Shifts in the vascular endothelial growth factor isoforms result in transcriptome changes correlated with early neural stem cell proliferation and differentiation in mouse forebrain

ABSTRACT Regulation of neural stem cell (NSC) fate decisions is critical during the transition from a multicellular mammalian forebrain neuroepithelium to the multilayered neocortex. Forebrain development requires coordinated vascular investment alongside NSC differentiation. Vascular endothelial gr...

Full description

Saved in:
Bibliographic Details
Published in:Developmental neurobiology (Hoboken, N.J.) Vol. 74; no. 1; pp. 63 - 81
Main Authors: Cain, Jacob T., Berosik, Matthew A., Snyder, Stephanie D., Crawford, Natalie F., Nour, Shirin I., Schaubhut, Geoffrey J., Darland, Diane C.
Format: Journal Article
Language:English
Published: United States Wiley Subscription Services, Inc 01-01-2014
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract ABSTRACT Regulation of neural stem cell (NSC) fate decisions is critical during the transition from a multicellular mammalian forebrain neuroepithelium to the multilayered neocortex. Forebrain development requires coordinated vascular investment alongside NSC differentiation. Vascular endothelial growth factor A (Vegf) has proven to be a pleiotrophic gene whose multiple protein isoforms regulate a broad range of effects in neurovascular systems. To test the hypothesis that the Vegf isoforms (120, 164, and 188) are required for normal forebrain development, we analyzed the forebrain transcriptome of mice expressing specific Vegf isoforms, Vegf120, VegfF188, or a combination of Vegf120/188. Transcriptome analysis identified differentially expressed genes in embryonic day (E) 9.5 forebrain, a time point preceding dramatic neuroepithelial expansion and vascular investment in the telencephalon. Meta‐analysis identified gene pathways linked to chromosome‐level modifications, cell fate regulation, and neurogenesis that were altered in Vegf isoform mice. Based on these gene network shifts, we predicted that NSC populations would be affected in later stages of forebrain development. In the E11.5 telencephalon, we quantified mitotic cells [Phospho‐Histone H3 (pHH3)‐positive] and intermediate progenitor cells (Tbr2/Eomes‐positive), observing quantitative and qualitative shifts in these populations. We observed qualitative shifts in cortical layering at P0, particularly with Ctip2‐positive cells in layer V. The results identify a suite of genes and functional gene networks that can be used to further dissect the role of Vegf in regulating NSC differentiation and downstream consequences for NSC fate decisions. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 74: 63–81, 2014
AbstractList Regulation of neural stem cell (NSC) fate decisions is critical during the transition from a multicellular mammalian forebrain neuroepithelium to the multi-layered neocortex. Forebrain development requires coordinated vascular investment alongside NSC differentiation. Vascular endothelial growth factor A (Vegf) has proven to be a pleiotrophic gene whose multiple protein isoforms regulate a broad range of effects in neurovascular systems. To test the hypothesis that the Vegf isoforms (120, 164, and 188) are required for normal forebrain development, we analyzed the forebrain transcriptome of mice expressing specific Vegf isoforms, Vegf120, VegfF188, or a combination of Vegf120/188. Transcriptome analysis identified differentially expressed genes in embryonic day (E) 9.5 forebrain, a time point preceding dramatic neuroepithelial expansion and vascular investment in the telencephalon. Meta-analysis identified gene pathways linked to chromosome-level modifications, cell fate regulation, and neurogenesis that were altered in Vegf isoform mice. Based on these gene network shifts, we predicted that NSC populations would be affected in later stages of forebrain development. In the E11.5 telencephalon, we quantified mitotic cells [Phospho-Histone H3 (pHH3)-positive] and intermediate progenitor cells (Tbr2/Eomes-positive), observing quantitative and qualitative shifts in these populations. We observed qualitative shifts in cortical layering at P0, particularly with Ctip2-positive cells in layer V. The results identify a suite of genes and functional gene networks that can be used to further dissect the role of Vegf in regulating NSC differentiation and downstream consequences for NSC fate decisions.
Regulation of neural stem cell (NSC) fate decisions is critical during the transition from a multicellular mammalian forebrain neuroepithelium to the multilayered neocortex. Forebrain development requires coordinated vascular investment alongside NSC differentiation. Vascular endothelial growth factor A (Vegf) has proven to be a pleiotrophic gene whose multiple protein isoforms regulate a broad range of effects in neurovascular systems. To test the hypothesis that the Vegf isoforms (120, 164, and 188) are required for normal forebrain development, we analyzed the forebrain transcriptome of mice expressing specific Vegf isoforms, Vegf120, VegfF188, or a combination of Vegf120/188. Transcriptome analysis identified differentially expressed genes in embryonic day (E) 9.5 forebrain, a time point preceding dramatic neuroepithelial expansion and vascular investment in the telencephalon. Meta‐analysis identified gene pathways linked to chromosome‐level modifications, cell fate regulation, and neurogenesis that were altered in Vegf isoform mice. Based on these gene network shifts, we predicted that NSC populations would be affected in later stages of forebrain development. In the E11.5 telencephalon, we quantified mitotic cells [Phospho‐Histone H3 (pHH3)‐positive] and intermediate progenitor cells (Tbr2/Eomes‐positive), observing quantitative and qualitative shifts in these populations. We observed qualitative shifts in cortical layering at P0, particularly with Ctip2‐positive cells in layer V. The results identify a suite of genes and functional gene networks that can be used to further dissect the role of Vegf in regulating NSC differentiation and downstream consequences for NSC fate decisions. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 74: 63–81, 2014
Regulation of neural stem cell (NSC) fate decisions is critical during the transition from a multicellular mammalian forebrain neuroepithelium to the multilayered neocortex. Forebrain development requires coordinated vascular investment alongside NSC differentiation. Vascular endothelial growth factor A (Vegf) has proven to be a pleiotrophic gene whose multiple protein isoforms regulate a broad range of effects in neurovascular systems. To test the hypothesis that the Vegf isoforms (120, 164, and 188) are required for normal forebrain development, we analyzed the forebrain transcriptome of mice expressing specific Vegf isoforms, Vegf120, VegfF188, or a combination of Vegf120/188. Transcriptome analysis identified differentially expressed genes in embryonic day (E) 9.5 forebrain, a time point preceding dramatic neuroepithelial expansion and vascular investment in the telencephalon. Meta-analysis identified gene pathways linked to chromosome-level modifications, cell fate regulation, and neurogenesis that were altered in Vegf isoform mice. Based on these gene network shifts, we predicted that NSC populations would be affected in later stages of forebrain development. In the E11.5 telencephalon, we quantified mitotic cells [Phospho-Histone H3 (pHH3)-positive] and intermediate progenitor cells (Tbr2/Eomes-positive), observing quantitative and qualitative shifts in these populations. We observed qualitative shifts in cortical layering at P0, particularly with Ctip2-positive cells in layer V. The results identify a suite of genes and functional gene networks that can be used to further dissect the role of Vegf in regulating NSC differentiation and downstream consequences for NSC fate decisions.
ABSTRACT Regulation of neural stem cell (NSC) fate decisions is critical during the transition from a multicellular mammalian forebrain neuroepithelium to the multilayered neocortex. Forebrain development requires coordinated vascular investment alongside NSC differentiation. Vascular endothelial growth factor A (Vegf) has proven to be a pleiotrophic gene whose multiple protein isoforms regulate a broad range of effects in neurovascular systems. To test the hypothesis that the Vegf isoforms (120, 164, and 188) are required for normal forebrain development, we analyzed the forebrain transcriptome of mice expressing specific Vegf isoforms, Vegf120, VegfF188, or a combination of Vegf120/188. Transcriptome analysis identified differentially expressed genes in embryonic day (E) 9.5 forebrain, a time point preceding dramatic neuroepithelial expansion and vascular investment in the telencephalon. Meta‐analysis identified gene pathways linked to chromosome‐level modifications, cell fate regulation, and neurogenesis that were altered in Vegf isoform mice. Based on these gene network shifts, we predicted that NSC populations would be affected in later stages of forebrain development. In the E11.5 telencephalon, we quantified mitotic cells [Phospho‐Histone H3 (pHH3)‐positive] and intermediate progenitor cells (Tbr2/Eomes‐positive), observing quantitative and qualitative shifts in these populations. We observed qualitative shifts in cortical layering at P0, particularly with Ctip2‐positive cells in layer V. The results identify a suite of genes and functional gene networks that can be used to further dissect the role of Vegf in regulating NSC differentiation and downstream consequences for NSC fate decisions. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 74: 63–81, 2014
Regulation of neural stem cell (NSC) fate decisions is critical during the transition from a multicellular mammalian forebrain neuroepithelium to the multilayered neocortex. Forebrain development requires coordinated vascular investment alongside NSC differentiation. Vascular endothelial growth factor A (Vegf) has proven to be a pleiotrophic gene whose multiple protein isoforms regulate a broad range of effects in neurovascular systems. To test the hypothesis that the Vegf isoforms (120, 164, and 188) are required for normal forebrain development, we analyzed the forebrain transcriptome of mice expressing specific Vegf isoforms, Vegf120, VegfF188, or a combination of Vegf120/188. Transcriptome analysis identified differentially expressed genes in embryonic day (E) 9.5 forebrain, a time point preceding dramatic neuroepithelial expansion and vascular investment in the telencephalon. Meta-analysis identified gene pathways linked to chromosome-level modifications, cell fate regulation, and neurogenesis that were altered in Vegf isoform mice. Based on these gene network shifts, we predicted that NSC populations would be affected in later stages of forebrain development. In the E11.5 telencephalon, we quantified mitotic cells [Phospho-Histone H3 (pHH3)-positive] and intermediate progenitor cells (Tbr2/Eomes-positive), observing quantitative and qualitative shifts in these populations. We observed qualitative shifts in cortical layering at P0, particularly with Ctip2-positive cells in layer V. The results identify a suite of genes and functional gene networks that can be used to further dissect the role of Vegf in regulating NSC differentiation and downstream consequences for NSC fate decisions. copyright 2013 Wiley Periodicals, Inc. Develop Neurobiol 74: 63-81, 2014
Regulation of neural stem cell (NSC) fate decisions is critical during the transition from a multicellular mammalian forebrain neuroepithelium to the multilayered neocortex. Forebrain development requires coordinated vascular investment alongside NSC differentiation. Vascular endothelial growth factor A (Vegf) has proven to be a pleiotrophic gene whose multiple protein isoforms regulate a broad range of effects in neurovascular systems. To test the hypothesis that the Vegf isoforms (120, 164, and 188) are required for normal forebrain development, we analyzed the forebrain transcriptome of mice expressing specific Vegf isoforms, Vegf120, VegfF188, or a combination of Vegf120/188. Transcriptome analysis identified differentially expressed genes in embryonic day (E) 9.5 forebrain, a time point preceding dramatic neuroepithelial expansion and vascular investment in the telencephalon. Meta-analysis identified gene pathways linked to chromosome-level modifications, cell fate regulation, and neurogenesis that were altered in Vegf isoform mice. Based on these gene network shifts, we predicted that NSC populations would be affected in later stages of forebrain development. In the E11.5 telencephalon, we quantified mitotic cells [Phospho-Histone H3 (pHH3)-positive] and intermediate progenitor cells (Tbr2/Eomes-positive), observing quantitative and qualitative shifts in these populations. We observed qualitative shifts in cortical layering at P0, particularly with Ctip2-positive cells in layer V. The results identify a suite of genes and functional gene networks that can be used to further dissect the role of Vegf in regulating NSC differentiation and downstream consequences for NSC fate decisions. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 74: 63-81, 2014 [PUBLICATION ABSTRACT]
Author Darland, Diane C.
Schaubhut, Geoffrey J.
Berosik, Matthew A.
Snyder, Stephanie D.
Crawford, Natalie F.
Nour, Shirin I.
Cain, Jacob T.
AuthorAffiliation 2 Current address is University of Vermont, Clinical Neuroscience Research Unit, Burlington, VT
1 University of North Dakota, Department of Biology, Grand Forks, ND
AuthorAffiliation_xml – name: 1 University of North Dakota, Department of Biology, Grand Forks, ND
– name: 2 Current address is University of Vermont, Clinical Neuroscience Research Unit, Burlington, VT
Author_xml – sequence: 1
  givenname: Jacob T.
  surname: Cain
  fullname: Cain, Jacob T.
  organization: University of North Dakota
– sequence: 2
  givenname: Matthew A.
  surname: Berosik
  fullname: Berosik, Matthew A.
  organization: University of North Dakota
– sequence: 3
  givenname: Stephanie D.
  surname: Snyder
  fullname: Snyder, Stephanie D.
  organization: University of North Dakota
– sequence: 4
  givenname: Natalie F.
  surname: Crawford
  fullname: Crawford, Natalie F.
  organization: University of North Dakota
– sequence: 5
  givenname: Shirin I.
  surname: Nour
  fullname: Nour, Shirin I.
  organization: University of North Dakota
– sequence: 6
  givenname: Geoffrey J.
  surname: Schaubhut
  fullname: Schaubhut, Geoffrey J.
  organization: University of North Dakota
– sequence: 7
  givenname: Diane C.
  surname: Darland
  fullname: Darland, Diane C.
  organization: University of North Dakota
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24124161$$D View this record in MEDLINE/PubMed
BookMark eNqNksuKFDEUhoOMOBfd-AAScCNCj7lVqmojyDheYNCFDrgLqdSp7gyppE1S0_SD-X6mpsZGXYgQSHLy5c9_Ts4pOvLBA0JPKTmnhLBXvYfpnDHKyQN0QlvOVo2Q344O64oeo9OUbgipOJPkETpmgpYh6Qn68WVjh5yw9ThvAN_qZCanIwbfhxJwVju8jmGXN3jQJoeIbQpDiGPCEdLk8t3NqH0y0W5zGAGbjfZrSNiEGMHpDD3e2XIfdHR7XLzGopkyjNiAc3gbg7MDRJ1t8Fj7Hvd2KHvw2S6x8sIYpgS4vAtd1NY_Rg8H7RI8uZ_P0PW7y68XH1ZXn99_vHhztTKioWQlaMUpqUxdymQqArSVTDcdgKm6llVCMNGytqGatwPralMLTmGAuqYV5YYKfoZeL7rbqRuhN8VTMa-20Y467lXQVv154u1GrcOtEqSVjWRF4MW9QAzfJ0hZjTbNaWsPJSVFiwFJZ_o_UFkTyQmfVZ__hd6EKfpSiZmS5W9Z0xTq5UKZGFKKMBx8U6LmxlFz46i7xinws98zPaC_OqUAdAF21sH-H1Lq7afL60X0J8Om1A8
CitedBy_id crossref_primary_10_1186_s13024_017_0158_z
crossref_primary_10_1039_D3RA03669C
crossref_primary_10_1371_journal_pone_0100576
crossref_primary_10_1002_bit_28105
crossref_primary_10_1016_j_brainres_2017_09_018
crossref_primary_10_1089_scd_2017_0270
crossref_primary_10_1093_cercor_bhy082
crossref_primary_10_3389_fncir_2023_1256455
Cites_doi 10.4161/cam.2.3.6485
10.1038/nrn2151
10.1038/nn2074
10.1038/386671a0
10.1073/pnas.1002285107
10.1111/j.1460-9568.2008.06475.x
10.1016/S0021-9258(18)35712-0
10.1016/j.neuron.2005.04.012
10.1111/j.1440-169X.2009.01095.x
10.1007/s13238-012-2916-6
10.1038/nrn2463
10.1523/JNEUROSCI.2899-04.2005
10.1016/j.spl.2008.01.003
10.1242/dev.072348
10.1111/j.1365-2184.2012.00845.x
10.1002/dc.10105
10.1016/S0070-2153(05)69004-7
10.1101/gad.242002
10.1523/JNEUROSCI.0477-10.2010
10.1242/dev.129.21.5029
10.1038/8379
10.1016/j.neuron.2008.09.028
10.1242/dev.073411
10.1091/mbc.4.12.1317
10.1002/dneu.20895
10.1002/1097-0177(2000)9999:9999<::AID-DVDY1093>3.0.CO;2-D
10.1002/cne.21336
10.1016/j.ydbio.2005.10.016
10.1038/380435a0
10.1042/BST0371201
10.1242/dev.00539
10.1016/j.semcdb.2011.09.010
10.1073/pnas.182296499
10.1016/j.neuron.2010.12.005
10.1186/gb-2003-4-10-r70
10.1093/nar/gkq973
10.1016/0092-8674(95)90536-7
10.1016/j.gde.2010.05.003
10.1016/S0896-6273(01)00211-2
10.1038/nn828
10.1016/j.mcn.2008.10.007
10.1126/science.1176009
10.1186/1471-2105-7-59
10.1242/dev.036624
10.1242/dev.047167
10.1038/nn1009-1211
10.1159/000297602
10.1042/BJ20110301
10.1007/s00418-003-0510-y
10.1111/j.1460-9568.2006.04626.x
10.1046/j.1523-1755.1999.00610.x
10.1093/bioinformatics/18.12.1585
10.1523/JNEUROSCI.3204-07.2007
10.1371/journal.pgen.1000511
10.1093/biostatistics/kxj037
10.1016/j.ydbio.2006.08.035
10.1203/pdr.0b013e3180457635
10.1242/dev.015891
10.1634/stemcells.2008-0319
10.1126/stke.2001.112.re21
10.1016/S0736-5748(02)00040-0
10.1093/nar/gkn923
10.1523/JNEUROSCI.5669-08.2009
10.1634/stemcells.2007-0884
10.1084/jem.20022027
10.1007/978-3-642-67432-7_1
10.1096/fj.02-0515com
10.1242/dev.129.21.5041
10.1242/dev.124.19.3765
10.1016/j.neuroscience.2006.07.053
10.1002/pmic.200700724
10.1126/science.278.5337.474
10.1172/JCI0214362
10.1620/tjem.193.163
10.1074/jbc.273.16.9357
10.1038/sj.emboj.7600402
10.1111/j.1460-9568.2006.04620.x
10.1523/JNEUROSCI.5074-07.2008
10.1016/S0092-8674(00)80323-2
10.1038/nprot.2008.211
10.1073/pnas.96.25.14378
10.1126/science.1190485
10.1016/j.ydbio.2011.06.045
10.1016/j.neuron.2008.01.018
10.1242/dmm.001602
10.1177/117693510800600008
10.1016/S0092-8674(00)81010-7
10.1016/S0361-9230(01)00777-8
ContentType Journal Article
Copyright Copyright © 2013 Wiley Periodicals, Inc.
Copyright_xml – notice: Copyright © 2013 Wiley Periodicals, Inc.
DBID 24P
WIN
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QR
7TK
8FD
FR3
K9.
P64
7X8
5PM
DOI 10.1002/dneu.22130
DatabaseName Wiley Open Access
Wiley Free Archive
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Chemoreception Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE

Neurosciences Abstracts
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1932-846X
EndPage 81
ExternalDocumentID 3150206351
10_1002_dneu_22130
24124161
DNEU22130
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: American Heart Association
  funderid: AHA0715542Z
– fundername: NIH
  funderid: NINDS R15 NS057807‐01/‐02; 3R15NS057807‐01S1
– fundername: NINDS NIH HHS
  grantid: R15 NS057807-01/-02
– fundername: NCRR NIH HHS
  grantid: P20 RR017699
– fundername: NINDS NIH HHS
  grantid: R15 NS057807
– fundername: NINDS NIH HHS
  grantid: 3R15NS057807-01S1
GroupedDBID ---
-DZ
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIVO
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
SV3
TEORI
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XJT
XV2
~IA
~WT
1OB
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
CITATION
7QR
7TK
8FD
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c4810-4153105c7100c50e1962a8beec5b925442492981a39f2b7c7431efe771513c143
IEDL.DBID 33P
ISSN 1932-8451
IngestDate Tue Sep 17 21:10:38 EDT 2024
Fri Aug 16 06:03:53 EDT 2024
Fri Aug 16 05:58:55 EDT 2024
Tue Nov 19 05:28:17 EST 2024
Thu Nov 21 21:07:38 EST 2024
Sat Sep 28 07:52:37 EDT 2024
Sat Aug 24 00:40:15 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords neurogenesis
Tbr2
Pax6
forebrain
neural development
VEGF
Language English
License Copyright © 2013 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4810-4153105c7100c50e1962a8beec5b925442492981a39f2b7c7431efe771513c143
Notes Competing Interests
The authors declare that they have no competing interests.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fdneu.22130
PMID 24124161
PQID 1466124288
PQPubID 946356
PageCount 19
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4096862
proquest_miscellaneous_1492614096
proquest_miscellaneous_1467063032
proquest_journals_1466124288
crossref_primary_10_1002_dneu_22130
pubmed_primary_24124161
wiley_primary_10_1002_dneu_22130_DNEU22130
PublicationCentury 2000
PublicationDate January 2014
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: January 2014
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Developmental neurobiology (Hoboken, N.J.)
PublicationTitleAlternate Dev Neurobiol
PublicationYear 2014
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1997; 278
2011; 358
2002; 16
2001; 220
2007; 302
2003; 119
2009; 40
2002; 18
2011; 437
2007; 502
2010; 107
2002; 57
2004; 23
2002; 99
2008; 9
1996; 380
2008; 78
2008; 8
2009a; 37
2003; 17
2008; 6
2008; 2
2003; 198
1993; 4
2005; 25
1998; 273
2005; 69
2009; 12
1997; 90
2010; 20
2009; 51
2006; 23
2011; 71
1997; 386
2008; 28
2007; 8
1999; 56
2008; 26
2003; 4
2011; 22
1999; 98
2007; 61
1999; 96
2002; 109
2011; 69
2007; 1
2012; 139
2008; 60
2010; 30
2009; 326
2007; 27
2006; 289
2010; 32
2010; 329
2012
2002; 5
1992; 267
2006; 7
2008; 57
2013; 140
2008; 11
2001; 29
2011; 39
1999; 5
2009; 136
2009; 27
2005; 46
2009; 29
2003; 130
1997; 124
1980; 59
2002; 26
2012; 3
2002; 20
1995a; 39
2001; 193
2009b; 4
1995b; 81
2010; 137
2002; 129
2006; 142
2009; 5
2008; 135
2009; 2
2012; 45
2009; 37
2001; 2001
12490442 - Bioinformatics. 2002 Dec;18(12):1585-92
9367432 - Development. 1997 Oct;124(19):3765-77
17514196 - Nat Rev Neurosci. 2007 Jun;8(6):427-37
22354470 - Brain Struct Funct. 2013 Mar;218(2):353-72
21068311 - J Neurosci. 2010 Nov 10;30(45):15052-66
18391536 - Sex Dev. 2007;1(4):255-70
19535498 - Dis Model Mech. 2009 Jul-Aug;2(7-8):412-8
21803034 - Dev Biol. 2011 Oct 1;358(1):9-22
9334308 - Science. 1997 Oct 17;278(5337):474-6
16979618 - Dev Biol. 2007 Feb 1;302(1):50-65
15634788 - J Neurosci. 2005 Jan 5;25(1):247-51
12181492 - Proc Natl Acad Sci U S A. 2002 Sep 3;99(18):11946-50
19521500 - PLoS Genet. 2009 Jun;5(6):e1000511
18467663 - Stem Cells. 2008 Jul;26(7):1663-72
20542680 - Curr Opin Genet Dev. 2010 Aug;20(4):408-15
12554697 - FASEB J. 2003 Feb;17(2):186-93
1464614 - J Biol Chem. 1992 Dec 25;267(36):26031-7
18448636 - J Neurosci. 2008 Apr 30;28(18):4604-12
22549586 - Protein Cell. 2012 Apr;3(4):278-90
17959802 - J Neurosci. 2007 Oct 24;27(43):11595-603
10588713 - Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14378-82
8167412 - Mol Biol Cell. 1993 Dec;4(12):1317-26
11169844 - Dev Dyn. 2001 Feb;220(2):112-21
9230312 - Cell. 1997 Jul 11;90(1):169-80
19909247 - Biochem Soc Trans. 2009 Dec;37(Pt 6):1201-6
10229225 - Nat Med. 1999 May;5(5):495-502
16519651 - Eur J Neurosci. 2006 Feb;23(4):857-68
18283662 - Proteomics. 2008 Mar;8(6):1257-65
19298550 - Dev Growth Differ. 2009 Apr;51(3):325-42
11827992 - J Clin Invest. 2002 Feb;109(3):327-36
20431123 - Development. 2010 Jun;137(11):1875-85
12175873 - Int J Dev Neurosci. 2002 Jun-Aug;20(3-5):349-57
21220099 - Neuron. 2011 Jan 13;69(1):61-76
20651149 - Science. 2010 Jul 23;329(5990):444-8
19965464 - Science. 2009 Nov 27;326(5957):1216-9
21045058 - Nucleic Acids Res. 2011 Jan;39(Database issue):D561-8
19143049 - Nat Rev Neurosci. 2008 Sep;9(9):678-85
19059340 - Mol Cell Neurosci. 2009 Feb;40(2):225-33
11239428 - Neuron. 2001 Feb;29(2):353-66
21538923 - Dev Neurobiol. 2011 Aug;71(8):690-709
20523026 - Dev Neurosci. 2010 Jul;32(2):149-62
8602241 - Nature. 1996 Apr 4;380(6573):435-9
12112824 - Diagn Cytopathol. 2002 Jun;26(6):356-9
18614579 - Development. 2008 Aug;135(16):2717-27
23444355 - Development. 2013 Mar;140(6):1250-61
16519656 - Eur J Neurosci. 2006 Feb;23(4):910-20
19033363 - Nucleic Acids Res. 2009 Jan;37(1):1-13
12381667 - Genes Dev. 2002 Oct 15;16(20):2684-98
9109485 - Nature. 1997 Apr 17;386(6626):671-4
15385962 - EMBO J. 2004 Oct 13;23(20):4061-71
16632515 - Biostatistics. 2007 Jan;8(1):118-27
10469350 - Kidney Int. 1999 Sep;56(3):794-814
21978864 - Semin Cell Dev Biol. 2011 Dec;22(9):1019-27
12900522 - J Exp Med. 2003 Aug 4;198(3):483-9
6996438 - Adv Anat Embryol Cell Biol. 1980;59:I-VI,1-62
12031274 - Brain Res Bull. 2002 Apr;57(6):777-88
12649737 - Histochem Cell Biol. 2003 Mar;119(3):227-32
11896398 - Nat Neurosci. 2002 Apr;5(4):308-15
7774016 - Cell. 1995 Jun 2;81(5):747-56
12397111 - Development. 2002 Nov;129(21):5029-40
11315763 - Tohoku J Exp Med. 2001 Mar;193(3):163-74
19783976 - Nat Neurosci. 2009 Oct;12(10):1211-2
16243597 - Curr Top Dev Biol. 2005;69:67-99
14519205 - Genome Biol. 2003;4(10):R70
15882633 - Neuron. 2005 May 5;46(3):369-72
17413844 - Pediatr Res. 2007 May;61(5 Pt 2):58R-63R
9545256 - J Biol Chem. 1998 Apr 17;273(16):9357-60
16466568 - BMC Bioinformatics. 2006;7:59
8645565 - Int J Dev Biol. 1995 Oct;39(5):809-16
21711246 - Biochem J. 2011 Jul 15;437(2):169-83
18344991 - Nat Neurosci. 2008 Apr;11(4):429-39
22434866 - Development. 2012 Apr;139(8):1371-80
20615956 - Proc Natl Acad Sci U S A. 2010 Jul 20;107(29):13129-34
16337622 - Dev Biol. 2006 Jan 15;289(2):329-35
19906872 - Development. 2009 Dec;136(23):4055-63
10428027 - Cell. 1999 Jul 23;98(2):147-57
18832594 - Stem Cells. 2009 Jan;27(1):49-58
19262109 - Cell Adh Migr. 2008 Jul-Sep;2(3):167-9
19571125 - J Neurosci. 2009 Jul 1;29(26):8335-49
18940588 - Neuron. 2008 Oct 9;60(1):56-69
11741095 - Sci STKE. 2001 Dec 11;2001(112):re21
23030059 - Cell Prolif. 2012 Dec;45(6):487-98
18255026 - Neuron. 2008 Feb 7;57(3):333-8
12783797 - Development. 2003 Jul;130(14):3269-81
17366607 - J Comp Neurol. 2007 May 20;502(3):382-99
18973570 - Eur J Neurosci. 2008 Oct;28(8):1449-56
16973295 - Neuroscience. 2006 Oct 27;142(3):727-37
19259420 - Cancer Inform. 2008;6:423-31
19131956 - Nat Protoc. 2009;4(1):44-57
12397112 - Development. 2002 Nov;129(21):5041-52
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_91_1
Virgintino D (e_1_2_6_86_1) 2003; 119
e_1_2_6_19_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_85_1
e_1_2_6_64_1
e_1_2_6_87_1
e_1_2_6_43_1
e_1_2_6_81_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_83_1
Duan D (e_1_2_6_11_1) 2012
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
Rhen T (e_1_2_6_66_1) 2007; 1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_89_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_75_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_71_1
e_1_2_6_92_1
e_1_2_6_90_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_79_1
e_1_2_6_63_1
e_1_2_6_84_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_80_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_82_1
Ericson J (e_1_2_6_13_1) 1995; 39
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_88_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
References_xml – volume: 60
  start-page: 56
  year: 2008
  end-page: 69
  article-title: Tbr2 directs conversion of radial glia into basal precursors and guides neuronal amplification by indirect neurogenesis in the developing neocortex
  publication-title: Neuron
– volume: 23
  start-page: 857
  year: 2006
  end-page: 868
  article-title: Molecular mechanisms of cortical differentiation
  publication-title: Eur J Neurosci
– volume: 502
  start-page: 382
  year: 2007
  end-page: 399
  article-title: Patterns of SDF‐1alpha and SDF‐1gamma mRNAs, migration pathways, and phenotypes of CXCR4‐expressing neurons in the developing rat telencephalon
  publication-title: J Compar Neurol
– volume: 4
  start-page: R70
  year: 2003
  article-title: Identifying biological themes within lists of genes with EASE
  publication-title: Genome Biol
– volume: 69
  start-page: 67
  year: 2005
  end-page: 99
  article-title: The novel roles of glial cells revisited: the contribution of radial glia and astrocytes to neurogenesis
  publication-title: Curr Topic Dev Biol
– volume: 9
  start-page: 678
  year: 2008
  end-page: 685
  article-title: The genetics of early telencephalon patterning: some assembly required
  publication-title: Nat Rev Neuroscience
– volume: 29
  start-page: 8335
  year: 2009
  end-page: 8349
  article-title: Selective cortical layering abnormalities and behavioral deficits in cortex‐specific Pax6 knock‐out mice
  publication-title: J Neurosci
– volume: 135
  start-page: 2717
  year: 2008
  end-page: 2727
  article-title: Hedgehog signaling is involved in development of the neocortex
  publication-title: Development
– volume: 220
  start-page: 112
  year: 2001
  end-page: 121
  article-title: Differential expression of VEGF isoforms in mouse during development and in the adult
  publication-title: Dev Dyn
– volume: 39
  start-page: D561
  year: 2011
  end-page: D568
  article-title: The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored
  publication-title: Nucl Acid Res
– volume: 17
  start-page: 186
  year: 2003
  end-page: 193
  article-title: Vascular endothelial growth factor promotes proliferation of cortical neuron precursors by regulating E2F expression
  publication-title: FASEB J
– volume: 8
  start-page: 1257
  year: 2008
  end-page: 1265
  article-title: Transcriptome and proteome analysis of early embryonic mouse brain development
  publication-title: Proteomics
– volume: 12
  start-page: 1211
  year: 2009
  end-page: 1212
  article-title: Regional control of cortical lamination
  publication-title: Nat Neurosci
– volume: 71
  start-page: 690
  year: 2011
  end-page: 709
  article-title: The role of Pax6 in forebrain development
  publication-title: Dev Neurobiol
– volume: 358
  start-page: 9
  year: 2011
  end-page: 22
  article-title: Vascular endothelial growth factor (VEGF) isoform regulation of early forebrain development
  publication-title: Dev Biol
– volume: 37
  start-page: 1201
  year: 2009
  end-page: 1206
  article-title: The heparin‐binding domain confers diverse functions of VEGF‐A in development and disease: A structure‐function study
  publication-title: Biochem Soc Transac
– volume: 16
  start-page: 2684
  year: 2002
  end-page: 2698
  article-title: Spatially restricted patterning cues provided by heparin‐binding VEGF‐A control blood vessel branching morphogenesis
  publication-title: Genes Dev
– volume: 29
  start-page: 353
  year: 2001
  end-page: 366
  article-title: Tbr1 regulates differentiation of the preplate and layer 6
  publication-title: Neuron
– volume: 6
  start-page: 423
  year: 2008
  end-page: 431
  article-title: What does PLIER really do?
  publication-title: Cancer Inform
– volume: 18
  start-page: 1585
  year: 2002
  end-page: 1592
  article-title: Robust estimators for expression analysis
  publication-title: Bioinformatics
– volume: 90
  start-page: 169
  year: 1997
  end-page: 180
  article-title: Pax6 controls progenitor cell identity and neuronal fate in response to graded Shh signaling
  publication-title: Cell
– volume: 107
  start-page: 13129
  year: 2010
  end-page: 13134
  article-title: Tbr1 regulates regional and laminar identity of postmitotic neurons in developing neocortex
  publication-title: Proc Natl Acad Sci
– volume: 39
  start-page: 809
  year: 1995a
  end-page: 816
  article-title: Sonic hedgehog: A common signal for ventral patterning along the rostrocaudal axis of the neural tube
  publication-title: Int J Dev Biol
– volume: 78
  start-page: 1490
  year: 2008
  end-page: 1497
  article-title: Clustering gene expression profile data by selective shrinkage
  publication-title: Stat Probability Lett
– volume: 119
  start-page: 227
  year: 2003
  end-page: 232
  article-title: VEGF expression is developmentally regulated during human brain angiogenesis
  publication-title: Histochem Cell Biol
– volume: 3
  start-page: 278
  year: 2012
  end-page: 290
  article-title: Epigenetic control on cell fate choice in neural stem cells
  publication-title: Prot Cell
– volume: 380
  start-page: 435
  year: 1996
  end-page: 439
  article-title: Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele
  publication-title: Nature
– volume: 386
  start-page: 671
  year: 1997
  end-page: 674
  article-title: Mechanisms of angiogenesis
  publication-title: Nature
– volume: 69
  start-page: 61
  year: 2011
  end-page: 76
  article-title: CXCR4 and CXCR7 have distinct functions in regulating interneuron migration
  publication-title: Neuron
– volume: 40
  start-page: 225
  year: 2009
  end-page: 233
  article-title: Periventricular notch activation and asymmetric Ngn2 and Tbr2 expression in pair‐generated neocortical daughter cells
  publication-title: Mol Cell Neurosci
– volume: 51
  start-page: 325
  year: 2009
  end-page: 342
  article-title: Cerebral cortex development: From progenitors patterning to neocortical size during evolution
  publication-title: Dev Growth Differ
– volume: 329
  start-page: 444
  year: 2010
  end-page: 448
  article-title: Dnmt3a‐dependent nonpromoter DNA methylation facilitates transcription of neurogenic genes
  publication-title: Science
– volume: 61
  start-page: 58R
  year: 2007
  end-page: 63R
  article-title: Epigenetic regulation of neural gene expression and neuronal function
  publication-title: Ped Res
– volume: 4
  start-page: 44
  year: 2009b
  end-page: 57
  article-title: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources
  publication-title: Nat Protocol
– volume: 278
  start-page: 474
  year: 1997
  end-page: 476
  article-title: Interneuron migration from basal forebrain to neocortex: Dependence on Dlx genes
  publication-title: Science
– volume: 28
  start-page: 1449
  year: 2008
  end-page: 1456
  article-title: Progressive loss of PAX6, TBR2, NEUROD and TBR1 mRNA gradients correlates with translocation of EMX2 to the cortical plate during human cortical development
  publication-title: Eur J Neurosci
– volume: 5
  start-page: 495
  year: 1999
  end-page: 502
  article-title: Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188
  publication-title: Nat Med
– volume: 20
  start-page: 349
  year: 2002
  end-page: 357
  article-title: Extracellular factors that regulate neuronal migration in the central nervous system
  publication-title: Int J Dev Neurosc
– volume: 130
  start-page: 3269
  year: 2003
  end-page: 3281
  article-title: Direct and concentration‐dependent regulation of the proneural gene Neurogenin2 by Pax6
  publication-title: Development
– volume: 129
  start-page: 5029
  year: 2002
  end-page: 5040
  article-title: Modulation of the notch signaling by Mash1 and Dlx1/2 regulates sequential specification and differentiation of progenitor cell types in the subcortical telencephalon
  publication-title: Development
– volume: 20
  start-page: 408
  year: 2010
  end-page: 415
  article-title: Patterning the cerebral cortex: traveling with morphogens
  publication-title: Curr Opin Genet Dev
– volume: 5
  start-page: 308
  year: 2002
  end-page: 315
  article-title: Glial cells generate neurons: The role of the transcription factor Pax6
  publication-title: Nat Neurosci
– volume: 8
  start-page: 118
  year: 2007
  end-page: 127
  article-title: Adjusting batch effects in microarray expression data using empirical Bayes methods
  publication-title: Biostatistics
– volume: 2
  start-page: 412
  year: 2009
  end-page: 418
  article-title: Haploinsufficiency of the murine polycomb gene Suz12 results in diverse malformations of the brain and neural tube
  publication-title: Dis Model Mechanism
– volume: 22
  start-page: 1019
  year: 2011
  end-page: 1027
  article-title: Neuronal action on the developing blood vessel pattern
  publication-title: Semin Cell Dev Biol
– volume: 273
  start-page: 9357
  year: 1998
  end-page: 9360
  article-title: Caspase‐3 is required for DNA fragmentation and morphological changes associated with apoptosis
  publication-title: J Biol Chem
– volume: 139
  start-page: 1371
  year: 2012
  end-page: 1380
  article-title: Diverse roles for VEGF‐A in the nervous system
  publication-title: Development
– volume: 59
  start-page: 1
  year: 1980
  end-page: 62
  article-title: The vascular system of the cerebral cortex
  publication-title: Advances in anatomy, embryology, and cell biology
– volume: 27
  start-page: 11595
  year: 2007
  end-page: 11603
  article-title: Patterning the dorsal telencephalon: a role for sonic hedgehog?
  publication-title: J Neurosci
– volume: 302
  start-page: 50
  year: 2007
  end-page: 65
  article-title: Pax6 controls cerebral cortical cell number by regulating exit from the cell cycle and specifies cortical cell identity by a cell autonomous mechanism
  publication-title: Dev Biol
– year: 2012
  article-title: Spatiotemporal expression patterns of Pax6 in the brain of embryonic, newborn, and adult mice
  publication-title: Brain Struct Funct
– volume: 8
  start-page: 427
  year: 2007
  end-page: 437
  article-title: Neuronal subtype specification in the cerebral cortex
  publication-title: Nat Rev Neurosci
– volume: 45
  start-page: 487
  year: 2012
  end-page: 498
  article-title: Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis
  publication-title: Cell Prolif
– volume: 28
  start-page: 4604
  year: 2008
  end-page: 4612
  article-title: The neurogenesis‐controlling factor, Pax6, inhibits proliferation and promotes maturation in murine astrocytes
  publication-title: J Neurosci
– volume: 124
  start-page: 3765
  year: 1997
  end-page: 3777
  article-title: Pax6‐dependent regulation of adhesive patterning, R‐cadherin expression and boundary formation in developing forebrain
  publication-title: Development
– volume: 5
  start-page: e1000511
  year: 2009
  article-title: The level of the transcription factor Pax6 is essential for controlling the balance between neural stem cell self‐renewal and neurogenesis
  publication-title: PLoS Genet
– volume: 23
  start-page: 4061
  year: 2004
  end-page: 4071
  article-title: Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity
  publication-title: EMBO J
– volume: 56
  start-page: 794
  year: 1999
  end-page: 814
  article-title: Role of vascular endothelial growth factor in the regulation of angiogenesis
  publication-title: Kidney Int
– volume: 137
  start-page: 1875
  year: 2010
  end-page: 1885
  article-title: Zinc finger genes Fezf1 and Fezf2 control neuronal differentiation by repressing Hes5 expression in the forebrain
  publication-title: Development
– volume: 26
  start-page: 1663
  year: 2008
  end-page: 1672
  article-title: Concise review: Pax6 transcription factor contributes to both embryonic and adult neurogenesis as a multifunctional regulator
  publication-title: Stem Cells
– volume: 2
  start-page: 167
  year: 2008
  end-page: 169
  article-title: Angiogenesis in the embryonic CNS: A new twist on an old tale
  publication-title: Cell Adhes Migrat
– volume: 1
  start-page: 255
  year: 2007
  end-page: 270
  article-title: Expression of putative sex‐determining genes during the thermosensitive period of gonad development in the snapping turtle,
  publication-title: Sexual Dev Genet Mol Biol Evolution Endocrinol Embryol Pathol Sex Determin Differentiat
– volume: 136
  start-page: 4055
  year: 2009
  end-page: 4063
  article-title: Coordination of sonic hedgehog and Wnt signaling determines ventral and dorsal telencephalic neuron types from human embryonic stem cells
  publication-title: Development
– volume: 4
  start-page: 1317
  year: 1993
  end-page: 1326
  article-title: The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix‐bound VEGF
  publication-title: Mol Biol Cell
– volume: 81
  start-page: 747
  year: 1995b
  end-page: 756
  article-title: Sonic hedgehog induces the differentiation of ventral forebrain neurons: A common signal for ventral patterning within the neural tube
  publication-title: Cell
– volume: 2001
  start-page: re21
  year: 2001
  article-title: VEGF receptor signal transduction
  publication-title: Sci STKE
– volume: 109
  start-page: 327
  year: 2002
  end-page: 336
  article-title: Arteriolar and venular patterning in retinas of mice selectively expressing VEGF isoforms
  publication-title: J Clin Invest
– volume: 98
  start-page: 147
  year: 1999
  end-page: 157
  article-title: Targeted deficiency or cytosolic truncation of the VE‐cadherin gene in mice impairs VEGF‐mediated endothelial survival and angiogenesis
  publication-title: Cell
– volume: 140
  start-page: 1250
  year: 2013
  end-page: 1261
  article-title: Sox2 is required for embryonic development of the ventral telencephalon through the activation of the ventral determinants Nkx2.1 and Shh
  publication-title: Development
– volume: 7
  start-page: 59
  year: 2006
  article-title: BAMarraytrade mark: Java software for Bayesian analysis of variance for microarray data
  publication-title: BMC Bioinform
– volume: 96
  start-page: 14378
  year: 1999
  end-page: 14382
  article-title: Pax6 is essential for establishing ventral‐dorsal cell boundaries in pituitary gland development
  publication-title: Proc Natl Acad Sci USA
– volume: 32
  start-page: 149
  year: 2010
  end-page: 162
  article-title: Spatiotemporal distribution of PAX6 and MEIS2 expression and total cell numbers in the ganglionic eminence in the early developing human forebrain
  publication-title: Dev Neurosci
– volume: 289
  start-page: 329
  year: 2006
  end-page: 335
  article-title: Vascular endothelial growth factor‐B (VEGFB) stimulates neurogenesis: Evidence from knockout mice and growth factor administration
  publication-title: Develop Biol
– volume: 193
  start-page: 163
  year: 2001
  end-page: 174
  article-title: The role of Pax6 in brain patterning
  publication-title: Tohoku J Exp Med
– volume: 99
  start-page: 11946
  year: 2002
  end-page: 11950
  article-title: Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo
  publication-title: Proc Natl Acad Sci
– volume: 26
  start-page: 356
  year: 2002
  end-page: 359
  article-title: Cytological grading, apoptosis, and Bcl‐2 protein expression in breast cancer
  publication-title: Diagn Cytopathol
– volume: 437
  start-page: 169
  year: 2011
  end-page: 183
  article-title: Signal transduction by vascular endothelial growth factor receptors
  publication-title: Biochem J
– volume: 25
  start-page: 247
  year: 2005
  end-page: 251
  article-title: Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex
  publication-title: J Neurosci
– volume: 57
  start-page: 333
  year: 2008
  end-page: 338
  article-title: Pyramidal neurons grow up and change their mind
  publication-title: Neuron
– volume: 57
  start-page: 777
  year: 2002
  end-page: 788
  article-title: Radial glial cells as neuronal precursors: A new perspective on the correlation of morphology and lineage restriction in the developing cerebral cortex of mice
  publication-title: Brain Res Bull
– volume: 27
  start-page: 49
  year: 2009
  end-page: 58
  article-title: A Sox1 to Pax6 switch drives neuroectoderm to radial glia progression during differentiation of mouse embryonic stem cells
  publication-title: Stem Cells
– volume: 11
  start-page: 429
  year: 2008
  end-page: 439
  article-title: Compartment‐specific transcription factors orchestrate angiogenesis gradients in the embryonic brain
  publication-title: Nat Neurosci
– volume: 46
  start-page: 369
  year: 2005
  end-page: 372
  article-title: Radial glial cells defined and major intermediates between embryonic stem cells and CNS neurons
  publication-title: Neuron
– volume: 37
  start-page: 1
  year: 2009a
  end-page: 13
  article-title: Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists
  publication-title: Nucl Acid Res
– volume: 129
  start-page: 5041
  year: 2002
  end-page: 5052
  article-title: Pax6 is required for the normal development of the forebrain axonal connections
  publication-title: Development
– volume: 142
  start-page: 727
  year: 2006
  end-page: 737
  article-title: Transition of mouse de novo methyltransferases expression from Dnmt3b to Dnmt3a during neural progenitor cell development
  publication-title: Neuroscience
– volume: 30
  start-page: 15052
  year: 2010
  end-page: 15066
  article-title: Matrix‐binding vascular endothelial growth factor (VEGF) isoforms guide granule cell migration in the cerebellum via VEGF receptor Flk1
  publication-title: J Neurosci
– volume: 23
  start-page: 910
  year: 2006
  end-page: 920
  article-title: The development of cortical connections
  publication-title: Eur J Neurosci
– volume: 198
  start-page: 483
  year: 2003
  end-page: 489
  article-title: VEGF164‐mediated inflammation is required for pathological, but not physiological, ischemia‐induced retinal neovascularization
  publication-title: J Exp Med
– volume: 267
  start-page: 26031
  year: 1992
  end-page: 26037
  article-title: Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms
  publication-title: J Biol Chem
– volume: 326
  start-page: 1216
  year: 2009
  end-page: 1219
  article-title: The extracellular matrix: Not just pretty fibrils
  publication-title: Science
– ident: e_1_2_6_84_1
  doi: 10.4161/cam.2.3.6485
– ident: e_1_2_6_53_1
  doi: 10.1038/nrn2151
– ident: e_1_2_6_85_1
  doi: 10.1038/nn2074
– ident: e_1_2_6_67_1
  doi: 10.1038/386671a0
– ident: e_1_2_6_5_1
  doi: 10.1073/pnas.1002285107
– ident: e_1_2_6_4_1
  doi: 10.1111/j.1460-9568.2008.06475.x
– ident: e_1_2_6_30_1
  doi: 10.1016/S0021-9258(18)35712-0
– ident: e_1_2_6_21_1
  doi: 10.1016/j.neuron.2005.04.012
– ident: e_1_2_6_62_1
  doi: 10.1111/j.1440-169X.2009.01095.x
– ident: e_1_2_6_31_1
  doi: 10.1007/s13238-012-2916-6
– ident: e_1_2_6_25_1
  doi: 10.1038/nrn2463
– ident: e_1_2_6_12_1
  doi: 10.1523/JNEUROSCI.2899-04.2005
– ident: e_1_2_6_38_1
  doi: 10.1016/j.spl.2008.01.003
– volume: 1
  start-page: 255
  year: 2007
  ident: e_1_2_6_66_1
  article-title: Expression of putative sex‐determining genes during the thermosensitive period of gonad development in the snapping turtle, Chelydra serpentina
  publication-title: Sexual Dev Genet Mol Biol Evolution Endocrinol Embryol Pathol Sex Determin Differentiat
  contributor:
    fullname: Rhen T
– ident: e_1_2_6_50_1
  doi: 10.1242/dev.072348
– ident: e_1_2_6_59_1
  doi: 10.1111/j.1365-2184.2012.00845.x
– ident: e_1_2_6_27_1
  doi: 10.1002/dc.10105
– ident: e_1_2_6_54_1
  doi: 10.1016/S0070-2153(05)69004-7
– ident: e_1_2_6_68_1
  doi: 10.1101/gad.242002
– ident: e_1_2_6_69_1
  doi: 10.1523/JNEUROSCI.0477-10.2010
– ident: e_1_2_6_91_1
  doi: 10.1242/dev.129.21.5029
– ident: e_1_2_6_9_1
  doi: 10.1038/8379
– ident: e_1_2_6_73_1
  doi: 10.1016/j.neuron.2008.09.028
– ident: e_1_2_6_18_1
  doi: 10.1242/dev.073411
– ident: e_1_2_6_60_1
  doi: 10.1091/mbc.4.12.1317
– ident: e_1_2_6_20_1
  doi: 10.1002/dneu.20895
– ident: e_1_2_6_55_1
  doi: 10.1002/1097-0177(2000)9999:9999<::AID-DVDY1093>3.0.CO;2-D
– ident: e_1_2_6_78_1
  doi: 10.1002/cne.21336
– ident: e_1_2_6_79_1
  doi: 10.1016/j.ydbio.2005.10.016
– ident: e_1_2_6_7_1
  doi: 10.1038/380435a0
– ident: e_1_2_6_47_1
  doi: 10.1042/BST0371201
– ident: e_1_2_6_72_1
  doi: 10.1242/dev.00539
– year: 2012
  ident: e_1_2_6_11_1
  article-title: Spatiotemporal expression patterns of Pax6 in the brain of embryonic, newborn, and adult mice
  publication-title: Brain Struct Funct
  contributor:
    fullname: Duan D
– ident: e_1_2_6_39_1
  doi: 10.1016/j.semcdb.2011.09.010
– ident: e_1_2_6_41_1
  doi: 10.1073/pnas.182296499
– ident: e_1_2_6_88_1
  doi: 10.1016/j.neuron.2010.12.005
– ident: e_1_2_6_29_1
  doi: 10.1186/gb-2003-4-10-r70
– ident: e_1_2_6_81_1
  doi: 10.1093/nar/gkq973
– ident: e_1_2_6_14_1
  doi: 10.1016/0092-8674(95)90536-7
– ident: e_1_2_6_6_1
  doi: 10.1016/j.gde.2010.05.003
– ident: e_1_2_6_28_1
  doi: 10.1016/S0896-6273(01)00211-2
– ident: e_1_2_6_26_1
  doi: 10.1038/nn828
– ident: e_1_2_6_56_1
  doi: 10.1016/j.mcn.2008.10.007
– ident: e_1_2_6_35_1
  doi: 10.1126/science.1176009
– ident: e_1_2_6_37_1
  doi: 10.1186/1471-2105-7-59
– ident: e_1_2_6_49_1
  doi: 10.1242/dev.036624
– ident: e_1_2_6_74_1
  doi: 10.1242/dev.047167
– ident: e_1_2_6_87_1
  doi: 10.1038/nn1009-1211
– ident: e_1_2_6_48_1
  doi: 10.1159/000297602
– ident: e_1_2_6_45_1
  doi: 10.1042/BJ20110301
– volume: 119
  start-page: 227
  year: 2003
  ident: e_1_2_6_86_1
  article-title: VEGF expression is developmentally regulated during human brain angiogenesis
  publication-title: Histochem Cell Biol
  doi: 10.1007/s00418-003-0510-y
  contributor:
    fullname: Virgintino D
– ident: e_1_2_6_23_1
  doi: 10.1111/j.1460-9568.2006.04626.x
– ident: e_1_2_6_17_1
  doi: 10.1046/j.1523-1755.1999.00610.x
– ident: e_1_2_6_34_1
  doi: 10.1093/bioinformatics/18.12.1585
– ident: e_1_2_6_65_1
  doi: 10.1523/JNEUROSCI.3204-07.2007
– ident: e_1_2_6_71_1
  doi: 10.1371/journal.pgen.1000511
– ident: e_1_2_6_42_1
  doi: 10.1093/biostatistics/kxj037
– ident: e_1_2_6_64_1
  doi: 10.1016/j.ydbio.2006.08.035
– ident: e_1_2_6_16_1
  doi: 10.1203/pdr.0b013e3180457635
– ident: e_1_2_6_46_1
  doi: 10.1242/dev.015891
– ident: e_1_2_6_80_1
  doi: 10.1634/stemcells.2008-0319
– ident: e_1_2_6_51_1
  doi: 10.1126/stke.2001.112.re21
– ident: e_1_2_6_75_1
  doi: 10.1016/S0736-5748(02)00040-0
– volume: 39
  start-page: 809
  year: 1995
  ident: e_1_2_6_13_1
  article-title: Sonic hedgehog: A common signal for ventral patterning along the rostrocaudal axis of the neural tube
  publication-title: Int J Dev Biol
  contributor:
    fullname: Ericson J
– ident: e_1_2_6_32_1
  doi: 10.1093/nar/gkn923
– ident: e_1_2_6_83_1
  doi: 10.1523/JNEUROSCI.5669-08.2009
– ident: e_1_2_6_58_1
  doi: 10.1634/stemcells.2007-0884
– ident: e_1_2_6_36_1
  doi: 10.1084/jem.20022027
– ident: e_1_2_6_3_1
  doi: 10.1007/978-3-642-67432-7_1
– ident: e_1_2_6_92_1
  doi: 10.1096/fj.02-0515com
– ident: e_1_2_6_43_1
  doi: 10.1242/dev.129.21.5041
– ident: e_1_2_6_77_1
  doi: 10.1242/dev.124.19.3765
– ident: e_1_2_6_89_1
  doi: 10.1016/j.neuroscience.2006.07.053
– ident: e_1_2_6_24_1
  doi: 10.1002/pmic.200700724
– ident: e_1_2_6_2_1
  doi: 10.1126/science.278.5337.474
– ident: e_1_2_6_76_1
  doi: 10.1172/JCI0214362
– ident: e_1_2_6_57_1
  doi: 10.1620/tjem.193.163
– ident: e_1_2_6_40_1
  doi: 10.1074/jbc.273.16.9357
– ident: e_1_2_6_61_1
  doi: 10.1038/sj.emboj.7600402
– ident: e_1_2_6_63_1
  doi: 10.1111/j.1460-9568.2006.04620.x
– ident: e_1_2_6_70_1
  doi: 10.1523/JNEUROSCI.5074-07.2008
– ident: e_1_2_6_15_1
  doi: 10.1016/S0092-8674(00)80323-2
– ident: e_1_2_6_33_1
  doi: 10.1038/nprot.2008.211
– ident: e_1_2_6_44_1
  doi: 10.1073/pnas.96.25.14378
– ident: e_1_2_6_90_1
  doi: 10.1126/science.1190485
– ident: e_1_2_6_10_1
  doi: 10.1016/j.ydbio.2011.06.045
– ident: e_1_2_6_19_1
  doi: 10.1016/j.neuron.2008.01.018
– ident: e_1_2_6_52_1
  doi: 10.1242/dmm.001602
– ident: e_1_2_6_82_1
  doi: 10.1177/117693510800600008
– ident: e_1_2_6_8_1
  doi: 10.1016/S0092-8674(00)81010-7
– ident: e_1_2_6_22_1
  doi: 10.1016/S0361-9230(01)00777-8
SSID ssj0053260
Score 2.1823633
Snippet ABSTRACT Regulation of neural stem cell (NSC) fate decisions is critical during the transition from a multicellular mammalian forebrain neuroepithelium to the...
Regulation of neural stem cell (NSC) fate decisions is critical during the transition from a multicellular mammalian forebrain neuroepithelium to the...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 63
SubjectTerms Animals
Blotting, Western
Cell Differentiation - physiology
Cell fate
Cell Proliferation
Central Nervous System - blood supply
Cloning, Molecular
Enzyme-Linked Immunosorbent Assay
Epithelium - physiology
Female
forebrain
Gene Expression
Gene Expression Profiling
Genotype
Immunohistochemistry
Mice
Mice, Transgenic
Microarray Analysis
Mitosis - genetics
neural development
Neural Stem Cells - physiology
neurogenesis
Pax6
Pregnancy
Prosencephalon - cytology
Prosencephalon - physiology
Real-Time Polymerase Chain Reaction
Tbr2
Transcriptome - genetics
Vascular Endothelial Growth Factor A - chemistry
Vascular Endothelial Growth Factor A - genetics
Vascular Endothelial Growth Factor A - metabolism
VEGF
Title Shifts in the vascular endothelial growth factor isoforms result in transcriptome changes correlated with early neural stem cell proliferation and differentiation in mouse forebrain
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fdneu.22130
https://www.ncbi.nlm.nih.gov/pubmed/24124161
https://www.proquest.com/docview/1466124288
https://search.proquest.com/docview/1467063032
https://search.proquest.com/docview/1492614096
https://pubmed.ncbi.nlm.nih.gov/PMC4096862
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEBVtTr20TdIPt2mZ0NJDwY0ty5ENuYRmQ06hkAZ6M7Y07ho22hB7D_1h_X-dkdZOl0Ag5GawZMvWzOg9fbwR4nOBZYFZYmOtTBmrQtVxY4nzHJrUttLqFP0K_tmFPv9VnMxYJudoPAsT9CGmCTf2DB-v2cHrpj-4FQ21DlffpKQYTAGYaII_v5H9GMNwTrgkCUvK5PIqTydtUnlwW3VzNLoDMe_ulPwfwfoh6PTF4xr_UjxfQ084DrayLZ6g2xG7x45o99Uf-AJ-M6ifZd8Vfy_mXTv00DkghAjjflVAZ_nI1oKsFn4Tgx_mEDL2QNcvGf_2QPx9tRh8TR4HfVRaXiGEI8Y9GM4HsiCIa4EngQFZYhlYV5OeybLSwIsJcM3phFoMBgq1szDmchmCNfEbeN4Cgd7Ly9-deyUuT2c_v5_F6wwPsVEFDQCEHghe5oYlhkyeIIUDWRcNosmbksXTWM-wLNI6K1vZaMNwB1vUmnBKZgjqvRZbbunwraCmcWZCAoNJrale3ljTpCptEqwVSqUj8Wns6eo6CHlUQbJZVtwble-NSOyNRlCtnblndkQ4kHhaEYn96Ta5If-O2iF9KpfRLF-WyfvKlMRXiVAfRuJNsKupKZKzgBP6joTesLipAMuAb95x3dzLgfMDiZdG4qu3uHu-rjo5n136q3cPKfxePCOYqMLE057YGm5W-EE87e3qo3e5f0kkMyc
link.rule.ids 230,315,782,786,887,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RcoALr_JIKTAIxAFp2zycdXLgUNGtFlFWSG0lblFiO2ykrbdqsgd-GP-PGXuTsqpUCXGLZDux45nxN2P7G4D3mckzk4R6JIXKRyIT5ajS5POMVaTrWMvIuB386amc_ciOJkyT86m_C-P5IYaAG2uGs9es4ByQPrhmDdXWrPbjmIzwFtwVY5JEvsGRfO8NcUrIJPSbyqT0Io0GdtL44Lrt5np0A2TePCv5N4Z1i9Dxw__s_iN4sEafeOjF5THcMfYJ7Bxa8rwvfuEHdOdBXaB9B36fzpu6a7GxSCAR-yOraKzmW1sLElz8SU58N0eftAebdskQuEVy4VeLzrXkpdAZpuWFQX_LuEXFKUEWhHI1chwYDbMsI1Nr0juZWRp5PwEvOaNQbbyMYmk19ulcOi9Q_AUOXRik7_IOeGOfwvnx5OzzdLRO8jBSIqM1gAAEIcxUMcuQSkNDFiEus8oYlVY586cxpWGeRWWS13ElFSMeUxspCaokitDeM9i2S2teAHWNkxMSHgxLSe3SSqsqElEVmlKYWMgA3vVTXVx6Lo_CszbHBc9G4WYjgL1eCoq1PrfsIBEUJFctC-DtUEyayL-jtIaGynUkM5gl8W11cnJZyaceB_DcC9bQlZgTgRMAD0BuiNxQgZnAN0tsM3eM4PxCck0D-OhE7pbRFUezybl72v2Xym_g3vTs20lx8mX29SXcJ9QofBxqD7a7q5V5BVutXr12-vcHfFU3Tw
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB6aFEovfaUPt2k7paWHwia2LMc29BK6u6S0LIE00JuxJblr2GiX2HvID-v_64y0droEAqU3gyRbsmZG34ykbwA-ZCbPTBzqUSpVPpKZLEeVJp_nSEW6FjqNjNvBPzlLZz-z8YRpcj73d2E8P8QQcGPNcPaaFXyl68Nr0lBtzfpACLLBO3BXEg5n5vw4Pu3tcELAJPR7yqTzMokGclJxeN12ezm6gTFvHpX8G8K6NWj68P96_wgebLAnHntheQx3jH0Ce8eW_O6LK_yI7jSoC7Pvwe-zeVN3LTYWCSJif2AVjdV8Z2tBYou_yIXv5uhT9mDTLhkAt0gO_HrRuZa8EDqztLww6O8Yt6g4IciCMK5GjgKjYY5lZGJNeifzSiPvJuCK8wnVxksollZjn8yl8-LEX-DAhUH6Lu9_N_YpnE8nP76cjDYpHkZKZrQCEHwgfJko5hhSSWjIHogyq4xRSZUzexoTGuZZVMZ5LapUMd4xtUlTAiqxIqz3DHbt0poXQF3j1ISEBsMypXZJpVUVyagKTSmNkGkA7_uZLlaeyaPwnM2i4Nko3GwEsN8LQbHR5pbdIwKC5KhlAbwbikkP-XeU1tBQuU7K_GWxuK1OTg4redRHATz3cjV0RXAacILfAaRbEjdUYB7w7RLbzB0fOL-QHNMAPjmJu2V0xXg2OXdPL_-l8lu4dzqeFt-_zr69gvsEGaUPQu3Dbne5Nq9hp9XrN077_gCXEjX1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shifts+in+the+vascular+endothelial+growth+factor+isoforms+result+in+transcriptome+changes+correlated+with+early+neural+stem+cell+proliferation+and+differentiation+in+mouse+forebrain&rft.jtitle=Developmental+neurobiology+%28Hoboken%2C+N.J.%29&rft.au=Cain%2C+Jacob+T.&rft.au=Berosik%2C+Matthew+A.&rft.au=Snyder%2C+Stephanie+D.&rft.au=Crawford%2C+Natalie+F.&rft.date=2014-01-01&rft.issn=1932-8451&rft.eissn=1932-846X&rft.volume=74&rft.issue=1&rft.spage=63&rft.epage=81&rft_id=info:doi/10.1002%2Fdneu.22130&rft.externalDBID=10.1002%252Fdneu.22130&rft.externalDocID=DNEU22130
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-8451&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-8451&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-8451&client=summon