein isoforms regulate a broad range of effects in neurovascular systems. To test the hypothesis that the Vegf isoforms (120, 164, and 188) are required for normal forebrain development, we analyzed the forebrain transcriptome of mice expressing specific Vegf isoforms, Vegf120, VegfF188, or a combination of Vegf120/188. Transcriptome analysis identified differentially expressed genes in embryonic day (E) 9.5 forebrain, a time point preceding dramatic neuroepithelial expansion and vascular investment in the telencephalon. Meta‐analysis identified gene pathways linked to chromosome‐level modifications, cell fate regulation, and neurogenesis that were altered in Vegf isoform mice. Based on these gene network shifts, we predicted that NSC populations would be affected in later stages of forebrain development. In the E11.5 telencephalon, we quantified mitotic cells [Phospho‐Histone H3 (pHH3)‐positive] and intermediate progenitor cells (Tbr2/Eomes‐positive), observing quantitative and qualitative shifts in these populations. We observed qualitative shifts in cortical layering at P0, particularly with Ctip2‐positive cells in layer V. The results identify a suite of genes and functional gene networks that can be used to further dissect the role of Vegf in regulating NSC differentiation and downstream consequences for NSC fate decisions. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 74: 63–81, 2014 |
---|---|
AbstractList | Regulation of neural stem cell (NSC) fate decisions is critical during the transition from a multicellular mammalian forebrain neuroepithelium to the multi-layered neocortex. Forebrain development requires coordinated vascular investment alongside NSC differentiation. Vascular endothelial growth factor A (Vegf) has proven to be a pleiotrophic gene whose multiple protein isoforms regulate a broad range of effects in neurovascular systems. To test the hypothesis that the Vegf isoforms (120, 164, and 188) are required for normal forebrain development, we analyzed the forebrain transcriptome of mice expressing specific Vegf isoforms, Vegf120, VegfF188, or a combination of Vegf120/188. Transcriptome analysis identified differentially expressed genes in embryonic day (E) 9.5 forebrain, a time point preceding dramatic neuroepithelial expansion and vascular investment in the telencephalon. Meta-analysis identified gene pathways linked to chromosome-level modifications, cell fate regulation, and neurogenesis that were altered in Vegf isoform mice. Based on these gene network shifts, we predicted that NSC populations would be affected in later stages of forebrain development. In the E11.5 telencephalon, we quantified mitotic cells [Phospho-Histone H3 (pHH3)-positive] and intermediate progenitor cells (Tbr2/Eomes-positive), observing quantitative and qualitative shifts in these populations. We observed qualitative shifts in cortical layering at P0, particularly with Ctip2-positive cells in layer V. The results identify a suite of genes and functional gene networks that can be used to further dissect the role of Vegf in regulating NSC differentiation and downstream consequences for NSC fate decisions. Regulation of neural stem cell (NSC) fate decisions is critical during the transition from a multicellular mammalian forebrain neuroepithelium to the multilayered neocortex. Forebrain development requires coordinated vascular investment alongside NSC differentiation. Vascular endothelial growth factor A (Vegf) has proven to be a pleiotrophic gene whose multiple protein isoforms regulate a broad range of effects in neurovascular systems. To test the hypothesis that the Vegf isoforms (120, 164, and 188) are required for normal forebrain development, we analyzed the forebrain transcriptome of mice expressing specific Vegf isoforms, Vegf120, VegfF188, or a combination of Vegf120/188. Transcriptome analysis identified differentially expressed genes in embryonic day (E) 9.5 forebrain, a time point preceding dramatic neuroepithelial expansion and vascular investment in the telencephalon. Meta‐analysis identified gene pathways linked to chromosome‐level modifications, cell fate regulation, and neurogenesis that were altered in Vegf isoform mice. Based on these gene network shifts, we predicted that NSC populations would be affected in later stages of forebrain development. In the E11.5 telencephalon, we quantified mitotic cells [Phospho‐Histone H3 (pHH3)‐positive] and intermediate progenitor cells (Tbr2/Eomes‐positive), observing quantitative and qualitative shifts in these populations. We observed qualitative shifts in cortical layering at P0, particularly with Ctip2‐positive cells in layer V. The results identify a suite of genes and functional gene networks that can be used to further dissect the role of Vegf in regulating NSC differentiation and downstream consequences for NSC fate decisions. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 74: 63–81, 2014 Regulation of neural stem cell (NSC) fate decisions is critical during the transition from a multicellular mammalian forebrain neuroepithelium to the multilayered neocortex. Forebrain development requires coordinated vascular investment alongside NSC differentiation. Vascular endothelial growth factor A (Vegf) has proven to be a pleiotrophic gene whose multiple protein isoforms regulate a broad range of effects in neurovascular systems. To test the hypothesis that the Vegf isoforms (120, 164, and 188) are required for normal forebrain development, we analyzed the forebrain transcriptome of mice expressing specific Vegf isoforms, Vegf120, VegfF188, or a combination of Vegf120/188. Transcriptome analysis identified differentially expressed genes in embryonic day (E) 9.5 forebrain, a time point preceding dramatic neuroepithelial expansion and vascular investment in the telencephalon. Meta-analysis identified gene pathways linked to chromosome-level modifications, cell fate regulation, and neurogenesis that were altered in Vegf isoform mice. Based on these gene network shifts, we predicted that NSC populations would be affected in later stages of forebrain development. In the E11.5 telencephalon, we quantified mitotic cells [Phospho-Histone H3 (pHH3)-positive] and intermediate progenitor cells (Tbr2/Eomes-positive), observing quantitative and qualitative shifts in these populations. We observed qualitative shifts in cortical layering at P0, particularly with Ctip2-positive cells in layer V. The results identify a suite of genes and functional gene networks that can be used to further dissect the role of Vegf in regulating NSC differentiation and downstream consequences for NSC fate decisions. ABSTRACT Regulation of neural stem cell (NSC) fate decisions is critical during the transition from a multicellular mammalian forebrain neuroepithelium to the multilayered neocortex. Forebrain development requires coordinated vascular investment alongside NSC differentiation. Vascular endothelial growth factor A (Vegf) has proven to be a pleiotrophic gene whose multiple protein isoforms regulate a broad range of effects in neurovascular systems. To test the hypothesis that the Vegf isoforms (120, 164, and 188) are required for normal forebrain development, we analyzed the forebrain transcriptome of mice expressing specific Vegf isoforms, Vegf120, VegfF188, or a combination of Vegf120/188. Transcriptome analysis identified differentially expressed genes in embryonic day (E) 9.5 forebrain, a time point preceding dramatic neuroepithelial expansion and vascular investment in the telencephalon. Meta‐analysis identified gene pathways linked to chromosome‐level modifications, cell fate regulation, and neurogenesis that were altered in Vegf isoform mice. Based on these gene network shifts, we predicted that NSC populations would be affected in later stages of forebrain development. In the E11.5 telencephalon, we quantified mitotic cells [Phospho‐Histone H3 (pHH3)‐positive] and intermediate progenitor cells (Tbr2/Eomes‐positive), observing quantitative and qualitative shifts in these populations. We observed qualitative shifts in cortical layering at P0, particularly with Ctip2‐positive cells in layer V. The results identify a suite of genes and functional gene networks that can be used to further dissect the role of Vegf in regulating NSC differentiation and downstream consequences for NSC fate decisions. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 74: 63–81, 2014 Regulation of neural stem cell (NSC) fate decisions is critical during the transition from a multicellular mammalian forebrain neuroepithelium to the multilayered neocortex. Forebrain development requires coordinated vascular investment alongside NSC differentiation. Vascular endothelial growth factor A (Vegf) has proven to be a pleiotrophic gene whose multiple protein isoforms regulate a broad range of effects in neurovascular systems. To test the hypothesis that the Vegf isoforms (120, 164, and 188) are required for normal forebrain development, we analyzed the forebrain transcriptome of mice expressing specific Vegf isoforms, Vegf120, VegfF188, or a combination of Vegf120/188. Transcriptome analysis identified differentially expressed genes in embryonic day (E) 9.5 forebrain, a time point preceding dramatic neuroepithelial expansion and vascular investment in the telencephalon. Meta-analysis identified gene pathways linked to chromosome-level modifications, cell fate regulation, and neurogenesis that were altered in Vegf isoform mice. Based on these gene network shifts, we predicted that NSC populations would be affected in later stages of forebrain development. In the E11.5 telencephalon, we quantified mitotic cells [Phospho-Histone H3 (pHH3)-positive] and intermediate progenitor cells (Tbr2/Eomes-positive), observing quantitative and qualitative shifts in these populations. We observed qualitative shifts in cortical layering at P0, particularly with Ctip2-positive cells in layer V. The results identify a suite of genes and functional gene networks that can be used to further dissect the role of Vegf in regulating NSC differentiation and downstream consequences for NSC fate decisions. copyright 2013 Wiley Periodicals, Inc. Develop Neurobiol 74: 63-81, 2014 Regulation of neural stem cell (NSC) fate decisions is critical during the transition from a multicellular mammalian forebrain neuroepithelium to the multilayered neocortex. Forebrain development requires coordinated vascular investment alongside NSC differentiation. Vascular endothelial growth factor A (Vegf) has proven to be a pleiotrophic gene whose multiple protein isoforms regulate a broad range of effects in neurovascular systems. To test the hypothesis that the Vegf isoforms (120, 164, and 188) are required for normal forebrain development, we analyzed the forebrain transcriptome of mice expressing specific Vegf isoforms, Vegf120, VegfF188, or a combination of Vegf120/188. Transcriptome analysis identified differentially expressed genes in embryonic day (E) 9.5 forebrain, a time point preceding dramatic neuroepithelial expansion and vascular investment in the telencephalon. Meta-analysis identified gene pathways linked to chromosome-level modifications, cell fate regulation, and neurogenesis that were altered in Vegf isoform mice. Based on these gene network shifts, we predicted that NSC populations would be affected in later stages of forebrain development. In the E11.5 telencephalon, we quantified mitotic cells [Phospho-Histone H3 (pHH3)-positive] and intermediate progenitor cells (Tbr2/Eomes-positive), observing quantitative and qualitative shifts in these populations. We observed qualitative shifts in cortical layering at P0, particularly with Ctip2-positive cells in layer V. The results identify a suite of genes and functional gene networks that can be used to further dissect the role of Vegf in regulating NSC differentiation and downstream consequences for NSC fate decisions. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 74: 63-81, 2014 [PUBLICATION ABSTRACT] |
Author | Darland, Diane C. Schaubhut, Geoffrey J. Berosik, Matthew A. Snyder, Stephanie D. Crawford, Natalie F. Nour, Shirin I. Cain, Jacob T. |
AuthorAffiliation | 2 Current address is University of Vermont, Clinical Neuroscience Research Unit, Burlington, VT 1 University of North Dakota, Department of Biology, Grand Forks, ND |
AuthorAffiliation_xml | – name: 1 University of North Dakota, Department of Biology, Grand Forks, ND – name: 2 Current address is University of Vermont, Clinical Neuroscience Research Unit, Burlington, VT |
Author_xml | – sequence: 1 givenname: Jacob T. surname: Cain fullname: Cain, Jacob T. organization: University of North Dakota – sequence: 2 givenname: Matthew A. surname: Berosik fullname: Berosik, Matthew A. organization: University of North Dakota – sequence: 3 givenname: Stephanie D. surname: Snyder fullname: Snyder, Stephanie D. organization: University of North Dakota – sequence: 4 givenname: Natalie F. surname: Crawford fullname: Crawford, Natalie F. organization: University of North Dakota – sequence: 5 givenname: Shirin I. surname: Nour fullname: Nour, Shirin I. organization: University of North Dakota – sequence: 6 givenname: Geoffrey J. surname: Schaubhut fullname: Schaubhut, Geoffrey J. organization: University of North Dakota – sequence: 7 givenname: Diane C. surname: Darland fullname: Darland, Diane C. organization: University of North Dakota |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24124161$$D View this record in MEDLINE/PubMed |
BookMark | eNqNksuKFDEUhoOMOBfd-AAScCNCj7lVqmojyDheYNCFDrgLqdSp7gyppE1S0_SD-X6mpsZGXYgQSHLy5c9_Ts4pOvLBA0JPKTmnhLBXvYfpnDHKyQN0QlvOVo2Q344O64oeo9OUbgipOJPkETpmgpYh6Qn68WVjh5yw9ThvAN_qZCanIwbfhxJwVju8jmGXN3jQJoeIbQpDiGPCEdLk8t3NqH0y0W5zGAGbjfZrSNiEGMHpDD3e2XIfdHR7XLzGopkyjNiAc3gbg7MDRJ1t8Fj7Hvd2KHvw2S6x8sIYpgS4vAtd1NY_Rg8H7RI8uZ_P0PW7y68XH1ZXn99_vHhztTKioWQlaMUpqUxdymQqArSVTDcdgKm6llVCMNGytqGatwPralMLTmGAuqYV5YYKfoZeL7rbqRuhN8VTMa-20Y467lXQVv154u1GrcOtEqSVjWRF4MW9QAzfJ0hZjTbNaWsPJSVFiwFJZ_o_UFkTyQmfVZ__hd6EKfpSiZmS5W9Z0xTq5UKZGFKKMBx8U6LmxlFz46i7xinws98zPaC_OqUAdAF21sH-H1Lq7afL60X0J8Om1A8 |
CitedBy_id | crossref_primary_10_1186_s13024_017_0158_z crossref_primary_10_1039_D3RA03669C crossref_primary_10_1371_journal_pone_0100576 crossref_primary_10_1002_bit_28105 crossref_primary_10_1016_j_brainres_2017_09_018 crossref_primary_10_1089_scd_2017_0270 crossref_primary_10_1093_cercor_bhy082 crossref_primary_10_3389_fncir_2023_1256455 |
Cites_doi | 10.4161/cam.2.3.6485 10.1038/nrn2151 10.1038/nn2074 10.1038/386671a0 10.1073/pnas.1002285107 10.1111/j.1460-9568.2008.06475.x 10.1016/S0021-9258(18)35712-0 10.1016/j.neuron.2005.04.012 10.1111/j.1440-169X.2009.01095.x 10.1007/s13238-012-2916-6 10.1038/nrn2463 10.1523/JNEUROSCI.2899-04.2005 10.1016/j.spl.2008.01.003 10.1242/dev.072348 10.1111/j.1365-2184.2012.00845.x 10.1002/dc.10105 10.1016/S0070-2153(05)69004-7 10.1101/gad.242002 10.1523/JNEUROSCI.0477-10.2010 10.1242/dev.129.21.5029 10.1038/8379 10.1016/j.neuron.2008.09.028 10.1242/dev.073411 10.1091/mbc.4.12.1317 10.1002/dneu.20895 10.1002/1097-0177(2000)9999:9999<::AID-DVDY1093>3.0.CO;2-D 10.1002/cne.21336 10.1016/j.ydbio.2005.10.016 10.1038/380435a0 10.1042/BST0371201 10.1242/dev.00539 10.1016/j.semcdb.2011.09.010 10.1073/pnas.182296499 10.1016/j.neuron.2010.12.005 10.1186/gb-2003-4-10-r70 10.1093/nar/gkq973 10.1016/0092-8674(95)90536-7 10.1016/j.gde.2010.05.003 10.1016/S0896-6273(01)00211-2 10.1038/nn828 10.1016/j.mcn.2008.10.007 10.1126/science.1176009 10.1186/1471-2105-7-59 10.1242/dev.036624 10.1242/dev.047167 10.1038/nn1009-1211 10.1159/000297602 10.1042/BJ20110301 10.1007/s00418-003-0510-y 10.1111/j.1460-9568.2006.04626.x 10.1046/j.1523-1755.1999.00610.x 10.1093/bioinformatics/18.12.1585 10.1523/JNEUROSCI.3204-07.2007 10.1371/journal.pgen.1000511 10.1093/biostatistics/kxj037 10.1016/j.ydbio.2006.08.035 10.1203/pdr.0b013e3180457635 10.1242/dev.015891 10.1634/stemcells.2008-0319 10.1126/stke.2001.112.re21 10.1016/S0736-5748(02)00040-0 10.1093/nar/gkn923 10.1523/JNEUROSCI.5669-08.2009 10.1634/stemcells.2007-0884 10.1084/jem.20022027 10.1007/978-3-642-67432-7_1 10.1096/fj.02-0515com 10.1242/dev.129.21.5041 10.1242/dev.124.19.3765 10.1016/j.neuroscience.2006.07.053 10.1002/pmic.200700724 10.1126/science.278.5337.474 10.1172/JCI0214362 10.1620/tjem.193.163 10.1074/jbc.273.16.9357 10.1038/sj.emboj.7600402 10.1111/j.1460-9568.2006.04620.x 10.1523/JNEUROSCI.5074-07.2008 10.1016/S0092-8674(00)80323-2 10.1038/nprot.2008.211 10.1073/pnas.96.25.14378 10.1126/science.1190485 10.1016/j.ydbio.2011.06.045 10.1016/j.neuron.2008.01.018 10.1242/dmm.001602 10.1177/117693510800600008 10.1016/S0092-8674(00)81010-7 10.1016/S0361-9230(01)00777-8 |
ContentType | Journal Article |
Copyright | Copyright © 2013 Wiley Periodicals, Inc. |
Copyright_xml | – notice: Copyright © 2013 Wiley Periodicals, Inc. |
DBID | 24P WIN CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QR 7TK 8FD FR3 K9. P64 7X8 5PM |
DOI | 10.1002/dneu.22130 |
DatabaseName | Wiley Open Access Wiley Free Archive Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Chemoreception Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Neurosciences Abstracts ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1932-846X |
EndPage | 81 |
ExternalDocumentID | 3150206351 10_1002_dneu_22130 24124161 DNEU22130 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: American Heart Association funderid: AHA0715542Z – fundername: NIH funderid: NINDS R15 NS057807‐01/‐02; 3R15NS057807‐01S1 – fundername: NINDS NIH HHS grantid: R15 NS057807-01/-02 – fundername: NCRR NIH HHS grantid: P20 RR017699 – fundername: NINDS NIH HHS grantid: R15 NS057807 – fundername: NINDS NIH HHS grantid: 3R15NS057807-01S1 |
GroupedDBID | --- -DZ .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIVO ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P G-S G.N GODZA H.T H.X HF~ HGLYW HHY HHZ HZ~ IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 SUPJJ SV3 TEORI UB1 V2E W8V W99 WBKPD WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XJT XV2 ~IA ~WT 1OB CGR CUY CVF ECM EIF NPM AAMNL AAYXX CITATION 7QR 7TK 8FD FR3 K9. P64 7X8 5PM |
ID | FETCH-LOGICAL-c4810-4153105c7100c50e1962a8beec5b925442492981a39f2b7c7431efe771513c143 |
IEDL.DBID | 33P |
ISSN | 1932-8451 |
IngestDate | Tue Sep 17 21:10:38 EDT 2024 Fri Aug 16 06:03:53 EDT 2024 Fri Aug 16 05:58:55 EDT 2024 Tue Nov 19 05:28:17 EST 2024 Thu Nov 21 21:07:38 EST 2024 Sat Sep 28 07:52:37 EDT 2024 Sat Aug 24 00:40:15 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | neurogenesis Tbr2 Pax6 forebrain neural development VEGF |
Language | English |
License | Copyright © 2013 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4810-4153105c7100c50e1962a8beec5b925442492981a39f2b7c7431efe771513c143 |
Notes | Competing Interests The authors declare that they have no competing interests. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fdneu.22130 |
PMID | 24124161 |
PQID | 1466124288 |
PQPubID | 946356 |
PageCount | 19 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4096862 proquest_miscellaneous_1492614096 proquest_miscellaneous_1467063032 proquest_journals_1466124288 crossref_primary_10_1002_dneu_22130 pubmed_primary_24124161 wiley_primary_10_1002_dneu_22130_DNEU22130 |
PublicationCentury | 2000 |
PublicationDate | January 2014 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – month: 01 year: 2014 text: January 2014 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Developmental neurobiology (Hoboken, N.J.) |
PublicationTitleAlternate | Dev Neurobiol |
PublicationYear | 2014 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1997; 278 2011; 358 2002; 16 2001; 220 2007; 302 2003; 119 2009; 40 2002; 18 2011; 437 2007; 502 2010; 107 2002; 57 2004; 23 2002; 99 2008; 9 1996; 380 2008; 78 2008; 8 2009a; 37 2003; 17 2008; 6 2008; 2 2003; 198 1993; 4 2005; 25 1998; 273 2005; 69 2009; 12 1997; 90 2010; 20 2009; 51 2006; 23 2011; 71 1997; 386 2008; 28 2007; 8 1999; 56 2008; 26 2003; 4 2011; 22 1999; 98 2007; 61 1999; 96 2002; 109 2011; 69 2007; 1 2012; 139 2008; 60 2010; 30 2009; 326 2007; 27 2006; 289 2010; 32 2010; 329 2012 2002; 5 1992; 267 2006; 7 2008; 57 2013; 140 2008; 11 2001; 29 2011; 39 1999; 5 2009; 136 2009; 27 2005; 46 2009; 29 2003; 130 1997; 124 1980; 59 2002; 26 2012; 3 2002; 20 1995a; 39 2001; 193 2009b; 4 1995b; 81 2010; 137 2002; 129 2006; 142 2009; 5 2008; 135 2009; 2 2012; 45 2009; 37 2001; 2001 12490442 - Bioinformatics. 2002 Dec;18(12):1585-92 9367432 - Development. 1997 Oct;124(19):3765-77 17514196 - Nat Rev Neurosci. 2007 Jun;8(6):427-37 22354470 - Brain Struct Funct. 2013 Mar;218(2):353-72 21068311 - J Neurosci. 2010 Nov 10;30(45):15052-66 18391536 - Sex Dev. 2007;1(4):255-70 19535498 - Dis Model Mech. 2009 Jul-Aug;2(7-8):412-8 21803034 - Dev Biol. 2011 Oct 1;358(1):9-22 9334308 - Science. 1997 Oct 17;278(5337):474-6 16979618 - Dev Biol. 2007 Feb 1;302(1):50-65 15634788 - J Neurosci. 2005 Jan 5;25(1):247-51 12181492 - Proc Natl Acad Sci U S A. 2002 Sep 3;99(18):11946-50 19521500 - PLoS Genet. 2009 Jun;5(6):e1000511 18467663 - Stem Cells. 2008 Jul;26(7):1663-72 20542680 - Curr Opin Genet Dev. 2010 Aug;20(4):408-15 12554697 - FASEB J. 2003 Feb;17(2):186-93 1464614 - J Biol Chem. 1992 Dec 25;267(36):26031-7 18448636 - J Neurosci. 2008 Apr 30;28(18):4604-12 22549586 - Protein Cell. 2012 Apr;3(4):278-90 17959802 - J Neurosci. 2007 Oct 24;27(43):11595-603 10588713 - Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14378-82 8167412 - Mol Biol Cell. 1993 Dec;4(12):1317-26 11169844 - Dev Dyn. 2001 Feb;220(2):112-21 9230312 - Cell. 1997 Jul 11;90(1):169-80 19909247 - Biochem Soc Trans. 2009 Dec;37(Pt 6):1201-6 10229225 - Nat Med. 1999 May;5(5):495-502 16519651 - Eur J Neurosci. 2006 Feb;23(4):857-68 18283662 - Proteomics. 2008 Mar;8(6):1257-65 19298550 - Dev Growth Differ. 2009 Apr;51(3):325-42 11827992 - J Clin Invest. 2002 Feb;109(3):327-36 20431123 - Development. 2010 Jun;137(11):1875-85 12175873 - Int J Dev Neurosci. 2002 Jun-Aug;20(3-5):349-57 21220099 - Neuron. 2011 Jan 13;69(1):61-76 20651149 - Science. 2010 Jul 23;329(5990):444-8 19965464 - Science. 2009 Nov 27;326(5957):1216-9 21045058 - Nucleic Acids Res. 2011 Jan;39(Database issue):D561-8 19143049 - Nat Rev Neurosci. 2008 Sep;9(9):678-85 19059340 - Mol Cell Neurosci. 2009 Feb;40(2):225-33 11239428 - Neuron. 2001 Feb;29(2):353-66 21538923 - Dev Neurobiol. 2011 Aug;71(8):690-709 20523026 - Dev Neurosci. 2010 Jul;32(2):149-62 8602241 - Nature. 1996 Apr 4;380(6573):435-9 12112824 - Diagn Cytopathol. 2002 Jun;26(6):356-9 18614579 - Development. 2008 Aug;135(16):2717-27 23444355 - Development. 2013 Mar;140(6):1250-61 16519656 - Eur J Neurosci. 2006 Feb;23(4):910-20 19033363 - Nucleic Acids Res. 2009 Jan;37(1):1-13 12381667 - Genes Dev. 2002 Oct 15;16(20):2684-98 9109485 - Nature. 1997 Apr 17;386(6626):671-4 15385962 - EMBO J. 2004 Oct 13;23(20):4061-71 16632515 - Biostatistics. 2007 Jan;8(1):118-27 10469350 - Kidney Int. 1999 Sep;56(3):794-814 21978864 - Semin Cell Dev Biol. 2011 Dec;22(9):1019-27 12900522 - J Exp Med. 2003 Aug 4;198(3):483-9 6996438 - Adv Anat Embryol Cell Biol. 1980;59:I-VI,1-62 12031274 - Brain Res Bull. 2002 Apr;57(6):777-88 12649737 - Histochem Cell Biol. 2003 Mar;119(3):227-32 11896398 - Nat Neurosci. 2002 Apr;5(4):308-15 7774016 - Cell. 1995 Jun 2;81(5):747-56 12397111 - Development. 2002 Nov;129(21):5029-40 11315763 - Tohoku J Exp Med. 2001 Mar;193(3):163-74 19783976 - Nat Neurosci. 2009 Oct;12(10):1211-2 16243597 - Curr Top Dev Biol. 2005;69:67-99 14519205 - Genome Biol. 2003;4(10):R70 15882633 - Neuron. 2005 May 5;46(3):369-72 17413844 - Pediatr Res. 2007 May;61(5 Pt 2):58R-63R 9545256 - J Biol Chem. 1998 Apr 17;273(16):9357-60 16466568 - BMC Bioinformatics. 2006;7:59 8645565 - Int J Dev Biol. 1995 Oct;39(5):809-16 21711246 - Biochem J. 2011 Jul 15;437(2):169-83 18344991 - Nat Neurosci. 2008 Apr;11(4):429-39 22434866 - Development. 2012 Apr;139(8):1371-80 20615956 - Proc Natl Acad Sci U S A. 2010 Jul 20;107(29):13129-34 16337622 - Dev Biol. 2006 Jan 15;289(2):329-35 19906872 - Development. 2009 Dec;136(23):4055-63 10428027 - Cell. 1999 Jul 23;98(2):147-57 18832594 - Stem Cells. 2009 Jan;27(1):49-58 19262109 - Cell Adh Migr. 2008 Jul-Sep;2(3):167-9 19571125 - J Neurosci. 2009 Jul 1;29(26):8335-49 18940588 - Neuron. 2008 Oct 9;60(1):56-69 11741095 - Sci STKE. 2001 Dec 11;2001(112):re21 23030059 - Cell Prolif. 2012 Dec;45(6):487-98 18255026 - Neuron. 2008 Feb 7;57(3):333-8 12783797 - Development. 2003 Jul;130(14):3269-81 17366607 - J Comp Neurol. 2007 May 20;502(3):382-99 18973570 - Eur J Neurosci. 2008 Oct;28(8):1449-56 16973295 - Neuroscience. 2006 Oct 27;142(3):727-37 19259420 - Cancer Inform. 2008;6:423-31 19131956 - Nat Protoc. 2009;4(1):44-57 12397112 - Development. 2002 Nov;129(21):5041-52 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_30_1 e_1_2_6_72_1 e_1_2_6_91_1 Virgintino D (e_1_2_6_86_1) 2003; 119 e_1_2_6_19_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_85_1 e_1_2_6_64_1 e_1_2_6_87_1 e_1_2_6_43_1 e_1_2_6_81_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_83_1 Duan D (e_1_2_6_11_1) 2012 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 Rhen T (e_1_2_6_66_1) 2007; 1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_89_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_73_1 e_1_2_6_54_1 e_1_2_6_75_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_71_1 e_1_2_6_92_1 e_1_2_6_90_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_79_1 e_1_2_6_63_1 e_1_2_6_84_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_80_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_82_1 Ericson J (e_1_2_6_13_1) 1995; 39 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_88_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 |
References_xml | – volume: 60 start-page: 56 year: 2008 end-page: 69 article-title: Tbr2 directs conversion of radial glia into basal precursors and guides neuronal amplification by indirect neurogenesis in the developing neocortex publication-title: Neuron – volume: 23 start-page: 857 year: 2006 end-page: 868 article-title: Molecular mechanisms of cortical differentiation publication-title: Eur J Neurosci – volume: 502 start-page: 382 year: 2007 end-page: 399 article-title: Patterns of SDF‐1alpha and SDF‐1gamma mRNAs, migration pathways, and phenotypes of CXCR4‐expressing neurons in the developing rat telencephalon publication-title: J Compar Neurol – volume: 4 start-page: R70 year: 2003 article-title: Identifying biological themes within lists of genes with EASE publication-title: Genome Biol – volume: 69 start-page: 67 year: 2005 end-page: 99 article-title: The novel roles of glial cells revisited: the contribution of radial glia and astrocytes to neurogenesis publication-title: Curr Topic Dev Biol – volume: 9 start-page: 678 year: 2008 end-page: 685 article-title: The genetics of early telencephalon patterning: some assembly required publication-title: Nat Rev Neuroscience – volume: 29 start-page: 8335 year: 2009 end-page: 8349 article-title: Selective cortical layering abnormalities and behavioral deficits in cortex‐specific Pax6 knock‐out mice publication-title: J Neurosci – volume: 135 start-page: 2717 year: 2008 end-page: 2727 article-title: Hedgehog signaling is involved in development of the neocortex publication-title: Development – volume: 220 start-page: 112 year: 2001 end-page: 121 article-title: Differential expression of VEGF isoforms in mouse during development and in the adult publication-title: Dev Dyn – volume: 39 start-page: D561 year: 2011 end-page: D568 article-title: The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored publication-title: Nucl Acid Res – volume: 17 start-page: 186 year: 2003 end-page: 193 article-title: Vascular endothelial growth factor promotes proliferation of cortical neuron precursors by regulating E2F expression publication-title: FASEB J – volume: 8 start-page: 1257 year: 2008 end-page: 1265 article-title: Transcriptome and proteome analysis of early embryonic mouse brain development publication-title: Proteomics – volume: 12 start-page: 1211 year: 2009 end-page: 1212 article-title: Regional control of cortical lamination publication-title: Nat Neurosci – volume: 71 start-page: 690 year: 2011 end-page: 709 article-title: The role of Pax6 in forebrain development publication-title: Dev Neurobiol – volume: 358 start-page: 9 year: 2011 end-page: 22 article-title: Vascular endothelial growth factor (VEGF) isoform regulation of early forebrain development publication-title: Dev Biol – volume: 37 start-page: 1201 year: 2009 end-page: 1206 article-title: The heparin‐binding domain confers diverse functions of VEGF‐A in development and disease: A structure‐function study publication-title: Biochem Soc Transac – volume: 16 start-page: 2684 year: 2002 end-page: 2698 article-title: Spatially restricted patterning cues provided by heparin‐binding VEGF‐A control blood vessel branching morphogenesis publication-title: Genes Dev – volume: 29 start-page: 353 year: 2001 end-page: 366 article-title: Tbr1 regulates differentiation of the preplate and layer 6 publication-title: Neuron – volume: 6 start-page: 423 year: 2008 end-page: 431 article-title: What does PLIER really do? publication-title: Cancer Inform – volume: 18 start-page: 1585 year: 2002 end-page: 1592 article-title: Robust estimators for expression analysis publication-title: Bioinformatics – volume: 90 start-page: 169 year: 1997 end-page: 180 article-title: Pax6 controls progenitor cell identity and neuronal fate in response to graded Shh signaling publication-title: Cell – volume: 107 start-page: 13129 year: 2010 end-page: 13134 article-title: Tbr1 regulates regional and laminar identity of postmitotic neurons in developing neocortex publication-title: Proc Natl Acad Sci – volume: 39 start-page: 809 year: 1995a end-page: 816 article-title: Sonic hedgehog: A common signal for ventral patterning along the rostrocaudal axis of the neural tube publication-title: Int J Dev Biol – volume: 78 start-page: 1490 year: 2008 end-page: 1497 article-title: Clustering gene expression profile data by selective shrinkage publication-title: Stat Probability Lett – volume: 119 start-page: 227 year: 2003 end-page: 232 article-title: VEGF expression is developmentally regulated during human brain angiogenesis publication-title: Histochem Cell Biol – volume: 3 start-page: 278 year: 2012 end-page: 290 article-title: Epigenetic control on cell fate choice in neural stem cells publication-title: Prot Cell – volume: 380 start-page: 435 year: 1996 end-page: 439 article-title: Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele publication-title: Nature – volume: 386 start-page: 671 year: 1997 end-page: 674 article-title: Mechanisms of angiogenesis publication-title: Nature – volume: 69 start-page: 61 year: 2011 end-page: 76 article-title: CXCR4 and CXCR7 have distinct functions in regulating interneuron migration publication-title: Neuron – volume: 40 start-page: 225 year: 2009 end-page: 233 article-title: Periventricular notch activation and asymmetric Ngn2 and Tbr2 expression in pair‐generated neocortical daughter cells publication-title: Mol Cell Neurosci – volume: 51 start-page: 325 year: 2009 end-page: 342 article-title: Cerebral cortex development: From progenitors patterning to neocortical size during evolution publication-title: Dev Growth Differ – volume: 329 start-page: 444 year: 2010 end-page: 448 article-title: Dnmt3a‐dependent nonpromoter DNA methylation facilitates transcription of neurogenic genes publication-title: Science – volume: 61 start-page: 58R year: 2007 end-page: 63R article-title: Epigenetic regulation of neural gene expression and neuronal function publication-title: Ped Res – volume: 4 start-page: 44 year: 2009b end-page: 57 article-title: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources publication-title: Nat Protocol – volume: 278 start-page: 474 year: 1997 end-page: 476 article-title: Interneuron migration from basal forebrain to neocortex: Dependence on Dlx genes publication-title: Science – volume: 28 start-page: 1449 year: 2008 end-page: 1456 article-title: Progressive loss of PAX6, TBR2, NEUROD and TBR1 mRNA gradients correlates with translocation of EMX2 to the cortical plate during human cortical development publication-title: Eur J Neurosci – volume: 5 start-page: 495 year: 1999 end-page: 502 article-title: Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188 publication-title: Nat Med – volume: 20 start-page: 349 year: 2002 end-page: 357 article-title: Extracellular factors that regulate neuronal migration in the central nervous system publication-title: Int J Dev Neurosc – volume: 130 start-page: 3269 year: 2003 end-page: 3281 article-title: Direct and concentration‐dependent regulation of the proneural gene Neurogenin2 by Pax6 publication-title: Development – volume: 129 start-page: 5029 year: 2002 end-page: 5040 article-title: Modulation of the notch signaling by Mash1 and Dlx1/2 regulates sequential specification and differentiation of progenitor cell types in the subcortical telencephalon publication-title: Development – volume: 20 start-page: 408 year: 2010 end-page: 415 article-title: Patterning the cerebral cortex: traveling with morphogens publication-title: Curr Opin Genet Dev – volume: 5 start-page: 308 year: 2002 end-page: 315 article-title: Glial cells generate neurons: The role of the transcription factor Pax6 publication-title: Nat Neurosci – volume: 8 start-page: 118 year: 2007 end-page: 127 article-title: Adjusting batch effects in microarray expression data using empirical Bayes methods publication-title: Biostatistics – volume: 2 start-page: 412 year: 2009 end-page: 418 article-title: Haploinsufficiency of the murine polycomb gene Suz12 results in diverse malformations of the brain and neural tube publication-title: Dis Model Mechanism – volume: 22 start-page: 1019 year: 2011 end-page: 1027 article-title: Neuronal action on the developing blood vessel pattern publication-title: Semin Cell Dev Biol – volume: 273 start-page: 9357 year: 1998 end-page: 9360 article-title: Caspase‐3 is required for DNA fragmentation and morphological changes associated with apoptosis publication-title: J Biol Chem – volume: 139 start-page: 1371 year: 2012 end-page: 1380 article-title: Diverse roles for VEGF‐A in the nervous system publication-title: Development – volume: 59 start-page: 1 year: 1980 end-page: 62 article-title: The vascular system of the cerebral cortex publication-title: Advances in anatomy, embryology, and cell biology – volume: 27 start-page: 11595 year: 2007 end-page: 11603 article-title: Patterning the dorsal telencephalon: a role for sonic hedgehog? publication-title: J Neurosci – volume: 302 start-page: 50 year: 2007 end-page: 65 article-title: Pax6 controls cerebral cortical cell number by regulating exit from the cell cycle and specifies cortical cell identity by a cell autonomous mechanism publication-title: Dev Biol – year: 2012 article-title: Spatiotemporal expression patterns of Pax6 in the brain of embryonic, newborn, and adult mice publication-title: Brain Struct Funct – volume: 8 start-page: 427 year: 2007 end-page: 437 article-title: Neuronal subtype specification in the cerebral cortex publication-title: Nat Rev Neurosci – volume: 45 start-page: 487 year: 2012 end-page: 498 article-title: Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis publication-title: Cell Prolif – volume: 28 start-page: 4604 year: 2008 end-page: 4612 article-title: The neurogenesis‐controlling factor, Pax6, inhibits proliferation and promotes maturation in murine astrocytes publication-title: J Neurosci – volume: 124 start-page: 3765 year: 1997 end-page: 3777 article-title: Pax6‐dependent regulation of adhesive patterning, R‐cadherin expression and boundary formation in developing forebrain publication-title: Development – volume: 5 start-page: e1000511 year: 2009 article-title: The level of the transcription factor Pax6 is essential for controlling the balance between neural stem cell self‐renewal and neurogenesis publication-title: PLoS Genet – volume: 23 start-page: 4061 year: 2004 end-page: 4071 article-title: Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity publication-title: EMBO J – volume: 56 start-page: 794 year: 1999 end-page: 814 article-title: Role of vascular endothelial growth factor in the regulation of angiogenesis publication-title: Kidney Int – volume: 137 start-page: 1875 year: 2010 end-page: 1885 article-title: Zinc finger genes Fezf1 and Fezf2 control neuronal differentiation by repressing Hes5 expression in the forebrain publication-title: Development – volume: 26 start-page: 1663 year: 2008 end-page: 1672 article-title: Concise review: Pax6 transcription factor contributes to both embryonic and adult neurogenesis as a multifunctional regulator publication-title: Stem Cells – volume: 2 start-page: 167 year: 2008 end-page: 169 article-title: Angiogenesis in the embryonic CNS: A new twist on an old tale publication-title: Cell Adhes Migrat – volume: 1 start-page: 255 year: 2007 end-page: 270 article-title: Expression of putative sex‐determining genes during the thermosensitive period of gonad development in the snapping turtle, publication-title: Sexual Dev Genet Mol Biol Evolution Endocrinol Embryol Pathol Sex Determin Differentiat – volume: 136 start-page: 4055 year: 2009 end-page: 4063 article-title: Coordination of sonic hedgehog and Wnt signaling determines ventral and dorsal telencephalic neuron types from human embryonic stem cells publication-title: Development – volume: 4 start-page: 1317 year: 1993 end-page: 1326 article-title: The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix‐bound VEGF publication-title: Mol Biol Cell – volume: 81 start-page: 747 year: 1995b end-page: 756 article-title: Sonic hedgehog induces the differentiation of ventral forebrain neurons: A common signal for ventral patterning within the neural tube publication-title: Cell – volume: 2001 start-page: re21 year: 2001 article-title: VEGF receptor signal transduction publication-title: Sci STKE – volume: 109 start-page: 327 year: 2002 end-page: 336 article-title: Arteriolar and venular patterning in retinas of mice selectively expressing VEGF isoforms publication-title: J Clin Invest – volume: 98 start-page: 147 year: 1999 end-page: 157 article-title: Targeted deficiency or cytosolic truncation of the VE‐cadherin gene in mice impairs VEGF‐mediated endothelial survival and angiogenesis publication-title: Cell – volume: 140 start-page: 1250 year: 2013 end-page: 1261 article-title: Sox2 is required for embryonic development of the ventral telencephalon through the activation of the ventral determinants Nkx2.1 and Shh publication-title: Development – volume: 7 start-page: 59 year: 2006 article-title: BAMarraytrade mark: Java software for Bayesian analysis of variance for microarray data publication-title: BMC Bioinform – volume: 96 start-page: 14378 year: 1999 end-page: 14382 article-title: Pax6 is essential for establishing ventral‐dorsal cell boundaries in pituitary gland development publication-title: Proc Natl Acad Sci USA – volume: 32 start-page: 149 year: 2010 end-page: 162 article-title: Spatiotemporal distribution of PAX6 and MEIS2 expression and total cell numbers in the ganglionic eminence in the early developing human forebrain publication-title: Dev Neurosci – volume: 289 start-page: 329 year: 2006 end-page: 335 article-title: Vascular endothelial growth factor‐B (VEGFB) stimulates neurogenesis: Evidence from knockout mice and growth factor administration publication-title: Develop Biol – volume: 193 start-page: 163 year: 2001 end-page: 174 article-title: The role of Pax6 in brain patterning publication-title: Tohoku J Exp Med – volume: 99 start-page: 11946 year: 2002 end-page: 11950 article-title: Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo publication-title: Proc Natl Acad Sci – volume: 26 start-page: 356 year: 2002 end-page: 359 article-title: Cytological grading, apoptosis, and Bcl‐2 protein expression in breast cancer publication-title: Diagn Cytopathol – volume: 437 start-page: 169 year: 2011 end-page: 183 article-title: Signal transduction by vascular endothelial growth factor receptors publication-title: Biochem J – volume: 25 start-page: 247 year: 2005 end-page: 251 article-title: Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex publication-title: J Neurosci – volume: 57 start-page: 333 year: 2008 end-page: 338 article-title: Pyramidal neurons grow up and change their mind publication-title: Neuron – volume: 57 start-page: 777 year: 2002 end-page: 788 article-title: Radial glial cells as neuronal precursors: A new perspective on the correlation of morphology and lineage restriction in the developing cerebral cortex of mice publication-title: Brain Res Bull – volume: 27 start-page: 49 year: 2009 end-page: 58 article-title: A Sox1 to Pax6 switch drives neuroectoderm to radial glia progression during differentiation of mouse embryonic stem cells publication-title: Stem Cells – volume: 11 start-page: 429 year: 2008 end-page: 439 article-title: Compartment‐specific transcription factors orchestrate angiogenesis gradients in the embryonic brain publication-title: Nat Neurosci – volume: 46 start-page: 369 year: 2005 end-page: 372 article-title: Radial glial cells defined and major intermediates between embryonic stem cells and CNS neurons publication-title: Neuron – volume: 37 start-page: 1 year: 2009a end-page: 13 article-title: Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists publication-title: Nucl Acid Res – volume: 129 start-page: 5041 year: 2002 end-page: 5052 article-title: Pax6 is required for the normal development of the forebrain axonal connections publication-title: Development – volume: 142 start-page: 727 year: 2006 end-page: 737 article-title: Transition of mouse de novo methyltransferases expression from Dnmt3b to Dnmt3a during neural progenitor cell development publication-title: Neuroscience – volume: 30 start-page: 15052 year: 2010 end-page: 15066 article-title: Matrix‐binding vascular endothelial growth factor (VEGF) isoforms guide granule cell migration in the cerebellum via VEGF receptor Flk1 publication-title: J Neurosci – volume: 23 start-page: 910 year: 2006 end-page: 920 article-title: The development of cortical connections publication-title: Eur J Neurosci – volume: 198 start-page: 483 year: 2003 end-page: 489 article-title: VEGF164‐mediated inflammation is required for pathological, but not physiological, ischemia‐induced retinal neovascularization publication-title: J Exp Med – volume: 267 start-page: 26031 year: 1992 end-page: 26037 article-title: Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms publication-title: J Biol Chem – volume: 326 start-page: 1216 year: 2009 end-page: 1219 article-title: The extracellular matrix: Not just pretty fibrils publication-title: Science – ident: e_1_2_6_84_1 doi: 10.4161/cam.2.3.6485 – ident: e_1_2_6_53_1 doi: 10.1038/nrn2151 – ident: e_1_2_6_85_1 doi: 10.1038/nn2074 – ident: e_1_2_6_67_1 doi: 10.1038/386671a0 – ident: e_1_2_6_5_1 doi: 10.1073/pnas.1002285107 – ident: e_1_2_6_4_1 doi: 10.1111/j.1460-9568.2008.06475.x – ident: e_1_2_6_30_1 doi: 10.1016/S0021-9258(18)35712-0 – ident: e_1_2_6_21_1 doi: 10.1016/j.neuron.2005.04.012 – ident: e_1_2_6_62_1 doi: 10.1111/j.1440-169X.2009.01095.x – ident: e_1_2_6_31_1 doi: 10.1007/s13238-012-2916-6 – ident: e_1_2_6_25_1 doi: 10.1038/nrn2463 – ident: e_1_2_6_12_1 doi: 10.1523/JNEUROSCI.2899-04.2005 – ident: e_1_2_6_38_1 doi: 10.1016/j.spl.2008.01.003 – volume: 1 start-page: 255 year: 2007 ident: e_1_2_6_66_1 article-title: Expression of putative sex‐determining genes during the thermosensitive period of gonad development in the snapping turtle, Chelydra serpentina publication-title: Sexual Dev Genet Mol Biol Evolution Endocrinol Embryol Pathol Sex Determin Differentiat contributor: fullname: Rhen T – ident: e_1_2_6_50_1 doi: 10.1242/dev.072348 – ident: e_1_2_6_59_1 doi: 10.1111/j.1365-2184.2012.00845.x – ident: e_1_2_6_27_1 doi: 10.1002/dc.10105 – ident: e_1_2_6_54_1 doi: 10.1016/S0070-2153(05)69004-7 – ident: e_1_2_6_68_1 doi: 10.1101/gad.242002 – ident: e_1_2_6_69_1 doi: 10.1523/JNEUROSCI.0477-10.2010 – ident: e_1_2_6_91_1 doi: 10.1242/dev.129.21.5029 – ident: e_1_2_6_9_1 doi: 10.1038/8379 – ident: e_1_2_6_73_1 doi: 10.1016/j.neuron.2008.09.028 – ident: e_1_2_6_18_1 doi: 10.1242/dev.073411 – ident: e_1_2_6_60_1 doi: 10.1091/mbc.4.12.1317 – ident: e_1_2_6_20_1 doi: 10.1002/dneu.20895 – ident: e_1_2_6_55_1 doi: 10.1002/1097-0177(2000)9999:9999<::AID-DVDY1093>3.0.CO;2-D – ident: e_1_2_6_78_1 doi: 10.1002/cne.21336 – ident: e_1_2_6_79_1 doi: 10.1016/j.ydbio.2005.10.016 – ident: e_1_2_6_7_1 doi: 10.1038/380435a0 – ident: e_1_2_6_47_1 doi: 10.1042/BST0371201 – ident: e_1_2_6_72_1 doi: 10.1242/dev.00539 – year: 2012 ident: e_1_2_6_11_1 article-title: Spatiotemporal expression patterns of Pax6 in the brain of embryonic, newborn, and adult mice publication-title: Brain Struct Funct contributor: fullname: Duan D – ident: e_1_2_6_39_1 doi: 10.1016/j.semcdb.2011.09.010 – ident: e_1_2_6_41_1 doi: 10.1073/pnas.182296499 – ident: e_1_2_6_88_1 doi: 10.1016/j.neuron.2010.12.005 – ident: e_1_2_6_29_1 doi: 10.1186/gb-2003-4-10-r70 – ident: e_1_2_6_81_1 doi: 10.1093/nar/gkq973 – ident: e_1_2_6_14_1 doi: 10.1016/0092-8674(95)90536-7 – ident: e_1_2_6_6_1 doi: 10.1016/j.gde.2010.05.003 – ident: e_1_2_6_28_1 doi: 10.1016/S0896-6273(01)00211-2 – ident: e_1_2_6_26_1 doi: 10.1038/nn828 – ident: e_1_2_6_56_1 doi: 10.1016/j.mcn.2008.10.007 – ident: e_1_2_6_35_1 doi: 10.1126/science.1176009 – ident: e_1_2_6_37_1 doi: 10.1186/1471-2105-7-59 – ident: e_1_2_6_49_1 doi: 10.1242/dev.036624 – ident: e_1_2_6_74_1 doi: 10.1242/dev.047167 – ident: e_1_2_6_87_1 doi: 10.1038/nn1009-1211 – ident: e_1_2_6_48_1 doi: 10.1159/000297602 – ident: e_1_2_6_45_1 doi: 10.1042/BJ20110301 – volume: 119 start-page: 227 year: 2003 ident: e_1_2_6_86_1 article-title: VEGF expression is developmentally regulated during human brain angiogenesis publication-title: Histochem Cell Biol doi: 10.1007/s00418-003-0510-y contributor: fullname: Virgintino D – ident: e_1_2_6_23_1 doi: 10.1111/j.1460-9568.2006.04626.x – ident: e_1_2_6_17_1 doi: 10.1046/j.1523-1755.1999.00610.x – ident: e_1_2_6_34_1 doi: 10.1093/bioinformatics/18.12.1585 – ident: e_1_2_6_65_1 doi: 10.1523/JNEUROSCI.3204-07.2007 – ident: e_1_2_6_71_1 doi: 10.1371/journal.pgen.1000511 – ident: e_1_2_6_42_1 doi: 10.1093/biostatistics/kxj037 – ident: e_1_2_6_64_1 doi: 10.1016/j.ydbio.2006.08.035 – ident: e_1_2_6_16_1 doi: 10.1203/pdr.0b013e3180457635 – ident: e_1_2_6_46_1 doi: 10.1242/dev.015891 – ident: e_1_2_6_80_1 doi: 10.1634/stemcells.2008-0319 – ident: e_1_2_6_51_1 doi: 10.1126/stke.2001.112.re21 – ident: e_1_2_6_75_1 doi: 10.1016/S0736-5748(02)00040-0 – volume: 39 start-page: 809 year: 1995 ident: e_1_2_6_13_1 article-title: Sonic hedgehog: A common signal for ventral patterning along the rostrocaudal axis of the neural tube publication-title: Int J Dev Biol contributor: fullname: Ericson J – ident: e_1_2_6_32_1 doi: 10.1093/nar/gkn923 – ident: e_1_2_6_83_1 doi: 10.1523/JNEUROSCI.5669-08.2009 – ident: e_1_2_6_58_1 doi: 10.1634/stemcells.2007-0884 – ident: e_1_2_6_36_1 doi: 10.1084/jem.20022027 – ident: e_1_2_6_3_1 doi: 10.1007/978-3-642-67432-7_1 – ident: e_1_2_6_92_1 doi: 10.1096/fj.02-0515com – ident: e_1_2_6_43_1 doi: 10.1242/dev.129.21.5041 – ident: e_1_2_6_77_1 doi: 10.1242/dev.124.19.3765 – ident: e_1_2_6_89_1 doi: 10.1016/j.neuroscience.2006.07.053 – ident: e_1_2_6_24_1 doi: 10.1002/pmic.200700724 – ident: e_1_2_6_2_1 doi: 10.1126/science.278.5337.474 – ident: e_1_2_6_76_1 doi: 10.1172/JCI0214362 – ident: e_1_2_6_57_1 doi: 10.1620/tjem.193.163 – ident: e_1_2_6_40_1 doi: 10.1074/jbc.273.16.9357 – ident: e_1_2_6_61_1 doi: 10.1038/sj.emboj.7600402 – ident: e_1_2_6_63_1 doi: 10.1111/j.1460-9568.2006.04620.x – ident: e_1_2_6_70_1 doi: 10.1523/JNEUROSCI.5074-07.2008 – ident: e_1_2_6_15_1 doi: 10.1016/S0092-8674(00)80323-2 – ident: e_1_2_6_33_1 doi: 10.1038/nprot.2008.211 – ident: e_1_2_6_44_1 doi: 10.1073/pnas.96.25.14378 – ident: e_1_2_6_90_1 doi: 10.1126/science.1190485 – ident: e_1_2_6_10_1 doi: 10.1016/j.ydbio.2011.06.045 – ident: e_1_2_6_19_1 doi: 10.1016/j.neuron.2008.01.018 – ident: e_1_2_6_52_1 doi: 10.1242/dmm.001602 – ident: e_1_2_6_82_1 doi: 10.1177/117693510800600008 – ident: e_1_2_6_8_1 doi: 10.1016/S0092-8674(00)81010-7 – ident: e_1_2_6_22_1 doi: 10.1016/S0361-9230(01)00777-8 |
SSID | ssj0053260 |
Score | 2.1823633 |
Snippet | ABSTRACT
Regulation of neural stem cell (NSC) fate decisions is critical during the transition from a multicellular mammalian forebrain neuroepithelium to the... Regulation of neural stem cell (NSC) fate decisions is critical during the transition from a multicellular mammalian forebrain neuroepithelium to the... |
SourceID | pubmedcentral proquest crossref pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 63 |
SubjectTerms | Animals Blotting, Western Cell Differentiation - physiology Cell fate Cell Proliferation Central Nervous System - blood supply Cloning, Molecular Enzyme-Linked Immunosorbent Assay Epithelium - physiology Female forebrain Gene Expression Gene Expression Profiling Genotype Immunohistochemistry Mice Mice, Transgenic Microarray Analysis Mitosis - genetics neural development Neural Stem Cells - physiology neurogenesis Pax6 Pregnancy Prosencephalon - cytology Prosencephalon - physiology Real-Time Polymerase Chain Reaction Tbr2 Transcriptome - genetics Vascular Endothelial Growth Factor A - chemistry Vascular Endothelial Growth Factor A - genetics Vascular Endothelial Growth Factor A - metabolism VEGF |
Title | Shifts in the vascular endothelial growth factor isoforms result in transcriptome changes correlated with early neural stem cell proliferation and differentiation in mouse forebrain |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fdneu.22130 https://www.ncbi.nlm.nih.gov/pubmed/24124161 https://www.proquest.com/docview/1466124288 https://search.proquest.com/docview/1467063032 https://search.proquest.com/docview/1492614096 https://pubmed.ncbi.nlm.nih.gov/PMC4096862 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEBVtTr20TdIPt2mZ0NJDwY0ty5ENuYRmQ06hkAZ6M7Y07ho22hB7D_1h_X-dkdZOl0Ag5GawZMvWzOg9fbwR4nOBZYFZYmOtTBmrQtVxY4nzHJrUttLqFP0K_tmFPv9VnMxYJudoPAsT9CGmCTf2DB-v2cHrpj-4FQ21DlffpKQYTAGYaII_v5H9GMNwTrgkCUvK5PIqTydtUnlwW3VzNLoDMe_ulPwfwfoh6PTF4xr_UjxfQ084DrayLZ6g2xG7x45o99Uf-AJ-M6ifZd8Vfy_mXTv00DkghAjjflVAZ_nI1oKsFn4Tgx_mEDL2QNcvGf_2QPx9tRh8TR4HfVRaXiGEI8Y9GM4HsiCIa4EngQFZYhlYV5OeybLSwIsJcM3phFoMBgq1szDmchmCNfEbeN4Cgd7Ly9-deyUuT2c_v5_F6wwPsVEFDQCEHghe5oYlhkyeIIUDWRcNosmbksXTWM-wLNI6K1vZaMNwB1vUmnBKZgjqvRZbbunwraCmcWZCAoNJrale3ljTpCptEqwVSqUj8Wns6eo6CHlUQbJZVtwble-NSOyNRlCtnblndkQ4kHhaEYn96Ta5If-O2iF9KpfRLF-WyfvKlMRXiVAfRuJNsKupKZKzgBP6joTesLipAMuAb95x3dzLgfMDiZdG4qu3uHu-rjo5n136q3cPKfxePCOYqMLE057YGm5W-EE87e3qo3e5f0kkMyc |
link.rule.ids | 230,315,782,786,887,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RcoALr_JIKTAIxAFp2zycdXLgUNGtFlFWSG0lblFiO2ykrbdqsgd-GP-PGXuTsqpUCXGLZDux45nxN2P7G4D3mckzk4R6JIXKRyIT5ajS5POMVaTrWMvIuB386amc_ciOJkyT86m_C-P5IYaAG2uGs9es4ByQPrhmDdXWrPbjmIzwFtwVY5JEvsGRfO8NcUrIJPSbyqT0Io0GdtL44Lrt5np0A2TePCv5N4Z1i9Dxw__s_iN4sEafeOjF5THcMfYJ7Bxa8rwvfuEHdOdBXaB9B36fzpu6a7GxSCAR-yOraKzmW1sLElz8SU58N0eftAebdskQuEVy4VeLzrXkpdAZpuWFQX_LuEXFKUEWhHI1chwYDbMsI1Nr0juZWRp5PwEvOaNQbbyMYmk19ulcOi9Q_AUOXRik7_IOeGOfwvnx5OzzdLRO8jBSIqM1gAAEIcxUMcuQSkNDFiEus8oYlVY586cxpWGeRWWS13ElFSMeUxspCaokitDeM9i2S2teAHWNkxMSHgxLSe3SSqsqElEVmlKYWMgA3vVTXVx6Lo_CszbHBc9G4WYjgL1eCoq1PrfsIBEUJFctC-DtUEyayL-jtIaGynUkM5gl8W11cnJZyaceB_DcC9bQlZgTgRMAD0BuiNxQgZnAN0tsM3eM4PxCck0D-OhE7pbRFUezybl72v2Xym_g3vTs20lx8mX29SXcJ9QofBxqD7a7q5V5BVutXr12-vcHfFU3Tw |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB6aFEovfaUPt2k7paWHwia2LMc29BK6u6S0LIE00JuxJblr2GiX2HvID-v_64y0droEAqU3gyRbsmZG34ykbwA-ZCbPTBzqUSpVPpKZLEeVJp_nSEW6FjqNjNvBPzlLZz-z8YRpcj73d2E8P8QQcGPNcPaaFXyl68Nr0lBtzfpACLLBO3BXEg5n5vw4Pu3tcELAJPR7yqTzMokGclJxeN12ezm6gTFvHpX8G8K6NWj68P96_wgebLAnHntheQx3jH0Ce8eW_O6LK_yI7jSoC7Pvwe-zeVN3LTYWCSJif2AVjdV8Z2tBYou_yIXv5uhT9mDTLhkAt0gO_HrRuZa8EDqztLww6O8Yt6g4IciCMK5GjgKjYY5lZGJNeifzSiPvJuCK8wnVxksollZjn8yl8-LEX-DAhUH6Lu9_N_YpnE8nP76cjDYpHkZKZrQCEHwgfJko5hhSSWjIHogyq4xRSZUzexoTGuZZVMZ5LapUMd4xtUlTAiqxIqz3DHbt0poXQF3j1ISEBsMypXZJpVUVyagKTSmNkGkA7_uZLlaeyaPwnM2i4Nko3GwEsN8LQbHR5pbdIwKC5KhlAbwbikkP-XeU1tBQuU7K_GWxuK1OTg4redRHATz3cjV0RXAacILfAaRbEjdUYB7w7RLbzB0fOL-QHNMAPjmJu2V0xXg2OXdPL_-l8lu4dzqeFt-_zr69gvsEGaUPQu3Dbne5Nq9hp9XrN077_gCXEjX1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shifts+in+the+vascular+endothelial+growth+factor+isoforms+result+in+transcriptome+changes+correlated+with+early+neural+stem+cell+proliferation+and+differentiation+in+mouse+forebrain&rft.jtitle=Developmental+neurobiology+%28Hoboken%2C+N.J.%29&rft.au=Cain%2C+Jacob+T.&rft.au=Berosik%2C+Matthew+A.&rft.au=Snyder%2C+Stephanie+D.&rft.au=Crawford%2C+Natalie+F.&rft.date=2014-01-01&rft.issn=1932-8451&rft.eissn=1932-846X&rft.volume=74&rft.issue=1&rft.spage=63&rft.epage=81&rft_id=info:doi/10.1002%2Fdneu.22130&rft.externalDBID=10.1002%252Fdneu.22130&rft.externalDocID=DNEU22130 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-8451&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-8451&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-8451&client=summon |