Reconstructions of chest phantoms by the D-bar method for electrical impedance tomography
The problem this paper addresses is how to use the two-dimensional D-bar method for electrical impedance tomography with experimental data collected on finitely many electrodes covering a portion of the boundary of a body. This requires an approximation of the Dirichlet-to-Neumann, or voltage-to-cur...
Saved in:
Published in: | IEEE transactions on medical imaging Vol. 23; no. 7; pp. 821 - 828 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
IEEE
01-07-2004
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The problem this paper addresses is how to use the two-dimensional D-bar method for electrical impedance tomography with experimental data collected on finitely many electrodes covering a portion of the boundary of a body. This requires an approximation of the Dirichlet-to-Neumann, or voltage-to-current density map, defined on the entire boundary of the region, from a finite number of matrix elements of the current-to-voltage map. Reconstructions from experimental data collected on a saline filled tank containing agar heart and lung phantoms are presented, and the results are compared to reconstructions by the NOSER algorithm on the same data. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0278-0062 1558-254X |
DOI: | 10.1109/TMI.2004.827482 |