Reconstructions of chest phantoms by the D-bar method for electrical impedance tomography

The problem this paper addresses is how to use the two-dimensional D-bar method for electrical impedance tomography with experimental data collected on finitely many electrodes covering a portion of the boundary of a body. This requires an approximation of the Dirichlet-to-Neumann, or voltage-to-cur...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on medical imaging Vol. 23; no. 7; pp. 821 - 828
Main Authors: Isaacson, D., Mueller, J.L., Newell, J.C., Siltanen, S.
Format: Journal Article
Language:English
Published: United States IEEE 01-07-2004
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The problem this paper addresses is how to use the two-dimensional D-bar method for electrical impedance tomography with experimental data collected on finitely many electrodes covering a portion of the boundary of a body. This requires an approximation of the Dirichlet-to-Neumann, or voltage-to-current density map, defined on the entire boundary of the region, from a finite number of matrix elements of the current-to-voltage map. Reconstructions from experimental data collected on a saline filled tank containing agar heart and lung phantoms are presented, and the results are compared to reconstructions by the NOSER algorithm on the same data.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0278-0062
1558-254X
DOI:10.1109/TMI.2004.827482