Using Population Viability Criteria to Assess Strategies to Minimize Disease Threats for an Endangered Carnivore
Outbreaks of infectious disease represent serious threats to the viability of many vertebrate populations, but few studies have included quantitative evaluations of alternative approaches to the management of disease. The most prevalent management approach is monitoring for and rapid response to an...
Saved in:
Published in: | Conservation biology Vol. 27; no. 2; pp. 303 - 314 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Hoboken, NJ
Blackwell Publishing Ltd
01-04-2013
Wiley-Blackwell |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Outbreaks of infectious disease represent serious threats to the viability of many vertebrate populations, but few studies have included quantitative evaluations of alternative approaches to the management of disease. The most prevalent management approach is monitoring for and rapid response to an epizootic. An alternative is vaccination of a subset of the free-living population (i.e., a "vaccinated core") such that some individuals are partially or fully immune in the event of an epizootic. We developed a simulation model describing epizootic dynamics, which we then embedded in a demographic simulation to assess these alternative approaches to managing rabies epizootics in the island fox (Urocyon littoralis), a species composed of only 6 small populations on the California Channel Islands. Although the monitor and respond approach was superior to the vaccinated-core approach for some transmission models and parameter values, this type of reactive management did not protect the population from rabies under many disease-transmission assumptions. In contrast, a logistically feasible program of prophylactic vaccination for part of the wild population yielded low extinction probabilities across all likely disease-transmission scenarios, even with recurrent disease introductions. Our use of a single metric of successful management—probability of extreme endangerment (i.e., quasi extinction)—to compare very different management approaches allowed an objective assessment of alternative strategies for controlling the threats posed by infectious disease outbreaks. Los brotes de enfermedades infecciosas representan serias amenazas para la viabilidad de muchas poblaciones de vertebrados, pero pocos estudios han incluido evaluaciones cuantitativas de métodos alternativos para el manejo de enfermedades. El método de manejo más prevalente es el monitoreo de una epizootia y de la rapidez de la respuesta a la misma. Una alternativa es la vacunación de un subconjunto de la población silvestre (i.e., un "núcleo vacunado") de manera que algunos individuos están parcial o completamente inmunes en el evento de una epizootia. Desarrollamos un modelo de simulación que describe la dinámica de una epizootia, que posteriormente incluimos en una simulación demográfica para evaluar estos métodos alternativos para el manejo de epizootias de rabia en Urocyon littoralis, una especie compuesta de solo 6 poblaciones pequeñas en las Islas del Canal, California. Aunque el método de monitoreo y respuesta fue superior al del núcleo vacunado para algunos modelos de transmisión y valores de parámetros, este tipo de manejo reactivo no protegió de la rabia a la población bajo muchos supuestos de la transmisión de enfermedades. En contraste, un programa logísticamente factible de vacunación profiláctica para parte de la población silvestre produjo bajas probabilidades de extinción en todos los escenarios de transmisión de enfermedades, aun con la introducción recurrente de enfermedades. Nuestro uso de una sola medida del manejo exitoso - probabilidad de riesgo extremo (i.e., cuasi extinción) - para comparar métodos de manejo muy diferentes permitió una evaluación objetiva de estrategias alternativas para controlar las amenazas que representan los brotes de enfermedades infecciosas. |
---|---|
AbstractList | Outbreaks of infectious disease represent serious threats to the viability of many vertebrate populations, but few studies have included quantitative evaluations of alternative approaches to the management of disease. The most prevalent management approach is monitoring for and rapid response to an epizootic. An alternative is vaccination of a subset of the free‐living population (i.e., a “vaccinated core”) such that some individuals are partially or fully immune in the event of an epizootic. We developed a simulation model describing epizootic dynamics, which we then embedded in a demographic simulation to assess these alternative approaches to managing rabies epizootics in the island fox (Urocyon littoralis), a species composed of only 6 small populations on the California Channel Islands. Although the monitor and respond approach was superior to the vaccinated‐core approach for some transmission models and parameter values, this type of reactive management did not protect the population from rabies under many disease‐transmission assumptions. In contrast, a logistically feasible program of prophylactic vaccination for part of the wild population yielded low extinction probabilities across all likely disease‐transmission scenarios, even with recurrent disease introductions. Our use of a single metric of successful management—probability of extreme endangerment (i.e., quasi extinction)—to compare very different management approaches allowed an objective assessment of alternative strategies for controlling the threats posed by infectious disease outbreaks.
Utilización de Criterios de Viabilidad Poblacional para Evaluar Estrategias para Minimizar Amenazas de Enfermedades para un Carnívoro en Peligro
Los brotes de enfermedades infecciosas representan serias amenazas para la viabilidad de muchas poblaciones de vertebrados, pero pocos estudios han incluido evaluaciones cuantitativas de métodos alternativos para el manejo de enfermedades. El método de manejo más prevalente es el monitoreo de una epizootia y de la rapidez de la respuesta a la misma. Una alternativa es la vacunación de un subconjunto de la población silvestre (i.e., un “núcleo vacunado”) de manera que algunos individuos están parcial o completamente inmunes en el evento de una epizootia. Desarrollamos un modelo de simulación que describe la dinámica de una epizootia, que posteriormente incluimos en una simulación demográfica para evaluar estos métodos alternativos para el manejo de epizootias de rabia en Urocyon littoralis, una especie compuesta de solo 6 poblaciones pequeñas en las Islas del Canal, California. Aunque el método de monitoreo y respuesta fue superior al del núcleo vacunado para algunos modelos de transmisión y valores de parámetros, este tipo de manejo reactivo no protegió de la rabia a la población bajo muchos supuestos de la transmisión de enfermedades. En contraste, un programa logísticamente factible de vacunación profiláctica para parte de la población silvestre produjo bajas probabilidades de extinción en todos los escenarios de transmisión de enfermedades, aun con la introducción recurrente de enfermedades. Nuestro uso de una sola medida del manejo exitoso – probabilidad de riesgo extremo (i.e., cuasi extinción) – para comparar métodos de manejo muy diferentes permitió una evaluación objetiva de estrategias alternativas para controlar las amenazas que representan los brotes de enfermedades infecciosas. Outbreaks of infectious disease represent serious threats to the viability of many vertebrate populations, but few studies have included quantitative evaluations of alternative approaches to the management of disease. The most prevalent management approach is monitoring for and rapid response to an epizootic. An alternative is vaccination of a subset of the free‐living population (i.e., a “vaccinated core”) such that some individuals are partially or fully immune in the event of an epizootic. We developed a simulation model describing epizootic dynamics, which we then embedded in a demographic simulation to assess these alternative approaches to managing rabies epizootics in the island fox (Urocyon littoralis), a species composed of only 6 small populations on the California Channel Islands. Although the monitor and respond approach was superior to the vaccinated‐core approach for some transmission models and parameter values, this type of reactive management did not protect the population from rabies under many disease‐transmission assumptions. In contrast, a logistically feasible program of prophylactic vaccination for part of the wild population yielded low extinction probabilities across all likely disease‐transmission scenarios, even with recurrent disease introductions. Our use of a single metric of successful management—probability of extreme endangerment (i.e., quasi extinction)—to compare very different management approaches allowed an objective assessment of alternative strategies for controlling the threats posed by infectious disease outbreaks. Utilización de Criterios de Viabilidad Poblacional para Evaluar Estrategias para Minimizar Amenazas de Enfermedades para un Carnívoro en Peligro Resumen Los brotes de enfermedades infecciosas representan serias amenazas para la viabilidad de muchas poblaciones de vertebrados, pero pocos estudios han incluido evaluaciones cuantitativas de métodos alternativos para el manejo de enfermedades. El método de manejo más prevalente es el monitoreo de una epizootia y de la rapidez de la respuesta a la misma. Una alternativa es la vacunación de un subconjunto de la población silvestre (i.e., un “núcleo vacunado”) de manera que algunos individuos están parcial o completamente inmunes en el evento de una epizootia. Desarrollamos un modelo de simulación que describe la dinámica de una epizootia, que posteriormente incluimos en una simulación demográfica para evaluar estos métodos alternativos para el manejo de epizootias de rabia en Urocyon littoralis, una especie compuesta de solo 6 poblaciones pequeñas en las Islas del Canal, California. Aunque el método de monitoreo y respuesta fue superior al del núcleo vacunado para algunos modelos de transmisión y valores de parámetros, este tipo de manejo reactivo no protegió de la rabia a la población bajo muchos supuestos de la transmisión de enfermedades. En contraste, un programa logísticamente factible de vacunación profiláctica para parte de la población silvestre produjo bajas probabilidades de extinción en todos los escenarios de transmisión de enfermedades, aun con la introducción recurrente de enfermedades. Nuestro uso de una sola medida del manejo exitoso – probabilidad de riesgo extremo (i.e., cuasi extinción) – para comparar métodos de manejo muy diferentes permitió una evaluación objetiva de estrategias alternativas para controlar las amenazas que representan los brotes de enfermedades infecciosas. Outbreaks of infectious disease represent serious threats to the viability of many vertebrate populations, but few studies have included quantitative evaluations of alternative approaches to the management of disease. The most prevalent management approach is monitoring for and rapid response to an epizootic. An alternative is vaccination of a subset of the free-living population (i.e., a "vaccinated core") such that some individuals are partially or fully immune in the event of an epizootic. We developed a simulation model describing epizootic dynamics, which we then embedded in a demographic simulation to assess these alternative approaches to managing rabies epizootics in the island fox (Urocyon littoralis), a species composed of only 6 small populations on the California Channel Islands. Although the monitor and respond approach was superior to the vaccinated-core approach for some transmission models and parameter values, this type of reactive management did not protect the population from rabies under many disease-transmission assumptions. In contrast, a logistically feasible program of prophylactic vaccination for part of the wild population yielded low extinction probabilities across all likely disease-transmission scenarios, even with recurrent disease introductions. Our use of a single metric of successful management—probability of extreme endangerment (i.e., quasi extinction)—to compare very different management approaches allowed an objective assessment of alternative strategies for controlling the threats posed by infectious disease outbreaks. Los brotes de enfermedades infecciosas representan serias amenazas para la viabilidad de muchas poblaciones de vertebrados, pero pocos estudios han incluido evaluaciones cuantitativas de métodos alternativos para el manejo de enfermedades. El método de manejo más prevalente es el monitoreo de una epizootia y de la rapidez de la respuesta a la misma. Una alternativa es la vacunación de un subconjunto de la población silvestre (i.e., un "núcleo vacunado") de manera que algunos individuos están parcial o completamente inmunes en el evento de una epizootia. Desarrollamos un modelo de simulación que describe la dinámica de una epizootia, que posteriormente incluimos en una simulación demográfica para evaluar estos métodos alternativos para el manejo de epizootias de rabia en Urocyon littoralis, una especie compuesta de solo 6 poblaciones pequeñas en las Islas del Canal, California. Aunque el método de monitoreo y respuesta fue superior al del núcleo vacunado para algunos modelos de transmisión y valores de parámetros, este tipo de manejo reactivo no protegió de la rabia a la población bajo muchos supuestos de la transmisión de enfermedades. En contraste, un programa logísticamente factible de vacunación profiláctica para parte de la población silvestre produjo bajas probabilidades de extinción en todos los escenarios de transmisión de enfermedades, aun con la introducción recurrente de enfermedades. Nuestro uso de una sola medida del manejo exitoso - probabilidad de riesgo extremo (i.e., cuasi extinción) - para comparar métodos de manejo muy diferentes permitió una evaluación objetiva de estrategias alternativas para controlar las amenazas que representan los brotes de enfermedades infecciosas. Outbreaks of infectious disease represent serious threats to the viability of many vertebrate populations, but few studies have included quantitative evaluations of alternative approaches to the management of disease. The most prevalent management approach is monitoring for and rapid response to an epizootic. An alternative is vaccination of a subset of the free-living population (i.e., a "vaccinated core") such that some individuals are partially or fully immune in the event of an epizootic. We developed a simulation model describing epizootic dynamics, which we then embedded in a demographic simulation to assess these alternative approaches to managing rabies epizootics in the island fox (Urocyon littoralis), a species composed of only 6 small populations on the California Channel Islands. Although the monitor and respond approach was superior to the vaccinated-core approach for some transmission models and parameter values, this type of reactive management did not protect the population from rabies under many disease-transmission assumptions. In contrast, a logistically feasible program of prophylactic vaccination for part of the wild population yielded low extinction probabilities across all likely disease-transmission scenarios, even with recurrent disease introductions. Our use of a single metric of successful management-probability of extreme endangerment (i.e., quasi extinction)-to compare very different management approaches allowed an objective assessment of alternative strategies for controlling the threats posed by infectious disease outbreaks.Original Abstract: Utilizacion de Criterios de Viabilidad Poblacional para Evaluar Estrategias para Minimizar Amenazas de Enfermedades para un Carnivoro en Peligro Los brotes de enfermedades infecciosas representan serias amenazas para la viabilidad de muchas poblaciones de vertebrados, pero pocos estudios han incluido evaluaciones cuantitativas de metodos alternativos para el manejo de enfermedades. El metodo de manejo mas prevalente es el monitoreo de una epizootia y de la rapidez de la respuesta a la misma. Una alternativa es la vacunacion de un subconjunto de la poblacion silvestre (i.e., un "nucleo vacunado") de manera que algunos individuos estan parcial o completamente inmunes en el evento de una epizootia. Desarrollamos un modelo de simulacion que describe la dinamica de una epizootia, que posteriormente incluimos en una simulacion demografica para evaluar estos metodos alternativos para el manejo de epizootias de rabia en Urocyon littoralis, una especie compuesta de solo 6 poblaciones pequenas en las Islas del Canal, California. Aunque el metodo de monitoreo y respuesta fue superior al del nucleo vacunado para algunos modelos de transmision y valores de parametros, este tipo de manejo reactivo no protegio de la rabia a la poblacion bajo muchos supuestos de la transmision de enfermedades. En contraste, un programa logisticamente factible de vacunacion profilactica para parte de la poblacion silvestre produjo bajas probabilidades de extincion en todos los escenarios de transmision de enfermedades, aun con la introduccion recurrente de enfermedades. Nuestro uso de una sola medida del manejo exitoso - probabilidad de riesgo extremo (i.e., cuasi extincion) - para comparar metodos de manejo muy diferentes permitio una evaluacion objetiva de estrategias alternativas para controlar las amenazas que representan los brotes de enfermedades infecciosas. Outbreaks of infectious disease represent serious threats to the viability of many vertebrate populations, but few studies have included quantitative evaluations of alternative approaches to the management of disease. The most prevalent management approach is monitoring for and rapid response to an epizootic. An alternative is vaccination of a subset of the free-living population (i.e., a "vaccinated core") such that some individuals are partially or fully immune in the event of an epizootic. We developed a simulation model describing epizootic dynamics, which we then embedded in a demographic simulation to assess these alternative approaches to managing rabies epizootics in the island fox (Urocyon littoralis), a species composed of only 6 small populations on the California Channel Islands. Although the monitor and respond approach was superior to the vaccinated-core approach for some transmission models and parameter values, this type of reactive management did not protect the population from rabies under many disease-transmission assumptions. In contrast, a logistically feasible program of prophylactic vaccination for part of the wild population yielded low extinction probabilities across all likely disease-transmission scenarios, even with recurrent disease introductions. Our use of a single metric of successful management-probability of extreme endangerment (i.e., quasi extinction)-to compare very different management approaches allowed an objective assessment of alternative strategies for controlling the threats posed by infectious disease outbreaks. Outbreaks of infectious disease represent serious threats to the viability of many vertebrate populations, but few studies have included quantitative evaluations of alternative approaches to the management of disease. The most prevalent management approach is monitoring for and rapid response to an epizootic. An alternative is vaccination of a subset of the free-living population (i.e., a "vaccinated core") such that some individuals are partially or fully immune in the event of an epizootic. We developed a simulation model describing epizootic dynamics, which we then embedded in a demographic simulation to assess these alternative approaches to managing rabies epizootics in the island fox (Urocyon littoralis), a species composed of only 6 small populations on the California Channel Islands. Although the monitor and respond approach was superior to the vaccinated-core approach for some transmission models and parameter values, this type of reactive management did not protect the population from rabies under many disease-transmission assumptions. In contrast, a logistically feasible program of prophylactic vaccination for part of the wild population yielded low extinction probabilities across all likely disease-transmission scenarios, even with recurrent disease introductions. Our use of a single metric of successful management--probability of extreme endangerment (i.e., quasi extinction)--to compare very different management approaches allowed an objective assessment of alternative strategies for controlling the threats posed by infectious disease outbreaks. [PUBLICATION ABSTRACT] |
Author | VICKERS, WINSTON BAKKER, VICTORIA J. DOAK, DANIEL F. |
Author_xml | – sequence: 1 givenname: DANIEL F. surname: DOAK fullname: DOAK, DANIEL F. email: daniel.doak@colorado.edu organization: Environmental Studies Program, University of Colorado, CO, 80309, Boulder, U.S.A – sequence: 2 givenname: VICTORIA J. surname: BAKKER fullname: BAKKER, VICTORIA J. organization: Department of Ecology, Montana State University, Bozeman,, MT 59717-3460, P.O. Box 173460, U.S.A – sequence: 3 givenname: WINSTON surname: VICKERS fullname: VICKERS, WINSTON organization: Institute for Wildlife Studies, P.O. Box 1104, CA, 95518, Arcata, U.S.A |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27334743$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23521669$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkd1v0zAUxS00xLrBC-8gSwgJIWX4K4nzOLIPJhWGYINHy0luiktqF98UKH89Lu2G4AFhW7Lk87v3-OockD0fPBDykLMjntaLNjTuiAsm2B0y4bmQGS9ltUcmTGudaV2JfXKAOGeMVTlX98i-kLngRVFNyPIanZ_Rt2G5GuzogqcfnG3c4MY1raMbITpLx0CPEQGRvh-jHWHmADePr513C_cD6IlDsAj06lMEOyLtQ6TW01PfWT-DCB2tbfTua4hwn9zt7YDwYHcfkuuz06v6VTa9PL-oj6dZqzRjWQOVgL5UqulzsOnfzIqiLRnXqgXLG5WD6nol2rzrSm6BNbrpG66rNLJsKiUPybNt32UMX1aAo1k4bGEYrIewQsOl0LlgTP8PyquCl-kk9Mlf6Dysok-DbCitSy61SNTzLdXGgBihN8voFjauDWdmE5nZRGZ-RZbgx7uWq2YB3S16k1ECnu4Ai60d-mh96_A3V0qpSiUTx7fcNzfA-h-Wpr58eXFj_mhbM8cxxD-80y6Snm11hyN8v9Vt_GyKUpa5-fjm3EyZfpezkzOTy59iJ8eg |
CODEN | CBIOEF |
CitedBy_id | crossref_primary_10_1111_avj_12388 crossref_primary_10_1002_ecs2_3724 crossref_primary_10_3389_fmicb_2021_748323 crossref_primary_10_1080_01584197_2017_1387029 crossref_primary_10_1111_ddi_13109 crossref_primary_10_1371_journal_pone_0232705 crossref_primary_10_1016_j_biocon_2019_05_045 crossref_primary_10_1371_journal_pone_0242913 crossref_primary_10_3398_042_007_0129 |
Cites_doi | 10.1016/j.biocon.2006.04.005 10.1111/j.1365-2028.2007.00758.x 10.1890/1540-9295(2005)003[0383:ROISUT]2.0.CO;2 10.1111/j.1365-2664.2007.01387.x 10.1098/rspb.1998.0404 10.1016/j.biocon.2006.04.004 10.1017/S1367943001001366 10.1016/j.biocon.2006.04.029 10.1016/j.vetmic.2006.04.009 10.1111/j.1469-1795.1998.tb00038.x 10.1017/S0952836901001066 10.1111/j.1523-1739.2007.00776.x 10.1111/j.1469-1795.2008.00228.x 10.7589/0090-3558-44.3.537 10.7589/0090-3558-28.2.223 10.7589/0090-3558-45.2.333 10.1890/070220 10.1111/j.1469-1795.2009.00241.x 10.1016/S0169-5347(01)02144-9 10.1038/289765a0 10.1890/07-0817.1 10.2307/2404809 10.1016/S0304-3800(01)00471-9 10.1038/nature05177 10.1016/j.biocon.2006.05.004 10.2307/5550 |
ContentType | Journal Article |
Copyright | 2013 Society for Conservation Biology 2014 INIST-CNRS 2013 Society for Conservation Biology. 2013, Society for Conservation Biology |
Copyright_xml | – notice: 2013 Society for Conservation Biology – notice: 2014 INIST-CNRS – notice: 2013 Society for Conservation Biology. – notice: 2013, Society for Conservation Biology |
DBID | BSCLL IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7SN 7SS 7ST 7U6 8FD C1K F1W FR3 H95 L.G P64 RC3 SOI 7X8 |
DOI | 10.1111/cobi.12020 |
DatabaseName | Istex Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Sustainability Science Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Sustainability Science Abstracts Animal Behavior Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Environment Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef Ecology Abstracts MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1523-1739 |
EndPage | 314 |
ExternalDocumentID | 2924385151 10_1111_cobi_12020 23521669 27334743 COBI12020 23525256 ark_67375_WNG_L08R50DF_5 |
Genre | article Evaluation Studies Research Support, Non-U.S. Gov't Journal Article Feature |
GeographicLocations | California INE, USA, California, Channel Is |
GeographicLocations_xml | – name: California – name: INE, USA, California, Channel Is |
GrantInformation_xml | – fundername: University of Wyoming – fundername: National Science Foundation funderid: DEB‐0717049; DEB‐0812824 |
GroupedDBID | --- -DZ .-4 .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29F 31~ 33P 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AAISJ AAKGQ AANLZ AAONW AASGY AAUTI AAXRX AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABJNI ABLJU ABPLY ABPPZ ABPVW ABTLG ABXSQ ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACNCT ACPOU ACPRK ACPVT ACSCC ACSTJ ACXBN ACXQS ADACV ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADUKH ADULT ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AGUYK AHBTC AHXOZ AI. AIAGR AILXY AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ANHSF AQVQM ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CAG CBGCD COF CS3 CUYZI D-E D-F D0L DCZOG DEVKO DOOOF DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HVGLF HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST LATKE LC2 LC3 LEEKS LH4 LITHE LMP LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ O66 O9- OES OIG OVD P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QN7 R.K ROL RSU RX1 SA0 SAMSI SUPJJ TEORI TN5 UB1 UKR UQL V8K VH1 VOH W8V W99 WBKPD WHG WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XIH XSW YFH YUY YV5 YZZ ZCA ZCG ZO4 ZZTAW ~02 ~IA ~KM ~WT AAMNL AFFDN 08R 8W4 AAJUZ AAPBV ABCVL ABFLS ABHUG ABPTK ABWRO ACXME ADAWD ADDAD ADZLD AESBF AFVGU AGJLS AIRJO CWIXF DWIUU EQZMY IPNFZ IQODW PQEST UMP CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7SN 7SS 7ST 7U6 8FD C1K F1W FR3 H95 L.G P64 RC3 SOI 7X8 |
ID | FETCH-LOGICAL-c4800-be92ef744bf5ea0950a26c70184cea1b45e4df42c5dd71ae0b8bfb1898883b943 |
IEDL.DBID | 33P |
ISSN | 0888-8892 |
IngestDate | Fri Oct 25 22:18:30 EDT 2024 Fri Oct 25 11:19:48 EDT 2024 Thu Oct 10 17:00:52 EDT 2024 Thu Nov 21 22:30:19 EST 2024 Tue Oct 15 23:46:25 EDT 2024 Thu Nov 24 18:34:56 EST 2022 Sat Aug 24 00:41:04 EDT 2024 Mon Nov 25 04:43:43 EST 2024 Wed Oct 30 09:55:11 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Endangered species Disease Vaccination rabies Carnivorous animal monitoring Epizootics Island epizootic model Strategy Models island fox population viability Viability Environmental protection |
Language | English |
License | CC BY 4.0 2013 Society for Conservation Biology. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4800-be92ef744bf5ea0950a26c70184cea1b45e4df42c5dd71ae0b8bfb1898883b943 |
Notes | University of Wyoming ark:/67375/WNG-L08R50DF-5 ArticleID:COBI12020 National Science Foundation - No. DEB-0717049; No. DEB-0812824 istex:DA4C42860DBED5CF4ED478DA096A996B893C68E6 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 23521669 |
PQID | 1318871382 |
PQPubID | 36794 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1328520084 proquest_miscellaneous_1319617617 proquest_journals_1318871382 crossref_primary_10_1111_cobi_12020 pubmed_primary_23521669 pascalfrancis_primary_27334743 wiley_primary_10_1111_cobi_12020_COBI12020 jstor_primary_23525256 istex_primary_ark_67375_WNG_L08R50DF_5 |
PublicationCentury | 2000 |
PublicationDate | April 2013 |
PublicationDateYYYYMMDD | 2013-04-01 |
PublicationDate_xml | – month: 04 year: 2013 text: April 2013 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken, NJ |
PublicationPlace_xml | – name: Hoboken, NJ – name: United States – name: Washington |
PublicationTitle | Conservation biology |
PublicationTitleAlternate | Conservation Biology |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Ltd Wiley-Blackwell |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley-Blackwell |
References | Lopez, G., et al. 2009. Management measures to control a feline leukemia virus outbreak in the endangered Iberian lynx. Animal Conservation 12:173-182. Hampson, K., J. Dushoff, S. Cleaveland, D. T. Haydon, M. Kaare, C. Packer, and A. Dobson. 2009. Transmission dynamics and prospects for the elimination of canine rabies. Public Library of Science Biology 7 Knobel, D. L., A. R. Fooks, S. M. Brookes, D. A. Randall, S. D. Williams, K. Argaw, F. Shiferaw, L. A. Tallents, and M. K. Laurenson. 2008. Trapping and vaccination of endangered Ethiopian wolves to control an outbreak of rabies. Journal of Applied Ecology 45:109-116. Laurenson, K., C. Sillero-Zubiri, H. Thompson, F. Shiferaw, S. Thirgood, and J. Malcolm. 1998. Disease as a threat to endangered species: Ethiopian wolves, domestic dogs and canine pathogens. Animal Conservation 1:273-280. Muoria, P. K., P. Muruthi, W. K. Kariuki, B. A. Hassan, D. Mijele, and N. O. Oguge. 2007. Anthrax outbreak among Grevy's zebra (Equus grevyi) in Samburu, Kenya. African Journal of Ecology 45:483-489. U.S. Fish and Wildlife Service. 2004. Listing the San Miguel Island fox, Santa Rosa Island fox, Santa Cruz Island fox, and Santa Catalina Island fox as endangered. Federal Register 69:10335-10353. Bakker, V. J., and D. F. Doak. 2009. Population viability management: ecological standards to guide adaptive management for rare species. Frontiers in Ecology and the Environment 7:158-165. Bakker, V. J., D. F. Doak, G. W. Roemer, D. K. Garcelon, T. J. Coonan, S. A. Morrison, C. Lynch, K. Ralls, and M. R. Shaw. 2009. Incorporating ecological drivers and uncertainty into a demographic population viability analysis for the island fox. Ecological Monographs 79:77-108. Coonan, T. J. 2003. Recovery strategy for island foxes (Urocyon littoralis) on the northern Channel Islands. National Park Service, Ventura, CA. Pedersen, A. B., K. E. Jones, C. L. Nunn, and S. Altizer. 2007. Infectious diseases and extinction risk in wild mammals. Conservation Biology 21:1269-1279. Smith, G. C., and C. L. Cheeseman. 2002. A mathematical model for the control of diseases in wildlife populations: culling, vaccination and fertility control. Ecological Modelling 150:45-53. Cunningham, M. W., et al. 2008. Epizootiology and management of feline leukemia virus in the Florida puma. Journal of Wildlife Diseases 44:537-552. Sterner, R. T., and G. C. Smith. 2006. Modelling wildlife rabies: transmission, economics, and conservation. Biological Conservation 131:163-179. Fromont, E., D. Pontier, and M. Langlais. 1998. Dynamics of a feline retrovirus (FeLV) in host populations with variable spatial structure. Proceedings of the Royal Society of London Series B-Biological Sciences 265:1097-1104. Timm, S. F., L. Munson, B. A. Summers, K. A. Terio, E. J. Dubovi, C. E. Rupprecht, S. Kapil, and D. K. Garcelon. 2009. A suspected canine distemper epidemic as the cause of a catastrophic decline in Santa Catalina Island Foxes (Urocyon Littoralis Catalinae). Journal of Wildlife Diseases 45:333-343. Scott, J. M., D. D. Goble, J. A. Wiens, D. S. Wilcove, M. Bean, and T. Male. 2005. Recovery of imperiled species under the Endangered Species Act: the need for a new approach. Frontiers in Ecology and the Environment 3:383-389. Smith, K. F., K. Acevedo-Whitehouse, and A. B. Pedersen. 2009. The role of infectious diseases in biological conservation. Animal Conservation 12:1-12. Roemer, G. W., T. J. Coonan, D. K. Garcelon, J. Bascompte, and L. Laughrin. 2001a. Feral pigs facilitate hyperpredation by golden eagles and indirectly cause the decline of the island fox. Animal Conservation 4:307-318. McCallum, H., N. Barlow, and J. Hone. 2001. How should pathogen transmission be modelled? Trends in Ecology & Evolution 16:295-300. White, P. C. L., S. Harris, and G. C. Smith. 1995. Fox contact behaviour and rabies spread: a model for the estimation of contact probabilities between urban foxes at different population densities and its implications for rabies control in Britain. Journal of Applied Ecology 32:693-706. Vial, F., S. Cleaveland, G. Rasmussen, and D. T. Haydon. 2006. Development of vaccination strategies for the management of rabies in African wild dogs. Biological Conservation 131:180-192. Beyer, H. L. 2010. Epidemiological models of rabies in domestic dogs: dynamics and control. Faculty of Biomedical and Life Sciences, Division of Environmental and Evolutionary Biology, University of Glasgow, Glasgow, U.K. Garcelon, D. K., R. K. Wayne, and B. J. Gonzales. 1992. A serologic survey of the island fox (Urocyon littoralis) on the Channel Islands, California. Journal of Wildlife Diseases 28:223-229. Schwemm, C. A. 2008. Report of the tenth annual meeting of the island fox working group. National Park Service, Ventura, CA. Available from http://www.nps.gov/chis/naturescience/upload/IF_2008MeetingReport_FinalC.pdf (accessed December 2010). Haydon, D. T., et al. 2006. Low-coverage vaccination strategies for the conservation of endangered species. Nature 443:692-695. Anderson, R. M., H. C. Jackson, R. M. May, and A. M. Smith. 1981. Population dynamics of fox rabies in Europe. Nature 289:765-771. Clifford, D. L., J. A. K. Mazet, E. J. Dubovi, D. K. Garcelon, T. J. Coonan, P. A. Conrad, and L. Munson. 2006. Pathogen exposure in endangered island fox (Urocyon littoralis) populations: Implications for conservation management. Biological Conservation 131:230-243. Randall, D. A., J. Marino, D. T. Haydon, C. Sillero-Zubiri, D. L. Knobel, L. A. Tallents, D. W. Macdonald, and M. K. Laurenson. 2006. An integrated disease management strategy for the control of rabies in Ethiopian wolves. Biological Conservation 131:151-162. White, P. C. L., and S. Harris. 1994. Encounters between red foxes (Vulpes vulpes): implications for territory maintenance, social cohesion and dispersal. Journal of Animal Ecology 63:315-327. Roemer, G. W., D. A. Smith, D. K. Garcelon, and R. K. Wayne. 2001b. The behavioural ecology of the island fox (Urocyon littoralis). Journal of Zoology 255:1-14. Cleaveland, S., M. Kaare, D. Knobel, and M. K. Laurenson. 2006. Canine vaccination-Providing broader benefits for disease control. Veterinary Microbiology 117:43-50. 2009; 45 2002; 150 1981; 289 2010 2001b; 255 2004; 69 1995; 32 2008 2006; 131 1994 2003 2006; 117 1994; 63 2009; 12 2001a; 4 2009; 79 1992; 28 2008; 45 2009; 7 2008; 44 2001; 16 1998; 1 2005; 3 1998; 265 2007; 21 2007; 45 2006; 443 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 U.S. Fish and Wildlife Service (e_1_2_7_30_1) 2004; 69 Roemer G. W. (e_1_2_7_22_1) 1994 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Schwemm C. A. (e_1_2_7_24_1) 2008 Beyer H. L. (e_1_2_7_5_1) 2010 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 Hampson K. (e_1_2_7_12_1) 2009; 7 e_1_2_7_21_1 e_1_2_7_20_1 Coonan T. J. (e_1_2_7_8_1) 2003 |
References_xml | – volume: 44 start-page: 537 year: 2008 end-page: 552 article-title: Epizootiology and management of feline leukemia virus in the Florida puma publication-title: Journal of Wildlife Diseases – volume: 7 start-page: 158 year: 2009 end-page: 165 article-title: Population viability management: ecological standards to guide adaptive management for rare species publication-title: Frontiers in Ecology and the Environment – volume: 79 start-page: 77 year: 2009 end-page: 108 article-title: Incorporating ecological drivers and uncertainty into a demographic population viability analysis for the island fox publication-title: Ecological Monographs – volume: 45 start-page: 483 year: 2007 end-page: 489 article-title: Anthrax outbreak among Grevy's zebra ( ) in Samburu, Kenya publication-title: African Journal of Ecology – volume: 45 start-page: 333 year: 2009 end-page: 343 article-title: A suspected canine distemper epidemic as the cause of a catastrophic decline in Santa Catalina Island Foxes ( ) publication-title: Journal of Wildlife Diseases – volume: 131 start-page: 180 year: 2006 end-page: 192 article-title: Development of vaccination strategies for the management of rabies in African wild dogs publication-title: Biological Conservation – volume: 289 start-page: 765 year: 1981 end-page: 771 article-title: Population dynamics of fox rabies in Europe publication-title: Nature – year: 2003 – volume: 131 start-page: 163 year: 2006 end-page: 179 article-title: Modelling wildlife rabies: transmission, economics, and conservation publication-title: Biological Conservation – volume: 16 start-page: 295 year: 2001 end-page: 300 article-title: How should pathogen transmission be modelled? publication-title: Trends in Ecology & Evolution – volume: 63 start-page: 315 year: 1994 end-page: 327 article-title: Encounters between red foxes ( ): implications for territory maintenance, social cohesion and dispersal publication-title: Journal of Animal Ecology – volume: 69 start-page: 10335 year: 2004 end-page: 10353 article-title: Listing the San Miguel Island fox, Santa Rosa Island fox, Santa Cruz Island fox, and Santa Catalina Island fox as endangered publication-title: Federal Register – volume: 3 start-page: 383 year: 2005 end-page: 389 article-title: Recovery of imperiled species under the Endangered Species Act: the need for a new approach publication-title: Frontiers in Ecology and the Environment – volume: 12 start-page: 173 year: 2009 end-page: 182 article-title: Management measures to control a feline leukemia virus outbreak in the endangered Iberian lynx publication-title: Animal Conservation – year: 2010 – start-page: 387 year: 1994 end-page: 400 – volume: 21 start-page: 1269 year: 2007 end-page: 1279 article-title: Infectious diseases and extinction risk in wild mammals publication-title: Conservation Biology – volume: 12 start-page: 1 year: 2009 end-page: 12 article-title: The role of infectious diseases in biological conservation publication-title: Animal Conservation – volume: 255 start-page: 1 year: 2001b end-page: 14 article-title: The behavioural ecology of the island fox ( ) publication-title: Journal of Zoology – volume: 443 start-page: 692 year: 2006 end-page: 695 article-title: Low‐coverage vaccination strategies for the conservation of endangered species publication-title: Nature – year: 2008 – volume: 265 start-page: 1097 year: 1998 end-page: 1104 article-title: Dynamics of a feline retrovirus (FeLV) in host populations with variable spatial structure publication-title: Proceedings of the Royal Society of London Series B—Biological Sciences – volume: 45 start-page: 109 year: 2008 end-page: 116 article-title: Trapping and vaccination of endangered Ethiopian wolves to control an outbreak of rabies publication-title: Journal of Applied Ecology – volume: 32 start-page: 693 year: 1995 end-page: 706 article-title: Fox contact behaviour and rabies spread: a model for the estimation of contact probabilities between urban foxes at different population densities and its implications for rabies control in Britain publication-title: Journal of Applied Ecology – volume: 28 start-page: 223 year: 1992 end-page: 229 article-title: A serologic survey of the island fox ( ) on the Channel Islands, California publication-title: Journal of Wildlife Diseases – volume: 131 start-page: 230 year: 2006 end-page: 243 article-title: Pathogen exposure in endangered island fox ( ) populations: Implications for conservation management publication-title: Biological Conservation – volume: 7 year: 2009 article-title: Transmission dynamics and prospects for the elimination of canine rabies publication-title: Public Library of Science Biology – volume: 131 start-page: 151 year: 2006 end-page: 162 article-title: An integrated disease management strategy for the control of rabies in Ethiopian wolves publication-title: Biological Conservation – volume: 150 start-page: 45 year: 2002 end-page: 53 article-title: A mathematical model for the control of diseases in wildlife populations: culling, vaccination and fertility control publication-title: Ecological Modelling – volume: 117 start-page: 43 year: 2006 end-page: 50 article-title: Canine vaccination—Providing broader benefits for disease control publication-title: Veterinary Microbiology – volume: 4 start-page: 307 year: 2001a end-page: 318 article-title: Feral pigs facilitate hyperpredation by golden eagles and indirectly cause the decline of the island fox publication-title: Animal Conservation – volume: 1 start-page: 273 year: 1998 end-page: 280 article-title: Disease as a threat to endangered species: Ethiopian wolves, domestic dogs and canine pathogens publication-title: Animal Conservation – ident: e_1_2_7_31_1 doi: 10.1016/j.biocon.2006.04.005 – ident: e_1_2_7_18_1 doi: 10.1111/j.1365-2028.2007.00758.x – ident: e_1_2_7_25_1 doi: 10.1890/1540-9295(2005)003[0383:ROISUT]2.0.CO;2 – ident: e_1_2_7_14_1 doi: 10.1111/j.1365-2664.2007.01387.x – ident: e_1_2_7_10_1 doi: 10.1098/rspb.1998.0404 – ident: e_1_2_7_20_1 doi: 10.1016/j.biocon.2006.04.004 – volume-title: Recovery strategy for island foxes (Urocyon littoralis) on the northern Channel Islands year: 2003 ident: e_1_2_7_8_1 contributor: fullname: Coonan T. J. – volume-title: Report of the tenth annual meeting of the island fox working group year: 2008 ident: e_1_2_7_24_1 contributor: fullname: Schwemm C. A. – ident: e_1_2_7_21_1 doi: 10.1017/S1367943001001366 – ident: e_1_2_7_7_1 doi: 10.1016/j.biocon.2006.04.029 – ident: e_1_2_7_6_1 doi: 10.1016/j.vetmic.2006.04.009 – ident: e_1_2_7_15_1 doi: 10.1111/j.1469-1795.1998.tb00038.x – ident: e_1_2_7_23_1 doi: 10.1017/S0952836901001066 – ident: e_1_2_7_19_1 doi: 10.1111/j.1523-1739.2007.00776.x – ident: e_1_2_7_27_1 doi: 10.1111/j.1469-1795.2008.00228.x – ident: e_1_2_7_9_1 doi: 10.7589/0090-3558-44.3.537 – ident: e_1_2_7_11_1 doi: 10.7589/0090-3558-28.2.223 – volume-title: Epidemiological models of rabies in domestic dogs: dynamics and control year: 2010 ident: e_1_2_7_5_1 contributor: fullname: Beyer H. L. – ident: e_1_2_7_29_1 doi: 10.7589/0090-3558-45.2.333 – ident: e_1_2_7_3_1 doi: 10.1890/070220 – volume: 69 start-page: 10335 year: 2004 ident: e_1_2_7_30_1 article-title: Listing the San Miguel Island fox, Santa Rosa Island fox, Santa Cruz Island fox, and Santa Catalina Island fox as endangered publication-title: Federal Register contributor: fullname: U.S. Fish and Wildlife Service – start-page: 387 volume-title: The fourth California Islands symposium: update on the status of resources year: 1994 ident: e_1_2_7_22_1 contributor: fullname: Roemer G. W. – ident: e_1_2_7_16_1 doi: 10.1111/j.1469-1795.2009.00241.x – ident: e_1_2_7_17_1 doi: 10.1016/S0169-5347(01)02144-9 – ident: e_1_2_7_2_1 doi: 10.1038/289765a0 – ident: e_1_2_7_4_1 doi: 10.1890/07-0817.1 – volume: 7 year: 2009 ident: e_1_2_7_12_1 article-title: Transmission dynamics and prospects for the elimination of canine rabies publication-title: Public Library of Science Biology contributor: fullname: Hampson K. – ident: e_1_2_7_33_1 doi: 10.2307/2404809 – ident: e_1_2_7_26_1 doi: 10.1016/S0304-3800(01)00471-9 – ident: e_1_2_7_13_1 doi: 10.1038/nature05177 – ident: e_1_2_7_28_1 doi: 10.1016/j.biocon.2006.05.004 – ident: e_1_2_7_32_1 doi: 10.2307/5550 |
SSID | ssj0009514 |
Score | 2.1727345 |
Snippet | Outbreaks of infectious disease represent serious threats to the viability of many vertebrate populations, but few studies have included quantitative... |
SourceID | proquest crossref pubmed pascalfrancis wiley jstor istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 303 |
SubjectTerms | Animal diseases Animal, plant and microbial ecology Animals Applied ecology Biological and medical sciences California Carnivores Conservation biology Conservation of Natural Resources - methods Conservation, protection and management of environment and wildlife disease Disease management Disease models Disease outbreaks Disease Outbreaks - prevention & control Disease Outbreaks - veterinary Disease risks Endangered & extinct species Endangered Species enfermedad Epidemiology epizootic model Foxes Foxes - physiology Fundamental and applied biological sciences. Psychology General aspects island fox modelo Models, Biological monitoreo monitoring Parks, reserves, wildlife conservation. Endangered species: population survey and restocking Population Dynamics population viability rabia Rabies Rabies - epidemiology Rabies - prevention & control Rabies - veterinary Rabies Vaccines - administration & dosage Rabies virus - physiology Urocyon littoralis Vaccination vacunación Wildlife management |
SummonAdditionalLinks | – databaseName: JSTOR Ecology & Botany Collection dbid: JEB link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6xRUhceBcCpTLicUAKJI6dOEe6DwqCgqBQbpEdO2pUSKpNF7H8emaczcJKUCHlECWjyPE3tr-JJ98APOKJtEpYGRrOy1AYGYVa6DK00uBM6KRNvQLf_sfs4IuaTEkm5_HwLwylVfq8QL-LjwTJfHXPOWl24to8gpES5Myvp3t_KOv2At4YyoVK5XylQUrpOmVr6mcxhvfRxqpzkTrwx5CASNmQusMOqfpKFn-jmpvM1S89s6v_2ehrcGXFLdmL3hmuwwXX3IBLfbXJJZ5NvUL18iac-kQB9n5dvIt9rnu97iWj2gfkleysZf2OMBsUbF1HF9_WTf2t_unYpN_bYYfHRDw7hvSX6YZNMcinT4XOsjF9dvnezt0t-DSbHo73w1XphbAUSCFD43LuqkwIU0mnsY8jzdMyizAeLJ2OjZBO2ErwUlqbxdpFRpnKxCpHFBKTi2Qbtpq2cXeARUliKuJRqaiErkpduYxL6yTHR8QmC-DhAE1x2itsFENkQgAWHsAAnnjU1iZ6fkI5aZksjg5eFm8i9UFGk1khA9j2UKwNBxwC2N3A-bdBliQCiVQAOwPwxWogd0WMcx7GlIniATxY38YhSPsqunHtwtvkSATxOM-GK1K4UiKA271TbbQwTtM8gKfey87phmL8bu-VP7v7r_e8B5e5L9lB2UU7sHU2X7j7MOrsYtcPnF8SDxH1 priority: 102 providerName: JSTOR |
Title | Using Population Viability Criteria to Assess Strategies to Minimize Disease Threats for an Endangered Carnivore |
URI | https://api.istex.fr/ark:/67375/WNG-L08R50DF-5/fulltext.pdf https://www.jstor.org/stable/23525256 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcobi.12020 https://www.ncbi.nlm.nih.gov/pubmed/23521669 https://www.proquest.com/docview/1318871382 https://search.proquest.com/docview/1319617617 https://search.proquest.com/docview/1328520084 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB-0Ivii9aMarceK4oMQSTa7yQb60t7lrKC1aP14C7vZDQYxKZeeeP713dm9pD2QggjhCLlJcjcfm99kZ38D8IImXAumeagorUKmeBRKJqtQc2VHQsN16hj4Dj9lR9_ErECanL1hLYznhxhfuGFkuPEaA1yq_lKQV51qXsc2d8eE3aYJbv1GcnyJcdcTe9sULxQip2tuUizjuTh142l0AxX7eyhMxCpJ2VtF1b7Dxd8g6CaidY-k-Z3_-zPbcHsNRcm-9527cM209-Cmb065snuFI7Re3YdTV1dAjsdeX-RL4-m9VwRbJaATk7OO-AlkMhDemh4Pvm_a5mfzx5CZnwoiJ98Rp_bEomUiW1K02i09NppM8S3Nr25hHsDneXEyPQzXnRrCilnEGSqTU1NnjKmaG2lVH0maVllk08fKyFgxbpiuGa241lksTaSEqlUscmucROUs2YGttmvNIyBRkqgaYVfKaibrStYmo1wbTu0lYpUF8HywWHnqCTnKIZFBLZZOiwG8dMYcReTiB5awZbz8evSmfBeJjzyazUsewI6z9ihIkR_W3j2AyYb5LwSyJGEWdwWwO_hDuY77voztEGlT0ETQAJ6NX9uIxWkY2Zpu6WRyixvtdpUMFUiIJVgAD72vbfzCOE3zAF45l7pCDeX0w8Fbt_f4X4SfwC3qun5ggdIubJ0tluYpXO_1cuJibOKWCOFncTBxVbTnPtQpQw |
link.rule.ids | 315,782,786,808,814,843,1408,27933,27934,46064,46488,58024,58034,58037,58257,58267,58270 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7BrhBceC8ElsUIxAEpKHHsPA4coA-6oltWUB43y44dESGSVbNFlF_P2G66WwmthJByiNJpk87D-cYefwPwjCZc50zzUFFahkzxKJRMlqHmCkdCw3XqGPgmH7PZ13w4sjQ5r_q9MJ4fYjPhZiPDjdc2wO2E9LkoL1tVv4wxeceMfZel6Il2B0dyfI5z11N7Y5IX5nlB1-yktpDn7Ltb76Ndq9pffWmirZOUHaqq8j0u_gZCtzGteymNb_zn37kJ19dolLz27nMLLpnmNlzx_SlXeDZynNarO3DiSgvI8abdF_lce4bvFbHdEqwfk9OW-DVk0nPems5ePKqb-kf925ChXw0i828WqnYEATORDRk12u0-NpoM7ETNz3Zh7sKn8Wg-mITrZg1hyRB0hsoU1FQZY6riRqLuI0nTMoswgyyNjBXjhumK0ZJrncXSRCpXlYrzAq2TqIIle7DTtI25DyRKElVZ5JWyismqlJXJKNeGU_yJWGUBPO1NJk48J4focxmrReG0GMBzZ82NiFx8t1VsGRdfZm_FNMo_8Gg4FjyAPWfujSC1FLF49wAOtux_JpAlCUPoFcB-7xBiHfqdiHGUxCw0yWkATzYfY9DalRjZmHbpZAqEjnhcJENzy4mVswDueWfbesI4TYsAXjifukANYvD-zaE7e_Avwo_h6mR-NBXTw9m7h3CNuiYgtl5pH3ZOF0vzCC53enngAu4P9rYqbw |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD5oi9IX79VorSOKD0IkmUsu4IvuxRbrumitvoWZzIQGMVk2XXH99Z6Z2Wy7IAUR8hCSk9u5TL6TOfkOwHPKhM64FqGitAy5ElEouSxDLRSOhEboxDHwHXxOJ9-y4cjS5Lzu_4Xx_BDrD242Mtx4bQN8pqsLQV62qn4VY-6OCfs2RxxumfMZm16g3PXM3pjjhVmW0xU5qa3jOT9243W0bTX7q69MtGWSskNNVb7Fxd8w6Cakde-k8c3_e5pbcGOFRckb7zy34Ypp7sA1351yiWsjx2i9vAszV1hAputmX-Sk9vzeS2J7JVgvJmct8TPIpGe8NZ3d-KFu6h_1b0OGfi6IHJ9aoNoRhMtENmTUaPfvsdFkYD_T_Gzn5h58GY-OBwfhqlVDWHKEnKEyOTVVyrmqhJGo-kjSpEwjzB9LI2PFheG64rQUWqexNJHKVKXiLEfjMJVztgtbTduYB0AixlRlcVfCKy6rUlYmpUIbQfEUsUoDeNZbrJh5Ro6iz2SsFgunxQBeOGOuReT8u61hS0XxdfKuOIqyTyIajgsRwK6z9lqQWoJYvHoA-xvmPxdIGeMIvALY6_2hWAV-V8Q4RmIOyjIawNP1bgxZOw8jG9MunEyOwBGXy2RoZhmxMh7Afe9rG3cYJ0kewEvnUpeooRh8fHvo1h7-i_ATuD5F5RwdTt4_gh3qOoDYYqU92DqbL8xjuNrpxb4Ltz8wqCkV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Population+Viability+Criteria+to+Assess+Strategies+to+Minimize+Disease+Threats+for+an+Endangered+Carnivore&rft.jtitle=Conservation+biology&rft.au=DOAK%2C+DANIEL+F.&rft.au=BAKKER%2C+VICTORIA+J.&rft.au=VICKERS%2C+WINSTON&rft.date=2013-04-01&rft.issn=0888-8892&rft.eissn=1523-1739&rft.volume=27&rft.issue=2&rft.spage=303&rft.epage=314&rft_id=info:doi/10.1111%2Fcobi.12020&rft.externalDBID=10.1111%252Fcobi.12020&rft.externalDocID=COBI12020 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-8892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-8892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-8892&client=summon |